On the Enhanced Accuracy of Kinetic Curve Building in Supercritical Fluid Extraction from Aroma Plants Using a New 3D-Printed Extract Collection Device
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Supercritical Fluid Extraction Procedure
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020. [Google Scholar] [CrossRef]
- Zuin, V.G.; Ramin, L.Z. Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem. 2018, 376, 3. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Payán, M. Liquid-Phase microextraction and electromembrane extraction in millifluidic devices: A tutorial. Anal. Chim. Acta 2019, 1080, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Alexovič, M.; Horstkotte, B.; Solich, P.; Sabo, J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. Anal. Chim. Acta 2016, 907, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Alexovič, M.; Dotsikas, Y.; Bober, P.; Sabo, J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J. Chromatogr. B 2018, 1092, 402–421. [Google Scholar] [CrossRef]
- Martínez, J.; Aguiar, A.C. de Analytical supercritical fluid extraction. In Analytical Separation Science; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 1659–1680. [Google Scholar] [CrossRef]
- Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies - a practical review. Talanta 2001, 53, 771–782. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef]
- Martinez, J.L. Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds; CRC Press: Boca Raton, FL, USA, 2007; 424p. [Google Scholar]
- del Valle, J.M. Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. J. Supercrit. Fluids 2015, 96, 180–199. [Google Scholar] [CrossRef]
- Rozzi, N.L.; Singh, R.K. Supercritical fluids and the food industry. Compr. Rev. Food Sci. Food Saf. 2002, 1, 33–44. [Google Scholar] [CrossRef]
- Matsuyama, K. Supercritical fluid processing for metal-organic frameworks, porous coordination polymers, and covalent organic frameworks. J. Supercrit. Fluids 2018, 134, 197–203. [Google Scholar] [CrossRef]
- McHardy, J.; Sawan, S.P. Supercritical fluid cleaning: fundamentals, technology and applications; Noyes: Westwood, NJ, USA, 1998. [Google Scholar]
- Smirnova, I.; Gurikov, P. Aerogel production: current status, research directions, and future opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Jinno, K. Hyphenated Techniques in Supercritical Fluid Chromatography and Extraction; School of materials science; Toyohashi university of technology: Toyohashi, Japan, 1992. [Google Scholar]
- Zoccali, M.; Donato, P.; Mondello, L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. TrAC Trends Anal. Chem. 2019, 116, 158–165. [Google Scholar] [CrossRef]
- del Sánchez-Camargo, A.P.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A. On-line coupling of supercritical fluid extraction and chromatographic techniques. J. Sep. Sci. 2017, 40, 213–227. [Google Scholar]
- del Sánchez-Camargo, A.P.; Parada-Alonso, F.; Ibáñez, E.; Cifuentes, A. Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J. Sep. Sci. 2019, 42, 243–257. [Google Scholar]
- Sakai, M.; Hayakawa, Y.; Funada, Y.; Ando, T.; Fukusaki, E.; Bamba, T. Development of a practical online supercritical fluid extraction–supercritical fluid chromatography/mass spectrometry system with an integrated split-flow method. J. Chromatogr. A 2019, 1592, 161–172. [Google Scholar] [CrossRef]
- Lanças, F.M. Supercritical fluid techniques coupled with chromatographic techniques. In Multidimensional Chromatography; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2002; pp. 135–150. [Google Scholar]
- Abrahamsson, V.; Rodriguez-Meizoso, I.; Turner, C. Supercritical fluid extraction of lipids from linseed with on-line evaporative light scattering detection. Anal. Chim. Acta 2015, 853, 320–327. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Jumaah, F.; Turner, C. Continuous multicomponent quantification during supercritical fluid extraction applied to microalgae using in-line UV/Vis absorption spectroscopy and on-line evaporative light scattering detection. J. Supercrit. Fluids 2018, 131, 157–165. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Cunico, L.P.; Andersson, N.; Nilsson, B.; Turner, C. Multicomponent inverse modeling of supercritical fluid extraction of carotenoids, chlorophyll A, ergosterol and lipids from microalgae. J. Supercrit. Fluids 2018, 139, 53–61. [Google Scholar] [CrossRef]
- Thompson, P.G.; Taylor, L.T.; Richter, B.E.; Porter, N.L.; Ezzell, J.L. Trapping efficiencies of various collection solvents after supercritical fluid extraction. J. High Resolut. Chromatogr. 1993, 16, 713–716. [Google Scholar] [CrossRef]
- Thompson, P.G.; Taylor, L.T. Liquid trapping after supercritical fluid extraction with modified carbon dioxide. J. High Resolut. Chromatogr. 1994, 17, 759–764. [Google Scholar] [CrossRef]
- McDaniel, L.H.; Taylor, L.T. Modification of the collection solvent to enhance liquid trapping efficiencies after supercritical fluid extraction. J. Chromatogr. Sci. 1999, 37, 203–209. [Google Scholar] [CrossRef][Green Version]
- Levy, J.M.; Ravey, R.M.; Houck, R.K.; Ashraf-Khorassani, M. Considerations in off-line collection after SFE. Fresenius, J. Anal. Chem. 1992, 344, 517–520. [Google Scholar] [CrossRef]
- Björklund, E.; Mathiasson, L.; Persson, P.; Järemo, M. Collection capacity of a solid phase trap in supercritical fluid extraction for the extraction of lipids from a model fat sample. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 2133–2143. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Valverde-García, A. Evaluation of different solid-phase traps for automated collection and clean-up in the analysis of multiple pesticides in fruits and vegetables after supercritical fluid extraction. J. Chromatogr. A 1997, 765, 69–84. [Google Scholar] [CrossRef]
- Moore, W.N.; Taylor, L.T. Solid phase trapping mechanisms involved in the supercritical fluid extraction of digitalis glycosides with modified carbon dioxide. Anal. Chem. 1995, 67, 2030–2036. [Google Scholar] [CrossRef]
- Han, Y.; Ren, L.; Xu, K.; Yang, F.; Li, Y.; Cheng, T.; Kang, X.; Xu, C.; Shi, Q. Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives. J. Chromatogr. A 2015, 1395, 1–6. [Google Scholar] [CrossRef]
- Hartonen, K.; Bøwadt, S.; Hawthorne, S.B.; Riekkola, M.-L. Supercritical fluid extraction with solid-phase trapping of chlorinated and brominated pollutants from sediment samples. J. Chromatogr. A 1997, 774, 229–242. [Google Scholar] [CrossRef]
- Ashraf-Khorassani, M.; Houck, R.K.; Levy, J.M. Cryogenically Cooled Adsorbent Trap for Off-Line Supercritical Fluid Extraction. J. Chromatogr. Sci. 1992, 30, 361–366. [Google Scholar] [CrossRef]
- Lojková, L.; Sedláková, J.; Kubáň, V. A solvent recirculation trapping device for supercritical fluid extraction of polyaromatic hydrocarbons. J. Sep. Sci. 2005, 28, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.; Wyllie, S.G.; Cornwell, C.P.; Tronson, D. Supercritical Fluid Extraction (SFE) of Monoterpenes from the Leaves of Melaleuca alternifolia (Tea Tree). Molecules 2001, 6, 92–103. [Google Scholar] [CrossRef]
- Grosso, C.; Coelho, J.P.; Pessoa, F.L.P.; Fareleira, J.M.N.A.; Barroso, J.G.; Urieta, J.S.; Palavra, A.F.; Sovová, H. Mathematical modelling of supercritical CO2 extraction of volatile oils from aromatic plants. Chem. Eng. Sci. 2010, 65, 3579–3590. [Google Scholar] [CrossRef]
- Sovová, H. Modeling the supercritical fluid extraction of essential oils from plant materials. J. Chromatogr. A 2012, 1250, 27–33. [Google Scholar] [CrossRef]
- Sovová, H. Steps of supercritical fluid extraction of natural products and their characteristic times. J. Supercrit. Fluids 2012, 66, 73–79. [Google Scholar] [CrossRef]
- Núñez, G.A.; Gelmi, C.A.; del Valle, J.M. Simulation of a supercritical carbon dioxide extraction plant with three extraction vessels. Comput. Chem. Eng. 2011, 35, 2687–2695. [Google Scholar] [CrossRef]
- Ibáñez, E.; Oca, A.; de Murga, G.; López-Sebastián, S.; Tabera, J.; Reglero, G. Supercritical Fluid Extraction and Fractionation of Different Preprocessed Rosemary Plants. J. Agric. Food Chem. 1999, 47, 1400–1404. [Google Scholar] [CrossRef]
- Ramsey, E.D. (Ed.) Analytical Supercritical Fluid Extraction Techniques; Springer: Dordrecht, The Netherlands, 1998; ISBN 978-94-010-6076-9. [Google Scholar]
- Ustinovich, K.B.; Prokopchuk, D.I.; Pokrovskiy, O.I.; Parenago, O.O.; Lunin, V.V. A Small Volume Cyclone Separator for Supercritical Fluid Extraction. Russ. J. Phys. Chem. B 2018, 12, 1306–1309. [Google Scholar] [CrossRef]
- García-Risco, M.R.; Hernández, E.J.; Vicente, G.; Fornari, T.; Señoráns, F.J.; Reglero, G. Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves. J. Supercrit. Fluids 2011, 55, 971–976. [Google Scholar] [CrossRef]
- Pokrovskiy, O.I.; Prokopchuk, D.I.; Bagatelia, S.A.; Pokryshkin, S.A.; Kostenko, M.O.; Parenago, O.O.; Markolia, A.; Lunin, V.V. Comparison of Laurus nobilis extracts composition obtained by microwave extraction, supercritical fluid extraction and steam distillation. Chem. Plant Raw Mater. 2019, 373–385. [Google Scholar] [CrossRef][Green Version]
- Sovová, H.; Nobre, B.P.; Palavra, A. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption. Materials 2016, 9, 423. [Google Scholar] [CrossRef] [PubMed]
- Pavlić, B.; Bera, O.; Vidović, S.; Ilić, L.; Zeković, Z. Extraction kinetics and ANN simulation of supercritical fluid extraction of sage herbal dust. J. Supercrit. Fluids 2017, 130, 327–336. [Google Scholar] [CrossRef]
- Denis, P.; Konstantin, U.; Oleg, P. A simple extract collection system for lab-scale supercritical fluid extraction with high trapping efficiency. Submitted to HardwareX. Available online: https://www.sciencedirect.com/journal/hardwarex (accessed on 1 January 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokopchuk, D.; Pokrovskiy, O. On the Enhanced Accuracy of Kinetic Curve Building in Supercritical Fluid Extraction from Aroma Plants Using a New 3D-Printed Extract Collection Device. Molecules 2020, 25, 2008. https://doi.org/10.3390/molecules25092008
Prokopchuk D, Pokrovskiy O. On the Enhanced Accuracy of Kinetic Curve Building in Supercritical Fluid Extraction from Aroma Plants Using a New 3D-Printed Extract Collection Device. Molecules. 2020; 25(9):2008. https://doi.org/10.3390/molecules25092008
Chicago/Turabian StyleProkopchuk, Denis, and Oleg Pokrovskiy. 2020. "On the Enhanced Accuracy of Kinetic Curve Building in Supercritical Fluid Extraction from Aroma Plants Using a New 3D-Printed Extract Collection Device" Molecules 25, no. 9: 2008. https://doi.org/10.3390/molecules25092008
APA StyleProkopchuk, D., & Pokrovskiy, O. (2020). On the Enhanced Accuracy of Kinetic Curve Building in Supercritical Fluid Extraction from Aroma Plants Using a New 3D-Printed Extract Collection Device. Molecules, 25(9), 2008. https://doi.org/10.3390/molecules25092008