Investigating Lignin-Derived Monomers and Oligomers in Low-Molecular-Weight Fractions Separated from Depolymerized Black Liquor Retentate by Membrane Filtration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Depolymerization and Ultrafiltration of BLR: Initial Analysis of Lignin Monomers
2.2. Nontargeted Identification of LMW Compounds from Depolymerized BLR
2.3. Characterization of the Monomers and Oligomers
3. Materials and Methods
3.1. Lignin Samples Preparation
3.2. Chemicals
3.3. Equipment
3.4. UHPSFC/HRMS and UHPSFC/HRMSn Methods
3.5. MS Data Evaluation and Identification of Phenolic Compounds
3.6. Software
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- José Borges Gomes, F.; de Souza, R.E.; Brito, E.O.; Costa Lelis, R.C. A review on lignin sources and uses. J. Appl. Biotechnol. Bioeng. 2020, 7, 100–105. [Google Scholar] [CrossRef]
- Bertella, S.; Luterbacher, J.S. Lignin Functionalization for the Production of Novel Materials. Trends Chem. 2020, 2, 440–453. [Google Scholar] [CrossRef]
- Bonhivers, J.C.; Stuart, P.R. Applications of Process Integration Methodologies in the Pulp and Paper Industry. In Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 765–798. ISBN 9780857097255. [Google Scholar]
- Wallberg, O. Extraction of Lignin from Kraft Cooking Liquor by Ultrafiltration. Ph.D. Thesis, Lund University, Lund, Sweden, 2005. [Google Scholar]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdocia, X.; Prado, R.; Corcuera, M.Á.; Labidi, J. Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature. Biomass Bioenergy 2014, 66, 379–386. [Google Scholar] [CrossRef]
- Vigneault, A.; Johnson, D.K.; Chornet, E. Base-catalyzed depolymerization of lignin: Separation of monomers. Can. J. Chem. Eng. 2007, 85, 906–916. [Google Scholar] [CrossRef]
- Olarte, M.V. Base-catalyzed depolymerization of lignin and hydrodeoxygenation of lignin model compounds for alternative fuel production. Georgia Institute of Technology, GA, USA, 2011. Available online: https://smartech.gatech.edu/bitstream/handle/1853/39613/olarte_mariefel_v_201105_phd.pdf?sequence=1&isAllowed=y (accessed on 8 April 2021).
- Toledano, A.; Serrano, L.; Labidi, J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 2014, 116, 617–624. [Google Scholar] [CrossRef]
- Katahira, R.; Mittal, A.; McKinney, K.; Chen, X.; Tucker, M.P.; Johnson, D.K.; Beckham, G.T. Base-Catalyzed Depolymerization of Biorefinery Lignins. ACS Sustain. Chem. Eng. 2016, 4, 1474–1486. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Danby, A.M.; Ramanathan, A.; Chaudhari, R.V.; Hussain Motagamwala, A.; Dumesic, J.A.; Subramaniam, B. Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity. ACS Sustain. Chem. Eng. 2020, 8, 4096–4106. [Google Scholar] [CrossRef]
- Deepa, A.K.; Dhepe, P.L. Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv. 2014, 4, 12625–12629. [Google Scholar] [CrossRef]
- Dai, J.; Patti, A.F.; Saito, K. Recent developments in chemical degradation of lignin: Catalytic oxidation and ionic liquids. Tetrahedron Lett. 2016, 57, 4945–4951. [Google Scholar] [CrossRef]
- Das, L.; Xu, S.; Shi, J. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid. Front. Energy Res. 2017, 5, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Tung Nguyen, T.; Qian, E.W. Catalytic Depolymerization of Lignin in Ionic Liquid Using a Continuous Flow Fixed-Bed Reaction System. Ind. Eng. Chem. Res. 2018, 57, 16995–17002. [Google Scholar] [CrossRef]
- Prado, R.; Brandt, A.; Erdocia, X.; Hallet, J.; Welton, T.; Labidi, J. Lignin oxidation and depolymerisation in ionic liquids. Green Chem. 2016, 18, 834–841. [Google Scholar] [CrossRef]
- Xiang, Q.; Lee, Y.Y. Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2000, 84–86, 153–162. [Google Scholar] [CrossRef]
- Abdelaziz, O.Y.; Ravi, K.; Mittermeier, F.; Meier, S.; Riisager, A.; Lidén, G.; Hulteberg, C.P. Oxidative Depolymerization of Kraft Lignin for Microbial Conversion. ACS Sustain. Chem. Eng. 2019, 7, 11640–11652. [Google Scholar] [CrossRef] [Green Version]
- Schutyser, W.; Kruger, J.S.; Robinson, A.M.; Katahira, R.; Brandner, D.G.; Cleveland, N.S.; Mittal, A.; Peterson, D.J.; Meilan, R.; Román-leshkov, Y.; et al. Revisiting alkaline aerobic lignin oxidation. Green Chem. 2018, 20, 3828–3844. [Google Scholar] [CrossRef]
- Werhan, H.; Assmann, N.; Von Rohr, P.R. Lignin oxidation studies in a continuous two-phase flow microreactorHolger microreactor. Chem. Eng. Process. Process Intensif. 2013, 73, 29–47. [Google Scholar] [CrossRef]
- Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy Environ. Sci. 2013, 6, 994–1007. [Google Scholar] [CrossRef]
- Margellou, A.; Triantafyllidis, K.S. Catalytic transfer hydrogenolysis reactions for lignin valorization to fuels and chemicals. Catalysts 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Kärkäs, M.D.; Matsuura, B.S.; Monos, T.M.; Magallanes, G.; Stephenson, C.R.J. Transition-metal catalyzed valorization of lignin: The key to a sustainable carbon-neutral future. Org. Biomol. Chem. 2016, 14, 1853–1914. [Google Scholar] [CrossRef] [Green Version]
- Rößiger, B.; Unkelbach, G.; Pufky-Heinrich, D. Chapter 4 Base-Catalyzed Depolymerization of Lignin: History, Challenges and Perspectives. In Lignin-Trends and Applications; Poletto, M., Ed.; IntechOpen: London, UK, 2018; pp. 99–120. ISBN 978-953-51-3902-7. [Google Scholar]
- Arkell, A. Membrane Filtration for Fractionation of Biomass Compounds. Ph.D. Thesis, Lund University: Media-Tryck, Lund, Sweden, 2015. [Google Scholar]
- Li, K.; Al-Rudainy, B.; Sun, M.; Wallberg, O.; Hulteberg, C.; Tunå, P. Membrane separation of the base-catalyzed depolymerization of black liquor retentate for low-molecular-mass compound production. Membranes 2019, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Owen, B.C.; Haupert, L.J.; Jarrell, T.M.; Marcum, C.L.; Parsell, T.H.; Abu-Omar, M.M.; Bozell, J.J.; Black, S.K.; Kenttämaa, H.I. High-Performance Liquid Chromatography/High-Resolution Multiple Stage Tandem Mass Spectrometry Using Negative-Ion-Mode Hydroxide-Doped Electrospray Ionization for the Characterization of Lignin Degradation Products. Anal. Chem. 2012, 84, 6000–6007. [Google Scholar] [CrossRef]
- Xu, W.; Miller, S.J.; Agrawal, P.K.; Jones, C.W. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 2012, 5, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Prothmann, J.; Sun, M.; Spégel, P.; Sandahl, M.; Turner, C. Ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) for analysis of lignin-derived monomeric compounds in processed lignin samples. Anal. Bioanal. Chem. 2017, 409, 7049–7061. [Google Scholar] [CrossRef] [Green Version]
- Morreel, K.; Kim, H.; Lu, F.; Dima, O.; Akiyama, T.; Vanholme, R.; Niculaes, C.; Goeminne, G.; Inzé, D.; Messens, E.; et al. Mass spectrometry-based fragmentation as an identification tool in lignomics. Anal. Chem. 2010, 82, 8095–8105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morreel, K.; Dima, O.; Kim, H.; Lu, F.; Niculaes, C.; Vanholme, R.; Dauwe, R.; Goeminne, G.; Inzé, D.; Messens, E.; et al. Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol. 2010, 153, 1464–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyota, E.; Mazzafera, P.; Sawaya, A.C.H.F. Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatographyâ‡"tandem mass spectrometry with a do-it-yourself oligomer database. Anal. Chem. 2012, 84, 7015–7020. [Google Scholar] [CrossRef]
- Prothmann, J.; Li, K.; Hulteberg, C.; Spégel, P.; Sandahl, M.; Turner, C. Nontargeted Analysis Strategy for the Identification of Phenolic Compounds in Complex Technical Lignin Samples. ChemSusChem 2020, 13, 4605–4612. [Google Scholar] [CrossRef]
- Dier, T.K.F.; Egele, K.; Fossog, V.; Hempelmann, R.; Volmer, D.A. Enhanced Mass Defect Filtering to Simplify and Classify Complex Mixtures of Lignin Degradation Products. Anal. Chem. 2016, 88, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Dier, T.K.F.; Rauber, D.; Durneata, D.; Hempelmann, R.; Volmer, D.A. Sustainable Electrochemical Depolymerization of Lignin in Reusable Ionic Liquids. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Kollberg, L.; Almqvist, H.; Hulteberg, C.P.; Xu, B. Maximizing yield of liquid-lignin from membrane filtration retentate of kraft black liquor. Ind. Crops Prod. 2021. submitted. [Google Scholar]
- Ravi, K.; Abdelaziz, O.Y.; Nöbel, M.; García-Hidalgo, J.; Gorwa-Grauslund, M.F.; Hulteberg, C.P.; Lidén, G. Bacterial conversion of depolymerized Kraft lignin. Biotechnol. Biofuels 2019, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
Sample | BDM170 * | BDM190 | BDM210 | 2BDM190 |
---|---|---|---|---|
Identified and validated m/z values | 44 | 65 | 79 | 58 |
Monomers | 10 | 17 | 27 | 6 |
Dimers | 34 | 48 | 51 | 48 |
Trimers | 0 | 0 | 1 | 4 |
m/z values with more than one retention time | 20 | 63 | 79 | 58 |
Identified phenolic compounds | 77 | 135 | 186 | 101 |
Monomers | 14 | 33 | 63 | 9 |
Dimers | 63 | 102 | 122 | 84 |
Trimers | 0 | 0 | 1 | 8 |
No. | Determined Chemical Formula | Proposed Structure | Detected [M-H]− | RT min | BDM170 | BDM190 | BDM210 | 2BDM190 |
---|---|---|---|---|---|---|---|---|
1 | C14H11O5 | 259.0605 | 3.57 | + | + | + | + | |
2 | C15H13O5 | 273.0759 | 3.58 | + | + | + | + | |
3 | C16H15O5 | 287.0915 | 2.94 | + | + | + | - | |
4 | C16H13O6 | 301.0706 | 3.93 | + | + | + | + | |
5 | C17H17O5 | 301.1071 | 2.99 | + | + | + | + | |
6 | C17H17O6 | 317.1022 | 4.50 | + | - | + | - | |
7 | C17H17O6 | 317.1021 | 4.88 | - | + | + | - | |
8 | C18H17O6 | 329.1017 | 3.80 | + | + | + | + | |
9 | C18H19O6 | 331.1175 | 4.69 | + | + | + | + | |
10 | C18H19O7 | 347.1125 | 4.10 | + | + | - | + | |
11 | C19H21O6 | 345.1333 | 4.62 | + | + | + | + | |
12 | C20H23O6 | 359.1491 | 4.47 | + | + | - | - | |
13 | C20H25O6 | 361.1617 | 5.06 | - | - | - | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Prothmann, J.; Sandahl, M.; Blomberg, S.; Turner, C.; Hulteberg, C. Investigating Lignin-Derived Monomers and Oligomers in Low-Molecular-Weight Fractions Separated from Depolymerized Black Liquor Retentate by Membrane Filtration. Molecules 2021, 26, 2887. https://doi.org/10.3390/molecules26102887
Li K, Prothmann J, Sandahl M, Blomberg S, Turner C, Hulteberg C. Investigating Lignin-Derived Monomers and Oligomers in Low-Molecular-Weight Fractions Separated from Depolymerized Black Liquor Retentate by Membrane Filtration. Molecules. 2021; 26(10):2887. https://doi.org/10.3390/molecules26102887
Chicago/Turabian StyleLi, Kena, Jens Prothmann, Margareta Sandahl, Sara Blomberg, Charlotta Turner, and Christian Hulteberg. 2021. "Investigating Lignin-Derived Monomers and Oligomers in Low-Molecular-Weight Fractions Separated from Depolymerized Black Liquor Retentate by Membrane Filtration" Molecules 26, no. 10: 2887. https://doi.org/10.3390/molecules26102887
APA StyleLi, K., Prothmann, J., Sandahl, M., Blomberg, S., Turner, C., & Hulteberg, C. (2021). Investigating Lignin-Derived Monomers and Oligomers in Low-Molecular-Weight Fractions Separated from Depolymerized Black Liquor Retentate by Membrane Filtration. Molecules, 26(10), 2887. https://doi.org/10.3390/molecules26102887