Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus nutans Leaf Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield
2.2. TPC and TFC
2.3. Antioxidant Capacities
2.4. Antiproliferative Assay
2.5. GC-MS Spectral Analysis of Compounds Presents in CN-Dcm
2.6. Molecular Docking
2.6.1. Drug-Likeness and Toxicity Prediction
2.6.2. Molecular Docking Analysis
3. Materials and Methods
3.1. Reagents
3.2. Plant Material and Sample Preparation
3.3. Determination of Antioxidant Activities
3.3.1. TPC
3.3.2. TFC
3.3.3. DPPH
3.3.4. ABTS
3.3.5. Statistical Analysis
3.4. Cell Culture for Cytotoxicity Testing
3.4.1. Cell Viability Assay
3.4.2. Selective Index (SI)
3.5. GC-MS
3.6. Molecular Docking
3.6.1. Drug-Likeness and Toxicity Predictions
3.6.2. Protein Model and Compound Structure
3.6.3. Molecular Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Saied, F.; El-Aarag, B.; Salem, T.; Said, G.; Khalifa, S.A.; El-Seedi, H.R. Synthesis, characterization, and in vivo anti-cancer activity of new metal complexes derived from isatin-N (4) antipyrinethiosemicarbazone ligand against ehrlich ascites carcinoma cells. Molecules 2019, 24, 3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, J.C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 1999, 17, 2941. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Hisham, A.N.; Yip, C.H. Overview of breast cancer in Malaysian women: A problem with late diagnosis. Asian J. Surg. 2004, 27, 130–133. [Google Scholar] [CrossRef]
- Sak, K. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.; Rajkumar, S.V. The high cost of cancer drugs and what we can do about it. Mayo Clin. Proc. 2012, 87, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Yeo, B.S.; Yap, Y.J.; Koh, R.Y.; Ng, K.Y.; Chye, S.M. Medicinal properties of Clinacanthus nutans: A review. Trop. J. Pharm. Res. 2018, 17, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Chelyn, J.L.; Omar, M.H.; Yousof, M.; Akmal, N.S.; Ranggasamy, R.; Wasiman, M.I.; Ismail, Z. Analysis of flavone C-glycosides in the leaves of Clinacanthus nutans (Burm. f.) Lindau by HPTLC and HPLC-UV/DAD. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ismail, N.Z.; Arsad, H.; Samian, M.R.; Hamdan, M.R.; Othman, A.S. Assessment of three plastid DNA barcode markers for identification of Clinacanthus nutans (Acanthaceae). 3 Biotech 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Alam, A.; Ferdosh, S.; Ghafoor, K.; Hakim, A.; Juraimi, A.S.; Khatib, A.; Sarker, Z.I. Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pac. J. Trop. Biomed. 2016, 9, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Levenson, A.S.; Jordan, V.C. MCF-7: The first hormone-responsive breast cancer cell line. Cancer Res. 1997, 57, 3071–3078. [Google Scholar]
- Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Research. 2011, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christgen, M.; Lehmann, U. MDA-MB-435: The questionable use of a melanoma cell line as a model for human breast cancer is ongoing. Cancer Biol. Ther. 2007, 6, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.F.; Osborne, C.K.; Howell, A.; Jones, S.E.; Mauriac, L.; Ellis, M.; Kleeberg, U.R.; Come, S.E.; Vergote, I.; Gertler, S.; et al. Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: A prospective combined analysis of two multicenter trials. Cancer 2003, 98, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Hussain, A.I.; Chatha, S.A.; Khosa, M.K.; Kamal, G.M.; Kamal, M.A.; Zhang, X.; Liu, M. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J. Biol. Sci. 2016, 23, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Haron, N.H.; Abas, R.; Md Toha, Z.; Hamdam, M.R.; Azman, N.; Samian, M.R.; Arsad, H. Effect of different solvent extracts on phenolic, flavonoid and antioxidant content and antiproliferative activity of Clinacanthus nutans leaves extract. In Proceedings of the 41st Annual Conference of the Malaysian Society for Biochemistry and Molecular Biology, Pullman Kuala Lumpur Bangsar Hotel, Bangsar, Kuala Lumpur, Malaysia, 18 August 2016. [Google Scholar]
- Sarega, N.; Imam, M.U.; Ooi, D.J.; Chan, K.W.; Md Esa, N.; Zawawi, N.; Ismail, M. Phenolic rich extract from Clinacanthus nutans attenuates hyperlipidemia-associated oxidative stress in rats. Oxidative Med. Cell. Longev. 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, A.; Ibrahim, M.; Musa, A.; Bulus, T.; Oyewale, A. Phenolics content and antioxidant capacity of extracts and fractions of Vernonia blumeoides (Asteraceae). Int. J. Biol. Chem. 2011, 5, 352–359. [Google Scholar] [CrossRef]
- Johari, M.A.; Khong, H.Y. Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Adv. Pharm. Sci. 2019, 2019, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sakanaka, S.; Ishihara, Y. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem. 2008, 107, 739–744. [Google Scholar] [CrossRef]
- Kumar, A.; Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Memo, M.; Mastinu, A. Cannabimimetic plants: Are they new cannabinoidergic modulators? Planta 2019, 249, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Della Pina, S.; Tambaro, S.; Memo, M.; Mastinu, A. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment. Life Sci. 2019, 224, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Suriyatem, R.; Auras, R.A.; Intipunya, P.; Rachtanapun, P. Predictive mathematical modeling for EC50 calculation of antioxidant activity and antibacterial ability of Thai bee products. J. Appl. Pharm. Sci. 2017, 7, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Orsák, M.; Hejtmánková, A.; Kovářová, E. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. Lwt Food Sci. Technol. 2010, 43, 52–58. [Google Scholar] [CrossRef]
- Olugbami, J.O.; Gbadegesin, M.A.; Odunola, O.A. In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Phcog. Res. 2015, 7, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Zaidul, I.; Ghafoor, K.; Sahena, F.; Hakim, M.; Rafii, M.; Abir, H.; Bostanudin, M.; Perumal, V.; Khatib, A. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans. Bmc Complement. Altern. Med. 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ismail, N.Z.; Arsad, H.; Samian, M.R.; Hamdan, M.R. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. Agrivita J. Agric. Sci. 2017, 39, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Ismail, N.Z.; Arsad, H.; Samian, M.R.; Ab Majid, A.H.; Hamdan, M.R. Evaluation of genetic diversity of Clinacanthus nutans (Acanthaceaea) using RAPD, ISSR and RAMP markers. Physiol. Mol. Biol. Plants 2016, 22, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Kuete, V.; Karaosmanoğlu, O.; Sivas, H. Anticancer activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Academic Press: London, UK, 2017; pp. 271–297. [Google Scholar]
- Aslantürk, Ö.S. Genotoxicity—A predictable risk to our actual world. In In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, 1st ed.; Larramendy, M., Soloneski, S., Eds.; IntechOpen: London, UK, 2018; Volume 3, pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vajrabhaya, L.O.; Korsuwannawong, S. Cytotoxicity evaluation of Clinacanthus nutans through dimethylthiazol diphenyltetrazolium bromide and neutral red uptake assays. Eur. J. Dent. 2016, 10, 134–138. [Google Scholar] [CrossRef]
- Van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes 2015, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Arullappan, S.; Rajamanickam, P.; Thevar, N.; Kodimani, C.C. In vitro screening of cytotoxic, antimicrobial and antioxidant activities of Clinacanthus nutans (Acanthaceae) leaf extracts. Trop. J. Pharm. Res. 2014, 13, 1455–1461. [Google Scholar] [CrossRef] [Green Version]
- Haron, N.H.; Md Toha, Z.; Abas, R.; Hamdan, M.R.; Azman, N.; Khairuddean, M.; Arsad, H. In vitro cytotoxic activity of Clinacanthus nutans leaf extracts against HeLa cells. Asian Pac. J. Cancer 2019, 20, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, I.A.; Arsad, H.; Samian, M.R. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Tagne, R.S.; Telefo, B.P.; Talla, E.; Nyemb, J.N.; Njina, S.N.; Asrar, M.; Mukhtar, F.; Kamdje, A.H.N.; Moundipa, P.F.; Farooq, A.D. Bio-guided fractionation of methanol extract of Ziziphus mauritiana Lam.(bark) and effect of the most active fraction on cancer cell lines. Asian Pac. J. Trop. Dis. 2015, 5, 307–312. [Google Scholar] [CrossRef]
- Wang, K.S.; Chan, C.K.; Hidayat, A.F.A.; Wong, Y.H.; Kadir, H.A. Clinacanthus nutans induced reactive oxygen species-dependent apoptosis and autophagy in HCT116 human colorectal cancer cells. Pharm. Mag. 2019, 15, 87–97. [Google Scholar] [CrossRef]
- Segun, P.A.; Ogbole, O.O.; Ismail, F.M.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Resveratrol derivatives from Commiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res. 2019, 33, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.Y.; Chye, S.M.; Ng, C.H.; Koh, R.Y.; Tiong, Y.L.; Pui, L.P.; Tan, Y.H.; Lim, C.S.Y.; Ng, K.Y. Clinacanthus nutans hexane extracts induce apoptosis through a caspase-dependent pathway in human cancer cell lines. Asian Pac. J. Cancer Prev. 2017, 18, 917–926. [Google Scholar] [CrossRef]
- Sulaiman, I.S.C.; Basri, M.; Chan, K.W.; Ashari, S.E.; Masoumi, H.R.F.; Ismail, M. In vitro antioxidant, cytotoxic and phytochemical studies of Clinacanthus nutans Lindau leaf extracts. Afr. J. Pharm. Pharm. 2015, 9, 861–874. [Google Scholar] [CrossRef] [Green Version]
- Yong, Y.K.; Tan, J.J.; Teh, S.S.; Mah, S.H.; Ee, G.C.L.; Chiong, H.S.; Ahmad, Z. Clinacanthus nutans extracts are antioxidant with antiproliferative effect on cultured human cancer cell lines. Evid. Based Complement. Altern. Med. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Fadeyi, S.A.; Fadeyi, O.O.; Adejumo, A.A.; Okoro, C.; Myles, E.L. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. Bmc Complement. Altern. Med. 2013, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A. Lead and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Oduselu, G.O.; Ajani, O.O.; Ajamma, Y.U.; Brors, B.; Adebiyi, E. Homology modelling and molecular docking studies of selected substituted Benzo [d] imidazol-1-yl) methyl) benzimidamide scaffolds on Plasmodium falciparum adenylosuccinate lyase receptor. Bioinform. Biol. Insights 2019, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Sethi, A.; Joshi, K.; Sasikala, K.; Alvala, M. Molecular docking in modern drug discovery: Principles and recent applications. In Drug Discovery and Development-New Advances; IntechOpen: London, UK, 2019; pp. 1–22. [Google Scholar]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Adebayo, I.A.; Balogun, W.G.; Arsad, H. Moringa oleifera: An apoptosis inducer in cancer cells. Trop. J. Pharm. Res. 2017, 16, 2289–2296. [Google Scholar] [CrossRef] [Green Version]
- Amaral, J.D.; Xavier, J.M.; Steer, C.J.; Rodrigues, C.M. The role of p53 in apoptosis. Discov. Med. 2010, 9, 145–152. [Google Scholar]
- Adebayo, I.A.; Arsad, H.; Samian, M.R. Methyl elaidate: A major compound of potential anticancer extract of Moringa oleifera seeds binds with bax and MDM2 (p53 inhibitor) in silico. Pharm. Mag. 2018, 14, 554–557. [Google Scholar] [CrossRef]
- Leão, M.; Pereira, C.; Bisio, A.; Ciribilli, Y.; Paiva, A.M.; Machado, N.; Palmeira, A.; Fernandes, M.X.; Sousa, E.; Pinto, M. Discovery of a new small-molecule inhibitor of p53–MDM2 interaction using a yeast-based approach. Biochem. Pharm. 2013, 85, 1234–1245. [Google Scholar] [CrossRef]
- Álvarez, S.; Blanco, A.; Fresno, M.; Muñoz-Fernández, M.Á. TNF-α contributes to caspase-3 independent apoptosis in neuroblastoma cells: Role of NFAT. PLoS ONE 2011, 6, 1–13. [Google Scholar] [CrossRef]
- Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Pantsar, T.; Poso, A. Binding affinity via docking: Fact and fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutazah, R.; Hamid, H.A.; Ramli, A.N.M.; Aluwi, M.F.F.M.; Yusoff, M.M. In vitro cytotoxicity of Clinacanthus nutans fractions on breast cancer cells and molecular docking study of sulphur containing compounds against caspase-3. Food Chem. Toxicol. 2019, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fidrianny, I.; Rahmiyani, I.; Wirasutisna, K.R. Antioxidant capacities from various leaves extracts of four varieties mangoes using DPPH, ABTS assays and correlation with total phenolic, flavonoid, carotenoid. Int. J. Pharm. Pharm. Sci. 2013, 5, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Scambia, G.; Ranelletti, F.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharm. 1994, 34, 459–464. [Google Scholar] [CrossRef]
- Bendale, Y.; Bendale, V.; Paul, S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr. Med. Res. 2017, 6, 141–148. [Google Scholar] [CrossRef]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Discovery Studio Visualizer V 19. Available online: https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php (accessed on 18 March 2019).
- Hunter, A.D. ACD/ChemSketch 1.0 (freeware). Chem. Educ. Today 1997, 74, 905–906. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Huang, C.C.; Ferrin, T.E. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform. 2006, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Type of Extracts | Percentage Yield (%) |
---|---|
CN-Crd | 6.85 ± 0.15 a |
CN-Hex | 4.10 ± 0.08 b |
CN-Dcm | 13.73 ± 0.05 c |
CN-Chl | 2.18 ± 0.24 d |
CN-But | 20.16 ± 0.34 e |
CN-Aqu | 37.71 ± 0.09 f |
Type of Extracts | DPPH (µg/mL) | ABTS (µg/mL) |
---|---|---|
CN-Crd | 560.50 ± 2.45 | 476.30 ± 0.74 |
CN-Hex | 1530.00 ± 3.74 | 1024.00 ± 4.18 |
CN-Dcm | 1039.00 ± 0.87 | 937.00 ± 3.84 |
CN-Chl | 796.40 ± 7.21 | 602.50 ± 1.74 |
CN-But | 837.10 ± 3.14 | 837.40 ± 9.45 |
CN-Aqu | 744.30 ± 8.45 | 718.00 ± 1.84 |
Trolox standard | 32.33 ± 2.47 | 37.74 ± 2.15 |
Selective Index | MCF 10A/MCF7 |
---|---|
CN-Crd | 0.11 |
CN-Hex | 0.80 |
CN-Dcm | 1.48 |
CN-Chl | 0.85 |
CN-But | 0.78 |
CN-Aqu | 0.4 |
Tamoxifen | 0.49 |
Peak | Compound | Retention Time | Molecular Formula | Similarity Index | Peak Percentage (%) |
---|---|---|---|---|---|
1 | Methyl beta-d-glucopyranoside | 9.028 | C7H14O6 | 90 | 0.97 |
2 | Methyl 4-hydroxycinnamate | 9.514 | C10H10O3 | 91 | 3.81 |
3 | Methyl trans-3-hydroxycinnamate | 10.077 | C10H10O3 | 94 | 11.37 |
4 | Methyl palmitate | 10.96 | C17H34O2 | 99 | 1.55 |
5 | Palmitic acid | 11.133 | C16H32O2 | 99 | 23.84 |
6 | 10,13-Octadecadienoic acid, methyl ester | 11.807 | C19H34O2 | 99 | 0.92 |
7 | Methyl linolenate | 11.842 | C19H32O2 | 99 | 5.86 |
8 | Phytol | 11.891 | C20H40O | 80 | 0.60 |
9 | Methyl stearate | 11.926 | C19H38O2 | 99 | 0.53 |
10 | Linolenyl alcohol | 12.023 | C18H32O | 95 | 29.10 |
11 | Octadecanoic acid | 12.078 | C18H36O2 | 99 | 6.15 |
12 | 2-(((2-Ethylhexyl)oxy)carbonyl)benzoic acid | 14.045 | C16H22O4 | 91 | 14.51 |
13 | Glyceryl 2-linolenate | 15.053 | C21H36O4 | 99 | 0.44 |
14 | Oleamide | 15.706 | C18H35NO | 90 | 0.34 |
Compound | Molecular Weight (Da) | Hydrogen Bond Donor | Hydrogen Bond Acceptor | LogP | Molar Refractivity | Rules Satisfied |
---|---|---|---|---|---|---|
Palmitic acid | 256.42 | 1 | 2 | 4.19 | 80.80 | 5/5 |
Linolenyl alcohol | 264.45 | 1 | 1 | 4.59 | 88.38 | 5/5 |
Proteins | Binding Energy (kcal/mol) | |
---|---|---|
Palmitic Acid | Linolenyl Alcohol | |
TNF-α | −2.45 | −2.99 |
p53-binding protein Mdm-2 | −4.22 | −4.56 |
Caspase-3 | −3.56 | −3.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, N.Z.; Md Toha, Z.; Muhamad, M.; Nik Mohamed Kamal, N.N.S.; Mohamad Zain, N.N.; Arsad, H. Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus nutans Leaf Extracts. Molecules 2020, 25, 2067. https://doi.org/10.3390/molecules25092067
Ismail NZ, Md Toha Z, Muhamad M, Nik Mohamed Kamal NNS, Mohamad Zain NN, Arsad H. Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus nutans Leaf Extracts. Molecules. 2020; 25(9):2067. https://doi.org/10.3390/molecules25092067
Chicago/Turabian StyleIsmail, Noor Zafirah, Zaleha Md Toha, Musthahimah Muhamad, Nik Nur Syazni Nik Mohamed Kamal, Nur Nadhirah Mohamad Zain, and Hasni Arsad. 2020. "Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus nutans Leaf Extracts" Molecules 25, no. 9: 2067. https://doi.org/10.3390/molecules25092067
APA StyleIsmail, N. Z., Md Toha, Z., Muhamad, M., Nik Mohamed Kamal, N. N. S., Mohamad Zain, N. N., & Arsad, H. (2020). Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus nutans Leaf Extracts. Molecules, 25(9), 2067. https://doi.org/10.3390/molecules25092067