Application of Optimal Control Theory to Fourier Transform Ion Cyclotron Resonance
Abstract
:1. Introduction
2. Formulation of the Control Problem
2.1. The Model System
2.2. The Rotating Wave Approximation
3. Optimal Control Theory
3.1. A Short Introduction to Optimal Control Theory
3.2. Optimal Gradient-Based Algorithm
- Choose guess fields and .
- Propagate forward the state of every ion k and compute .
- Propagate backward the adjoint state of the system from Equation (8).
- Compute the corrections and to the control fields, , where is a small positive constant.
- Define the new control fields .
- Truncate the new control fields and to satisfy the constraint :
- Go to Step 2 until a given accuracy is reached.
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OCT | Optimal Control Theory |
LQOCT | Linear Quadratic Optimal Control Theory |
ICR | Ion Cyclotron Resonance |
PMP | Pontryagin Maximum Principle |
NMR | Nuclear Magnetic Resonance |
RWA | Rotating Wave Approximation |
Appendix A. The Rotating Wave Approximation
Appendix B. Adiabatic Excitation of ICR Process
Appendix C. Excitation by the SWIFT Approach
Appendix D. Application of LQOCT to ICR
References
- Bryson, A.E.; Ho, Y.-C. Applied Optimal Control; Taylor & Francis: New York, NY, USA, 2019. [Google Scholar]
- Bressan, A.; Piccoli, B. Introduction to the Mathematical Theory of Control; American Institute of Mathematical Sciences: Springfield, MO, USA, 2007; Volume 2. [Google Scholar]
- Glaser, S.J.; Boscain, U.; Calarco, T.; Koch, C.; Kockenberger, K.; Kosloff, R.; Kuprov, I.; Luy, B.; Schirmer, S.; Schulte-Herbrüggen, T.; et al. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D 2015, 69, 279. [Google Scholar] [CrossRef]
- Schättler, H.; Ledzewicz, U. Geometric Optimal Control: Theory, Methods and Examples; Springer: New York, NY, USA, 2010. [Google Scholar]
- Brif, C.; Chakrabarti, R.; Rabitz, H. Control of quantum phenomena: Past, present and future. New J. Phys. 2010, 12, 075008. [Google Scholar] [CrossRef] [Green Version]
- Daems, D.; Ruschhaupt, A.; Sugny, D.; Guérin, S. Robust Quantum Control by a Single-Shot Shaped Pulse. Phys. Rev. Lett. 2013, 111, 050404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Damme, L.; Schraft, D.; Genov, G.; Sugny, D.; Halfmann, T.; Guérin, S. Robust NOT-gate by single-shot shaped pulses: Demonstration by rephasing of atomic coherences. Phys. Rev. A 2017, 96, 022309. [Google Scholar] [CrossRef]
- Van Damme, L.; Ansel, Q.; Glaser, S.; Sugny, D. Robust optimal control of two-level quantum systems. Phys. Rev. A 2017, 96, 063403. [Google Scholar] [CrossRef] [Green Version]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishechenko, E.F. The Mathematical Theory of Optimal Processes; John Wiley and Sons: New York, NY, USA, 1962. [Google Scholar]
- Liberzon, D. Calculus of Variations and Optimal Control Theory; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Bonnard, B.; Sugny, D. Optimal Control in Space and Quantum Dynamics; AIMS Applied Mathematics: Springfield, MO, USA, 2012; Volume 5. [Google Scholar]
- Jurdjevic, V. Geometric Control Theory; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Boscain, U.; Sigalotti, M.; Sugny, D. Introduction to the Foundations of Quantum Optimal Control Theory. arXiv 2021, arXiv:2010.09368. [Google Scholar]
- Li, J.S.; Khaneja, N. Ensemble control of Bloch equations. IEEE Trans. Autom. Control 2009, 54, 528. [Google Scholar] [CrossRef]
- Kozbar, K.; Ehni, S.; Skinner, T.E.; Glaser, S.J.; Luy, B. Exploring the limits of broadband 90 and 180 universal rotation pulses. J. Magn. Reson. 2012, 225, 142. [Google Scholar]
- Kozbar, K.; Skinner, T.E.; Khaneja, N.; Glaser, S.J.; Luy, B. Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses. J. Magn. Reson. 2008, 194, 58. [Google Scholar]
- Kozbar, K.; Skinner, T.E.; Khaneja, N.; Glaser, S.J.; Luy, B. Exploring the limits of broadband excitation and inversion pulses. J. Magn. Reson. 2004, 170, 236. [Google Scholar]
- Koch, C.P.; Lemeshko, M.; Sugny, D. Quantum control of molecular rotation. Rev. Mod. Phys. 2019, 91, 035005. [Google Scholar] [CrossRef] [Green Version]
- Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Ernst, R.R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press: Oxford, UK, 1987; Volume 14. [Google Scholar]
- Mao, J.; Mareci, T.H.; Scott, K.W.; Andrew, E.R. Selective inversion radiofrequency pulses by optimal control. J. Magn. Reson. 1986, 70, 310. [Google Scholar] [CrossRef]
- Conolly, S.; Nashimura, D.; Macovski, A. Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem. IEEE Trans. Med. Imag. 1986, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.; Zur, Y. Design of adiabatic selective pulses using optimal control theory. Magn. Reson. Med. 1996, 36, 401409. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.C.; Kehlet, C.; Glaser, S.J.; Khaneja, N. Optimal control methods in NMR spectroscopy. In Encyclopedia of Nuclear Magnetic Resonance; Harris, R.K., Wasylishen, R.L., Eds.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lapert, M.; Zhang, Y.; Braun, M.; Glaser, S.J.; Sugny, D. Singular Extremals for the Time-Optimal Control of Dissipative Spin 1/2 Particles. Phys. Rev. Lett. 2010, 104, 083001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, M.A.; King, K.F.; Zhou, X.J. Handbook of MRI Pulse Sequences; Elsevier Academic Press: New York, NY, USA, 2004. [Google Scholar]
- Lapert, M.; Zhang, Y.; Janich, M.; Glaser, S.J.; Sugny, D. Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging. Sci. Rep. 2012, 2, 589. [Google Scholar] [CrossRef]
- Vinding, M.S.; Maximov, I.I.; Tosner, Z.; Nielsen, N.C. Fast numerical design of spatial-selective RF pulses in MRI using Krotov and quasi-Newton based optimal control methods. J. Chem. Phys. 2012, 137, 054203. [Google Scholar] [CrossRef]
- Maximov, I.I.; Vinding, M.S.; Desmond, H.; Nielsen, N.C.; Shah, N.J. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods. J. Magn. Reson. 2015, 254, 110. [Google Scholar] [CrossRef]
- Khaneja, N.; Reiss, T.; Kehlet, C.; Schulte-Herbrüggen, T.; Glaser, S.J. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 2005, 172, 296. [Google Scholar] [CrossRef] [Green Version]
- Comisarow, M.B.; Marshall, A.G. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 1974, 25, 282. [Google Scholar] [CrossRef]
- Comisarow, M.B.; Marshall, A.G. Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 1974, 26, 489. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A primer. Mass Spectrom. Rev. 1998, 17, 1. [Google Scholar] [CrossRef]
- Nikolaev, E.N.; Heeren, R.M.A.; Popov, A.M.; Pozdneev, A.V.; Chingin, K.S. Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Comm. Mass Spect. 2007, 21, 3527. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, A.A.; Pelupessy, P.; Rolando, C.; Bodenhausen, G. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR. Phys. Chem. Chem. Phys. 2016, 18, 9167. [Google Scholar] [CrossRef] [PubMed]
- Pfandler, P.; Bodenhausen, G.; Rapin, J.; Houriet, R.; Gaumann, T. Two-dimensional ion cyclotron resonance mass spectroscopy. Chem. Phys. Lett. 1987, 138, 195. [Google Scholar] [CrossRef]
- Van Agthoven, M.A.; Delsuc, M.-A.; Bodenhausen, G.; Rolando, C. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 51. [Google Scholar] [CrossRef]
- Van Agthoven, M.A.; Chiron, L.; Coutouly, M.-A.; Sehgal, A.A.; Pelupessy, P.; Delsuc, M.-A.; Rolando, C. Optimization of the discrete pulse sequence for two-dimensional FT-ICR mass spectrometry using infrared multiphoton dissociation. Int. J. Mass Spec. 2014, 370, 114. [Google Scholar] [CrossRef]
- Van Agthoven, M.A.; Delsuc, M.-A.; Rolando, C. Two-dimensional FT-ICR/MS with IRMPD as fragmentation mode. Int. J. Mass Spec. 2011, 306, 196. [Google Scholar] [CrossRef]
- Bray, F.; Bouclon, J.; Chiron, L.; Witt, M.; Delsuc, M.-A.; Rolando, C. Nonuniform Sampling Acquisition of Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Increased Mass Resolution of Tandem Mass Spectrometry Precursor Ions. Anal. Chem. 2017, 89, 8589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Agthoven, M.A.; Lam, Y.P.Y.; O’Connor, P.B.; Rolando, C.; Delsuc, M.-A. Two dimensional mass spectrometry: New perspectives for tandem mass spectrometry. Eur. Biophys. J. 2019, 48, 213. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.G.; Lin, W.T.-C.; Ricca, T.L. Tailored excitation for Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Chem. Soc. 1985, 107, 7893. [Google Scholar] [CrossRef]
- Guan, S. Linear response theory of ion excitation for Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1991, 2, 483. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Marshall, A.G. Stored waveform inverse Fourier transform ion excitation in trapped-ion mass spectrometry: Theory and applications. Int. J. Mass Spectrom. Ion Process. 1996, 157, 5. [Google Scholar] [CrossRef]
- Brockett, R.W. Finite Dimensional Linear Systems; John Wiley and Sons: New York, NY, USA, 1970. [Google Scholar]
- Bonnans, F.; Rouchon, P. Commande et Optimisation de Systemes Dynamiques; Ecole Polytechnique: Paris, France, 2006. [Google Scholar]
- Li, J.-S. Ensemble control of finite-dimensional time-varying linear systems. IEEE Trans. Autom. Control 2011, 56, 345. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-S. Control of Inhomogeneous Ensemble. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2006. [Google Scholar]
- Martikyan, V.; Guéry-Odelin, D.; Sugny, D. Comparison between optimal control and shortcut to adiabaticity protocols in a linear control system. Phys. Rev. A 2020, 101, 013423. [Google Scholar] [CrossRef] [Green Version]
- Martikyan, V.; Devra, A.; Guéry-Odelin, D.; Glaser, S.J.; Sugny, D. Robust control of an ensemble of springs: Application to ion cyclotron resonance and two-level quantum systems. Phys. Rev. A 2020, 102, 053104. [Google Scholar] [CrossRef]
- Li, J.-S.; Ruths, J.; Glaser, S.J. Exact broadband excitation of two-level systems by mapping spins to springs. Nat. Commun. 2017, 8, 446. [Google Scholar] [CrossRef]
- McCoy, M.A.; Mueller, L. Nonresonant effects of frequency-selectives pulses. J. Magn. Reson. 1992, 99, 18. [Google Scholar] [CrossRef]
- Emsley, L.; Bodenhausen, G. Phase shifts induced by transient Bloch-Siegert effects in NMR. Chem. Phys. Lett. 1990, 168, 297. [Google Scholar] [CrossRef] [Green Version]
- Shahriar, M.S.; Pradhan, P.; Morzinski, J. Driver-phase-correlated fluctuations in the rotation of a strongly driven quantum bit. Phys. Rev. A 2004, 69, 032308. [Google Scholar] [CrossRef] [Green Version]
- Werschnik, J.; Gross, E.K.U. Quantum optimal control theory. J. Phys. B 2007, 40, R175. [Google Scholar] [CrossRef] [Green Version]
- Lapert, M.; Tehini, R.; Turinici, G.; Sugny, D. Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field. Phys. Rev. A 2009, 79, 063411. [Google Scholar] [CrossRef] [Green Version]
- Borneman, T.W.; Cory, D.G. Bandwidth-Limited Con-trol and Ringdown Suppression in High-Q Resonators. J. Magn. Reson. 2012, 225, 120. [Google Scholar] [CrossRef] [Green Version]
- Hincks, I.N.; Granade, C.E.; Borneman, T.W.; Cory, D.G. Controlling Quantum Devices with Nonlinear Hard-ware. Phys. Rev. Appl. 2015, 4, 024012. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.; Haas, H.; Chen, A.Q.; Jeon, N.; Lauhon, L.J.; Cory, D.G.; Budakian, R. High-Resolution Nanoscale Solid-State Nuclear Magnetic Resonance Spectroscopy. Phys. Rev. X 2018, 8, 011030. [Google Scholar] [CrossRef] [Green Version]
- Motzoi, F.; Gambetta, J.M.; Merkel, S.T.; Wilhelm, F.K. Optimal control methods for rapidly time-varyingHamiltonians. Phys. Rev. A 2011, 84, 022307. [Google Scholar] [CrossRef] [Green Version]
- Spindler, P.E.; Zhang, Y.; Endeward, B.; Gershernzon, N.; Skinner, T.E.; Glaser, S.J.; Prisner, T.F. Shaped optimalcontrol pulses for increased excitation bandwidth in EPR. J. Magn. Reson. 2012, 218, 49. [Google Scholar] [CrossRef]
- Walther, A.; Julsgaard, B.; Rippe, L.; Ying, Y.; Kröll, S.; Fisher, R.; Glaser, S.J. Extracting High Fidelity Quantum Computer Hardware from Random Systems. Phys. Scr. T 2009, 137, 014009. [Google Scholar] [CrossRef]
- Spindler, P.E.; Schöps, P.; Kallies, W.; Glaser, S.J.; Prisner, T.F. Perspectives of Shaped Pulses for EPR Spectroscopy. J. Magn. Reson. 2017, 280, 30. [Google Scholar] [CrossRef]
- Gershenzon, N.I.; Skinner, T.E.; Brutscher, B.; Khaneja, N.; Nimbalkar, M.; Luy, B.; Glaser, S.J. Linear phase slope in pulse design: Application to coherence transfer. J. Magn. Reson. 2008, 192, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershenzon, N.I.; Kobzar, K.; Luy, B.; Glaser, S.J.; Skinner, T.E. Optimal control design of excitation pulses that accommodate relaxation. J. Magn. Reson. 2007, 188, 330. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.-C.; Ho, T.-S.H.; Rabitz, H. Monotonic convergent quantum optimal control method with exact equality constraints on the optimized control fields. Phys. Rev. A 2016, 93, 053418. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martikyan, V.; Beluffi, C.; Glaser, S.J.; Delsuc, M.-A.; Sugny, D. Application of Optimal Control Theory to Fourier Transform Ion Cyclotron Resonance. Molecules 2021, 26, 2860. https://doi.org/10.3390/molecules26102860
Martikyan V, Beluffi C, Glaser SJ, Delsuc M-A, Sugny D. Application of Optimal Control Theory to Fourier Transform Ion Cyclotron Resonance. Molecules. 2021; 26(10):2860. https://doi.org/10.3390/molecules26102860
Chicago/Turabian StyleMartikyan, Vardan, Camille Beluffi, Steffen J. Glaser, Marc-André Delsuc, and Dominique Sugny. 2021. "Application of Optimal Control Theory to Fourier Transform Ion Cyclotron Resonance" Molecules 26, no. 10: 2860. https://doi.org/10.3390/molecules26102860
APA StyleMartikyan, V., Beluffi, C., Glaser, S. J., Delsuc, M. -A., & Sugny, D. (2021). Application of Optimal Control Theory to Fourier Transform Ion Cyclotron Resonance. Molecules, 26(10), 2860. https://doi.org/10.3390/molecules26102860