Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Sodium 9-bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (2)
2.2. Cytotoxic Effect
2.3. Cell Cycle Analysis
2.4. Immunomodulatory Activity
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Preparation of 9-bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole (1)
4.3. Preparation of Sodium 9-bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (2)
4.4. Cell Culture
4.5. Cytotoxicity Assay
4.6. Cell Cycle Analysis
4.7. Cytokine Analysis
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- The International Agency for Research on Cancer (IARC). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Int. Agency Res. Cancer 2018, 263, 1–3. [Google Scholar]
- Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current Challenges in Cancer Treatment. Clin. Ther. 2016, 38, 1551–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsila, F. The anticancer agent ellipticine binds to glycosaminoglycans at mildly acidic pH characteristic of the extracellular matrix of tumor tissues. RSC Adv. 2016, 6, 810–814. [Google Scholar] [CrossRef]
- Goodwin, S.; Smith, A.F.; Horning, E.C. Alkaloids of Ochrosia elliptica Labill.1. J. Am. Chem. Soc. 1959, 81, 1903–1908. [Google Scholar] [CrossRef]
- Auclair, C. Multimodal action of antitumor agents on DNA: The ellipticine series. Arch. Biochem. Biophys. 1987, 259, 1–14. [Google Scholar] [CrossRef]
- Auclair, C.; Paoletti, C. Bioactivation of the antitumor drugs 9-hydroxyellipticine and derivatives by a peroxidase-hydrogen peroxide system. J. Med. Chem. 1981, 24, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Aimova, D.; Svobodova, L.; Kotrbova, V.; Mrazova, B.; Hodek, P.; Hudecek, J.; Vaclavikova, R.; Frei, E.; Stiborova, M. The anticancer drug ellipticine is a potent inducer of rat cytochromes P450 1A1 and -1A2, thereby modulating its own metabolism. Drug Metab. Dispos. 2007. [Google Scholar] [CrossRef] [Green Version]
- Avendaño, C.; Menéndez, J.C. Chapter 7—Other Anticancer Drugs Targeting DNA and DNA-Associated Enzymes. In Medicinal Chemistry of Anticancer Drugs, 2nd ed.; Avendaño, C., Menéndez, J.C.B.T.-M., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 273–323. ISBN 978-0-444-62649-3. [Google Scholar]
- O’Sullivan, E.C.; Miller, C.M.; Deane, F.M.; McCarthy, F.O. Chapter 6—Emerging Targets in the Bioactivity of Ellipticines and Derivatives. In Studies in Natural Products Chemistry; Atta-ur-Rahman, B.T.-S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 39, pp. 189–232. ISBN 1572-5995. [Google Scholar]
- Bramhananda Reddy, N.; Burra, V.R.; Ravindranath, L.K.; Naresh Kumar, V.; Sreenivasulu, R.; Sadanandam, P. Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents. Monatshefte für Chemie Chem. Mon. 2016, 147, 599–604. [Google Scholar] [CrossRef]
- Horváth, D.V.; Domonyi, F.; Palkó, R.; Lomoschitz, A.; Soós, T. Regioexhaustive Functionalization of the Carbocyclic Core of Isoquinoline: Concise Synthesis of Oxoaporphine Core and Ellipticine. Synthesis 2018, 50, 2181–2190. [Google Scholar] [CrossRef]
- Obaza-Nutaitis, J.; Gribble, G. Synthesis and Cytotoxicity of Novel Bis-Ellipticines and Bis-Isoellipticines. Heterocycles 2019, 99, 171–187. [Google Scholar] [CrossRef]
- Miller, C.M.; O’Sullivan, E.C.; McCarthy, F.O. Novel 11-Substituted Ellipticines as Potent Anticancer Agents with Divergent Activity against Cancer Cells. Pharmaceuticals 2019, 12, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumalatha, S.; Namrata, V.; Lakshmi, M.; Sridhar, G. Synthesis and Anticancer Activity of Oxadiazole Incorporated Ellipticine Derivatives. Russ. J. Gen. Chem. 2019, 89, 505–510. [Google Scholar] [CrossRef]
- Dilek, Ö.; Patir, S.; Tilki, T.; Ertürk, E. Total Synthesis of Olivacine and Ellipticine via a Lactone Ring-Opening and Aromatization Cascade. J. Org. Chem. 2019, 84, 7901–7916. [Google Scholar] [CrossRef] [PubMed]
- Kuskucu, M.; Akyildiz, V.; Kulmány, Á.; Ergün, Y.; Zencir, S.; Zupko, I.; Durdagi, S.; Zaka, M.; Sahin, K.; Orhan, H.; et al. Structural modification of ellipticine derivatives with alkyl groups of varying length is influential on their effects on human DNA topoisomerase II: A combined experimental and computational study. Med. Chem. Res. 2020, 29, 189–198. [Google Scholar] [CrossRef]
- Cranwell, P.A.; Saxton, J.E. 683. A synthesis of ellipticine. J. Chem. Soc. 1962, 3482–3487. [Google Scholar] [CrossRef]
- Globocan Observatory, W. Cancer Today—World. Int. Agency Res. Cancer 2019, 1, 1–2. [Google Scholar]
- Woodward, R.B.; Iacobucci, G.A.; Hochstein, I.A. The Synthesis of Ellipticine. J. Am. Chem. Soc. 1959, 81, 4434–4435. [Google Scholar] [CrossRef]
- Montoia, A.; Rocha e Silva, L.F.; Torres, Z.E.; Costa, D.S.; Henrique, M.C.; Lima, E.S.; Vasconcellos, M.C.; Souza, R.C.Z.; Costa, M.R.F.; Grafov, A.; et al. Antiplasmodial activity of synthetic ellipticine derivatives and an isolated analog. Bioorg. Med. Chem. Lett. 2014, 24, 2631–2634. [Google Scholar] [CrossRef]
- Rubio, O.H.; Fuentes de Arriba, Á.L.; Monleón, L.M.; Sanz, F.; Simón, L.; Alcázar, V.; Morán, J.R. Bifunctional organocatalysts based on a carbazole scaffold for the synthesis of the Hajos–Wiechert and Wieland–Miescher ketones. Tetrahedron 2015, 71, 1297–1303. [Google Scholar] [CrossRef]
- Garbett, N.C.; Graves, D.E. Extending nature’s leads: The anticancer agent ellipticine. Curr. Med. Chem. Anti-Cancer Agents 2004, 4, 149–172. [Google Scholar] [CrossRef]
- Pangilinan, R.; Tice, A.; Tillotson, G. Topical antibiotic treatment for uncomplicated skin and skin structure infections: Review of the literature. Expert Rev. Anti. Infect. Ther. 2009, 7, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, C.; Le Pecq, J.B.; Dat-Xuong, N.; Juret, P.; Garnier, H.; Amiel, J.L.; Rouesse, J. Antitumor activity, pharmacology, and toxicity of ellipticines, ellipticinium, and 9-hydroxy derivatives: Preliminary clinical trials of 2-methyl-9-hydroxy ellipticinium (NSC 264-137). Recent Results Cancer Res. 1980, 74, 107–123. [Google Scholar] [PubMed]
- Anderson, G.; Clavel, M.; Smyth, J.; Giaccone, G.; Gracia, M.; Planting, A.S.; Dalesio, O.; Kirkpatrick, A.; McVie, G. Phase II study of 9-hydroxy-2-methyl-ellipticinium acetate (ellipticinium) in patients with advanced carcinoma of the lung. Eur. J. Cancer Clin. Oncol. 1989, 25, 909–910. [Google Scholar] [CrossRef]
- Russell, E.G.; O’Sullivan, E.C.; Miller, C.M.; Stanicka, J.; McCarthy, F.O.; Cotter, T.G. Ellipticine derivative induces potent cytostatic effect in acute myeloid leukaemia cells. Investig. New Drugs 2014, 32, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Meng, S.; Zheng, X.; Xie, L. ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer. Mol. Med. Rep. 2017, 15, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sailer, B.L.; Valdez, J.G.; Steinkamp, J.A.; Darzynkiewicz, Z.; Crissman, H.A. Monitoring uptake of ellipticine and its fluorescence lifetime in relation to the cell cycle phase by flow cytometry. Exp. Cell Res. 1997, 236, 259–267. [Google Scholar] [CrossRef]
- Pietenpol, J.A.; Stewart, Z.A. Cell cycle checkpoint signaling: Cell cycle arrest versus apoptosis. Toxicology 2002, 181, 475–481. [Google Scholar] [CrossRef]
- Hartwell, L.H.; Weinert, T.A. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989, 246, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Monnot, M.; Mauffret, O.; Simon, V.; Lescot, E.; Psaume, B.; Saucier, J.M.; Charra, M.; Belehradek, J.; Fermandjian, S. DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J. Biol. Chem. 1991, 266, 1820–1829. [Google Scholar]
- Poljaková, J.; Eckschlager, T.; Hraběta, J.; Hřebačková, J.; Smutný, S.; Frei, E.; Martínek, V.; Kizek, R.; Stiborová, M. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem. Pharmacol. 2009, 77, 1466–1479. [Google Scholar] [CrossRef] [Green Version]
- Shurin, M. Cancer as an immune-mediated disease. ImmunoTargets Ther. 2012, 1, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahid, B.; Ali, A.; Rafique, S.; Waqar, M.; Wasim, M.; Wahid, K.; Idrees, M. An overview of cancer immunotherapeutic strategies. Immunotherapy 2018, 10, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiden, J.; Tel, J.; Figdor, C.G. Synthetic immune niches for cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Hegmans, J.P.J.J.; Aerts, J.G.J.V. Immunomodulation in cancer. Curr. Opin. Pharmacol. 2014, 17, 17–21. [Google Scholar] [CrossRef]
- Mikucki, M.E.; Fisher, D.T.; Ku, A.W.; Appenheimer, M.M.; Muhitch, J.B.; Evans, S.S. Preconditioning thermal therapy: Flipping the switch on IL-6 for anti-tumour immunity. Int. J. Hyperth. 2013, 29, 464–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, D.T.; Appenheimer, M.M.; Evans, S.S. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 2014, 26, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Rose-John, S. Il-6 trans-signaling via the soluble IL-6 receptor: Importance for the proinflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Robson, R.L.; Westwick, J.; Brown, Z. Interleukin-1-induced IL-8 and IL-6 gene expression and production in human mesangial cells is differentially regulated by cAMP. Kidney Int. 1995, 48, 1767–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghuwanshi, S.K.; Su, Y.; Singh, V.; Haynes, K.; Richmond, A.; Richardson, R.M. The Chemokine Receptors CXCR1 and CXCR2 Couple to Distinct G Protein-Coupled Receptor Kinases to Mediate and Regulate Leukocyte Functions. J. Immunol. 2012, 189, 2824–2832. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Li, A.; Tian, Y.; Wu, J.D.; Liu, Y.; Li, T.; Chen, Y.; Han, X.; Wu, K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016, 31, 61–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T.R.; Coffman, R.L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1989, 7, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Iwakabe, K.; Sekimoto, M.; Ohmi, Y.; Yahata, T.; Nakui, M.; Sato, T.; Habu, S.; Tashiro, H.; Sato, M.; et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J. Exp. Med. 1999, 190, 617–627. [Google Scholar] [CrossRef]
- Schwaller, M.A.; Sureau, F.; Turpin, P.Y.; Aubard, J. Intracellular distribution of ellipticine, an antitumor alkaloid in K562 leukemia cells. A microspectrofluorometric study. J. Lumin. 1991, 48, 419–424. [Google Scholar] [CrossRef]
- Moreira da Silva, T.; Pinheiro, C.D.; Puccinelli Orlandi, P.; Pinheiro, C.C.; Soares Pontes, G. Zerumbone from Zingiber zerumbet (L.) smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement. Altern. Med. 2018, 18, 301. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.G.L.; Chan, B.C.L.; Hon, P.M.; Lee, M.Y.H.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem. Toxicol. 2010, 48, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compound 2 are available can be ordered from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa de Oliveira, R.; Soares Pontes, G.; Kostyuk, A.; Coutinho Camargo, G.B.; Dhyani, A.; Shvydenko, T.; Shvydenko, K.; Grafov, A. Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. Molecules 2020, 25, 2130. https://doi.org/10.3390/molecules25092130
Costa de Oliveira R, Soares Pontes G, Kostyuk A, Coutinho Camargo GB, Dhyani A, Shvydenko T, Shvydenko K, Grafov A. Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. Molecules. 2020; 25(9):2130. https://doi.org/10.3390/molecules25092130
Chicago/Turabian StyleCosta de Oliveira, Regiane, Gemilson Soares Pontes, Aleksandr Kostyuk, Gabriel B. Coutinho Camargo, Anamika Dhyani, Tetiana Shvydenko, Kostiantyn Shvydenko, and Andriy Grafov. 2020. "Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine" Molecules 25, no. 9: 2130. https://doi.org/10.3390/molecules25092130
APA StyleCosta de Oliveira, R., Soares Pontes, G., Kostyuk, A., Coutinho Camargo, G. B., Dhyani, A., Shvydenko, T., Shvydenko, K., & Grafov, A. (2020). Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. Molecules, 25(9), 2130. https://doi.org/10.3390/molecules25092130