Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell
Abstract
:1. Introduction
1.1. Plants in the Treatment of DM
1.2. Diabetes and Traditional Medicine in Mexico
1.3. Psacalium decompositum (A. Gray) H. Rob & Brettell
1.4. Bioactive Components of Psacalium decompositum
1.5. Experimental Models for the Study of Plants with Hypoglycemic Activity
1.6. Experimental Models for the Study of Plants with Anti-Inflammatory and Antioxidant Activity in Diabetes
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diabetes. Available online: https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed on 11 April 2021).
- Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42, S10–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo-de la Peña, J.; Rico-Verdin, B. Incidencia y letalidad de las complicaciones agudas y crónicas de la diabetes mellitus en México. Salud Pública Méx. 1996, 38, 236–242. [Google Scholar]
- NOTA TÉCNICAESTADÍSTICA DE DEFUNCIONES REGISTRADAS 2019. Available online: https://www.inegi.org.mx/contenidos/programas/mortalidad/doc/defunciones_registradas_2019_nota_tecnica.pdf (accessed on 11 April 2021).
- Arredondo, A.; Reyes, G. Health Disparities from Economic Burden of Diabetes in Middle-Income Countries: Evidence from México. PLoS ONE 2013, 8, e68443. [Google Scholar] [CrossRef] [Green Version]
- Emite La Secretaría de Salud Emergencia Epidemiológica Por Diabetes Mellitus y Obesidad Secretaría de Salud Gobierno Gob.Mx. Available online: https://www.gob.mx/salud/prensa/emite-la-secretaria-de-salud-emergencia-epidemiologica-por-diabetes-mellitus-y-obesidad (accessed on 12 April 2021).
- World Health Organization. WHO Global Report on Traditional and Complementary Medicine, 2019; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151543-6. [Google Scholar]
- Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Jimenez-Estrada, M.; Reyes-Chilpa, R.; Gonzalez-Paredes, B.; Flores-Saenz, J.L. Effects of Three Mexican Medicinal Plants (Asteraceae) on Blood Glucose Levels in Healthy Mice and Rabbits. J. Ethnopharmacol. 1997, 55, 171–177. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Heinrich, M. Mexican Plants with Hypoglycaemic Effect Used in the Treatment of Diabetes. J. Ethnopharmacol. 2005, 99, 325–348. [Google Scholar] [CrossRef] [PubMed]
- Escandón-Rivera, S.M.; Mata, R.; Andrade-Cetto, A. Molecules Isolated from Mexican Hypoglycemic Plants: A Review. Molecules 2020, 25, 4145. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Galicia, E.; Aguilar-Contreras, A.; Aguilar-Santamaria, L.; Roman-Ramos, R.; Chavez-Miranda, A.A.; Garcia-Vega, L.M.; Flores-Saenz, J.L.; Alarcon-Aguilar, F.J. Studies on Hypoglycemic Activity of Mexican Medicinal Plants. Proc. West Pharm. Soc. 2002, 45, 118–124. [Google Scholar]
- Ernst, E. Integrating Complementary Medicine? J. R. Soc. Health 1997, 117, 285–286. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural Products for the Treatment of Type 2 Diabetes Mellitus: Pharmacology and Mechanisms. Pharm. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef]
- Thorne, R.F. Phytochemistry and angiosperm phylogeny, a summary statement. In Phytochemistry and Angiosperm Phylogeny; Young, D.A., Siglet, D.S., Eds.; Praeger Scientific: New York, NY, USA, 1981; pp. 233–295. [Google Scholar]
- Marles, R.J.; Farnsworth, N.R. Plants as Sources of Anti-Diabetic Agents. In Economic and Medicinal Plant Research; Wagner, H., Farnsworth, N.R., Eds.; Academic Press Ltd: London, UK, 1994; pp. 149–187. [Google Scholar]
- Ivorra, M.D.; Payá, M.; Villar, A. A Review of Natural Products and Plants as Potential Antidiabetic Drugs. J. Ethnopharmacol. 1989, 27, 243–275. [Google Scholar] [CrossRef]
- Akhtar, M.; Khan, Q.; Khaliq, T. Effects of Euphorbia Prostrata and Fumaria Parviflora in Normoglycaemic and Alloxan-Treated Hyperglycaemic Rabbits. Planta Med. 1984, 50, 138–142. [Google Scholar] [CrossRef]
- Akhtar, M.; Ali, M. Study of Hypoglycaemic Activity of Cuminum Nigrum Seeds in Normal and Alloxan Diabetic Rabbits. Planta Med. 1985, 51, 81–85. [Google Scholar] [CrossRef]
- Pérez, G.; Ocegueda, Z.; Muñoz, L.; Avila, A.; Morrow, W.W. A Study of the Hypoglucemic Effect of Some Mexican Plants. J. Ethnopharmacol. 1984, 12, 253–262. [Google Scholar] [CrossRef]
- Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Las plantas medicinales en la terapeutica. Bol. Oficina Sanit. Panam. 1989, 107, 314–329. [Google Scholar]
- Calzada, F.; Solares-Pascasio, J.; Ordoñez-Razo, R.; Velazquez, C.; Barbosa, E.; García-Hernández, N.; Mendez-Luna, D.; Correa-Basurto, J. Antihyperglycemic Activity of the Leaves from Annona Cherimola Miller and Rutin on Alloxan-Induced Diabetic Rats. Phcog. Res. 2017, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Espinosa, F.; Déciga-Campos, M.; Mata, R. Antinociceptive, Hypoglycemic and Spasmolytic Effects of Brickellia Veronicifolia. J. Ethnopharmacol. 2008, 118, 448–454. [Google Scholar] [CrossRef]
- Perez, G.R.M.; Cervantes, C.H.; Zavala, S.M.A.; Sanchez, A.J.; Perez, G.S.; Perez, G.C. Isolation and Hypoglycemic Activity of 5, 7,3′-Trihydroxy-3,6,4′-Trimethoxyflavone from Brickellia Veronicaefolia. Phytomedicine 2000, 7, 25–29. [Google Scholar] [CrossRef]
- Escandón-Rivera, S.; González-Andrade, M.; Bye, R.; Linares, E.; Navarrete, A.; Mata, R. α-Glucosidase Inhibitors from Brickellia Cavanillesii. J. Nat. Prod. 2012, 75, 968–974. [Google Scholar] [CrossRef]
- Andrade Cetto, A.; Wiedenfeld, H.; Revilla, M.C.; Sergio, I.A. Hypoglycemic Effect of Equisetum Myriochaetum Aerial Parts on Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2000, 72, 129–133. [Google Scholar] [CrossRef]
- Ortiz-Andrade, R.; Cabañas-Wuan, A.; Arana-Argáez, V.E.; Alonso-Castro, A.J.; Zapata-Bustos, R.; Salazar-Olivo, L.A.; Domínguez, F.; Chávez, M.; Carranza-Álvarez, C.; García-Carrancá, A. Antidiabetic Effects of Justicia Spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 2012, 143, 455–462. [Google Scholar] [CrossRef]
- Juárez-Reyes, K.; Brindis, F.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Bye, R.; Linares, E.; Mata, R. Hypoglycemic, Antihyperglycemic, and Antioxidant Effects of the Edible Plant Anoda Cristata. J. Ethnopharmacol. 2015, 161, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Eugenio, G.D.; Rivero-Cruz, I.; Rivera-Chávez, J.; Mata, R. Hypoglycemic Properties of Some Preparations and Compounds from Artemisia Ludoviciana Nutt. J. Ethnopharmacol. 2014, 155, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Escandón-Rivera, S.M.; Andrade-Cetto, A.; Sánchez-Villaseñor, G. Phytochemical Composition and Chronic Hypoglycemic Effect of Bromelia Karatas on STZ-NA-Induced Diabetic Rats. Evid. Based Complementary Altern. Med. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Bocanegra, L.; González-Andrade, M.; Bye, R.; Linares, E.; Mata, R. α-Glucosidase Inhibitors from Salvia Circinata. J. Nat. Prod. 2017, 80, 1584–1593. [Google Scholar] [CrossRef]
- Ramirez, G.; Zamilpa, A.; Zavala, M.; Perez, J.; Morales, D.; Tortoriello, J. Chrysoeriol and Other Polyphenols from Tecoma Stans with Lipase Inhibitory Activity. J. Ethnopharmacol. 2016, 185, 1–8. [Google Scholar] [CrossRef]
- Pérez Gutierrez, R.; García Campoy, A.; Paredes Carrera, S.; Muñiz Ramirez, A.; Mota Flores, J.; Flores Valle, S. 3′-O-β-d-Glucopyranosyl-α,4,2′,4′,6′-Pentahydroxy-Dihydrochalcone, from Bark of Eysenhardtia Polystachya Prevents Diabetic Nephropathy via Inhibiting Protein Glycation in STZ-Nicotinamide Induced Diabetic Mice. Molecules 2019, 24, 1214. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gutierrez, R.M.; Garcia-Campoy, A.H.; Muñiz-Ramirez, A. Properties of Flavonoids Isolated from the Bark of Eysenhardtia Polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice. Oxidative Med. Cell. Longev. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Salgado, J.C.; Ortiz-Andrade, R.R.; Aguirre-Crespo, F.; Vergara-Galicia, J.; León-Rivera, I.; Montes, S.; Villalobos-Molina, R.; Estrada-Soto, S. Hypoglycemic, Vasorelaxant and Hepatoprotective Effects of Cochlospermum Vitifolium (Willd.) Sprengel: A Potential Agent for the Treatment of Metabolic Syndrome. J. Ethnopharmacol. 2007, 109, 400–405. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, A.; Carmen-Sandoval, W.; Lomas-Soria, C.; Guevara-González, R.; Reynoso-Camacho, R.; Villagran-Herrera, M.; Salazar-Olivo, L.; Torres-Pacheco, I.; Feregrino-Pérez, A. Timbe (Acaciella Angustissima) Pods Extracts Reduce the Levels of Glucose, Insulin and Improved Physiological Parameters, Hypolipidemic Effect, Oxidative Stress and Renal Damage in Streptozotocin-Induced Diabetic Rats. Molecules 2018, 23, 2812. [Google Scholar] [CrossRef] [Green Version]
- Mata-Torres, G.; Andrade-Cetto, A.; Espinoza-Hernández, F.A.; Cárdenas-Vázquez, R. Hepatic Glucose Output Inhibition by Mexican Plants Used in the Treatment of Type 2 Diabetes. Front. Pharm. 2020, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Cetto, A.; Escandón-Rivera, S.M.; Torres-Valle, G.M.; Quijano, L. Phytochemical Composition and Chronic Hypoglycemic Effect of Rhizophora Mangle Cortex on STZ-NA-Induced Diabetic Rats. Rev. Bras. Farm. 2017, 27, 744–750. [Google Scholar] [CrossRef]
- Wiedenfeld, H.; Andrade-Cetto, A. Pyrone Glycosides from Acosmium Panamense (Benth.) Yacovlev. Z. Für Nat. C 2003, 58, 637–639. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Wiedenfeld, H. Hypoglycemic Effect of Acosmium Panamense Bark on Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2004, 90, 217–220. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Wiedenfeld, H. Hypoglycemic Effect of Cecropia obtusifolia on Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2001, 78, 145–149. [Google Scholar] [CrossRef]
- Amaro, C.; González-Cortazar, M.; Herrera-Ruiz, M.; Román-Ramos, R.; Aguilar-Santamaría, L.; Tortoriello, J.; Jiménez-Ferrer, E. Hypoglycemic and Hypotensive Activity of a Root Extract of Smilax aristolochiifolia, Standardized on N-Trans-Feruloyl-Tyramine. Molecules 2014, 19, 11366–11384. [Google Scholar] [CrossRef] [Green Version]
- Escandón-Rivera, S.; Pérez-Vásquez, A.; Navarrete, A.; Hernández, M.; Linares, E.; Bye, R.; Mata, R. Anti-Hyperglycemic Activity of Major Compounds from Calea ternifolia. Molecules 2017, 22, 289. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Chávez, J.; González-Andrade, M.; del González, M.C.; Glenn, A.E.; Mata, R. Thielavins A, J and K: α-Glucosidase Inhibitors from MEXU 27095, an Endophytic Fungus from Hintonia latiflora. Phytochemistry 2013, 94, 198–205. [Google Scholar] [CrossRef]
- Brindis, F.; Rodríguez, R.; Bye, R.; González-Andrade, M.; Mata, R. (Z)-3-Butylidenephthalide from Ligusticum porteri, an α-Glucosidase Inhibitor. J. Nat. Prod. 2011, 74, 314–320. [Google Scholar] [CrossRef]
- Romo-Pérez, A.; Escandón-Rivera, S.M.; Andrade-Cetto, A. Chronic Hypoglycemic Effect and Phytochemical Composition of Smilax moranensis Roots. Rev. Bras. Farm. 2019, 29, 246–253. [Google Scholar] [CrossRef]
- Martínez, A.; Madariaga-Mazón, A.; Rivero-Cruz, I.; Bye, R.; Mata, R. Antidiabetic and Antihyperalgesic Effects of a Decoction and Compounds from Acourtia thurberi. Planta Med. 2016, 83, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Flores-Bocanegra, L.; Torres-Colín, R.; González-Andrade, M.; Calderón, J.S.; Mata, R. In Vivo and In Vitro α-Glucosidase Inhibitory Activity of Perfoliatin a from Melampodium Perfoliatum. Nat. Prod. Commun. 2019, 14, 1934578X1901400. [Google Scholar] [CrossRef] [Green Version]
- Alarcon-Aguilar, F.J.; Jimenez-Estrada, M.; Reyes-Chilpa, R.; Gonzalez-Paredes, B.; Contreras-Weber, C.C.; Roman-Ramos, R. Hypoglycemic Activity of Root Water Decoction, Sesquiterpenoids, and One Polysaccharide Fraction from Psacalium decompositum in Mice. J. Ethnopharmacol. 2000, 69, 207–215. [Google Scholar] [CrossRef]
- Parra-Naranjo, A.; Delgado-Montemayor, C.; Fraga-López, A.; Castañeda-Corral, G.; Salazar-Aranda, R.; Acevedo-Fernández, J.; Waksman, N. Acute Hypoglycemic and Antidiabetic Effect of Teuhetenone A Isolated from Turnera diffusa. Molecules 2017, 22, 599. [Google Scholar] [CrossRef]
- Campos, M.G.; Oropeza, M.; Torres-Sosa, C.; Jiménez-Estrada, M.; Reyes-Chilpa, R. Sesquiterpenoids from Antidiabetic Psacalium decompositum Block ATP Sensitive Potassium Channels. J. Ethnopharmacol. 2009, 123, 489–493. [Google Scholar] [CrossRef]
- Reyes-Chilpa, R.; Jiménez-Estrada, M.; Godínez, M.; Hernández-Ortega, S.; Campos, M.; Béjar, E. A Novel Cacalolide from Psacalium decompositum. Nat. Prod. Lett. 2002, 16, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Ovalle-Magallanes, B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Mata, R. Hypoglycemic and Antihyperglycemic Effects of Phytopreparations and Limonoids from Swietenia humilis. Phytochemistry 2015, 110, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Ovalle-Magallanes, B.; Navarrete, A.; Haddad, P.S.; Tovar, A.R.; Noriega, L.G.; Tovar-Palacio, C.; Mata, R. Multi-Target Antidiabetic Mechanisms of Mexicanolides from Swietenia humilis. Phytomedicine 2019, 58, 152891. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.; Vargas, S. Triterpenes from Agarista Mexicana as Potential Antidiabetic Agents. Phytother. Res. 2002, 16, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Narváez-Mastache, J.M.; Garduño-Ramírez, M.L.; Alvarez, L.; Delgado, G. Antihyperglycemic Activity and Chemical Constituents of Eysenhardtia Platycarpa. J. Nat. Prod. 2006, 69, 1687–1691. [Google Scholar] [CrossRef]
- Ramírez-Espinosa, J.J.; Rios, M.Y.; López-Martínez, S.; López-Vallejo, F.; Medina-Franco, J.L.; Paoli, P.; Camici, G.; Navarrete-Vázquez, G.; Ortiz-Andrade, R.; Estrada-Soto, S. Antidiabetic Activity of Some Pentacyclic Acid Triterpenoids, Role of PTP–1B: In Vitro, in Silico, and in Vivo Approaches. Eur. J. Med. Chem. 2011, 46, 2243–2251. [Google Scholar] [CrossRef]
- López-Martínez, S.; Navarrete-Vázquez, G.; Estrada-Soto, S.; León-Rivera, I.; Rios, M.Y. Chemical Constituents of the Hemiparasitic Plant Phoradendron Brachystachyum DC Nutt (Viscaceae). Nat. Prod. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef]
- Guerrero-Analco, J.A.; Hersch-Martínez, P.; Pedraza-Chaverri, J.; Navarrete, A.; Mata, R. Antihyperglycemic Effect of Constituents from Hintonia standleyana in Streptozotocin-Induced Diabetic Rats. Planta Med. 2005, 71, 1099–1105. [Google Scholar] [CrossRef]
- Cristians, S.; Guerrero-Analco, J.A.; Pérez-Vásquez, A.; Palacios-Espinosa, F.; Ciangherotti, C.; Bye, R.; Mata, R. Hypoglycemic Activity of Extracts and Compounds from the Leaves of Hintonia Standleyana and H. Latiflora: Potential Alternatives to the Use of the Stem Bark of These Species. J. Nat. Prod. 2009, 72, 408–413. [Google Scholar] [CrossRef]
- Rosas-Ramírez, D.; Escandón-Rivera, S.; Pereda-Miranda, R. Morning Glory Resin Glycosides as α-Glucosidase Inhibitors: In Vitro and in Silico Analysis. Phytochemistry 2018, 148, 39–47. [Google Scholar] [CrossRef]
- Bustos-Brito, C.; Andrade-Cetto, A.; Giraldo-Aguirre, J.D.; Moreno-Vargas, A.D.; Quijano, L. Acute Hypoglycemic Effect and Phytochemical Composition of Ageratina Petiolaris. J. Ethnopharmacol. 2016, 185, 341–346. [Google Scholar] [CrossRef]
- Márquez Alonso, C.; Lara Ochoa, F. Plantas Medicinales de México II: Composición, Usos y Actividad Biológica; Universidad Nacional Autónoma de México: Mexico City, México, 1999; ISBN 978-968-36-6996-4. [Google Scholar]
- Aguilar, C.A.; Xolalpa, M.S. La Herbolaria Mexicana En El Tratamiento de La Diabetes. Ciencia 2002, 53, 24–35. [Google Scholar]
- Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Aguilar-Contreras, A.; Contreras-Weber, C.C.; Flores-Saenz, J.L. Study of the Anti-Hyperglycemic Effect of Plants Used as Antidiabetics. J. Ethnopharmacol. 1998, 61, 101–110. [Google Scholar] [CrossRef]
- Román-Ramos, R.; Flores-Sáenz, J.L.; Partida-Hernández, G.; Lara-Lemus, A.; Alarcón-Aguilar, F. Experimental Study of the Hypoglycemic Effect of Some Antidiabetic Plants. Arch. Invest. Med. 1991, 22, 87–93. [Google Scholar]
- Martínez, A.; Madariaga-Mazon, A.; Linares, E.; Bye, R.; Mata, R. Hypoglycemic and Antihyperglycemic Activities of an Aqueous Extract and Compounds from Acourtia thurberi Roots. Planta Med. 2015, 81, 1556443. [Google Scholar] [CrossRef]
- Román Ramos, R.; Alarcón-Aguilar, F.; Lara-Lemus, A.; Flores-Saenz, J.L. Hypoglycemic Effect of Plants Used in Mexico as Antidiabetics. Arch. Med. Res. 1992, 23, 59–64. [Google Scholar]
- Evaluación Del Potencial Hipoglucemiante de Infusiones Vegetales de Plantas Empleadas En Medicina Tradicional Mexicana—CienciAcierta. Available online: http://www.cienciacierta.uadec.mx/2018/12/14/evaluacion-del-potencial-hipoglucemiante-de-infusiones-vegetales-de-plantas-empleadas-en-medicina-tradicional-mexicana/ (accessed on 28 April 2021).
- Revilla-Monsalve, M.C.; Andrade-Cetto, A.; Palomino-Garibay, M.A.; Wiedenfeld, H.; Islas-Andrade, S. Hypoglycemic Effect of Cecropia obtusifolia Bertol Aqueous Extracts on Type 2 Diabetic Patients. J. Ethnopharmacol. 2007, 111, 636–640. [Google Scholar] [CrossRef]
- Cadena-Zamudio, J.D.; del Nicasio-Torres, M.P.; Guerrero-Analco, J.A.; Ibarra-Laclette, E. Estudios Etnofarmacológicos de Cecropia obtusifolia (Urticaceae) y Su Importancia En El Tratamiento de La Diabetes Mellitus Tipo 2 (DM-2): Una Mini-Revisión. Acta Bot. Mex. 2018. [Google Scholar] [CrossRef]
- Pérez-Ramírez, I.F.; González-Dávalos, M.L.; Mora, O.; Gallegos-Corona, M.A.; Reynoso-Camacho, R. Effect of Ocimum sanctum and Crataegus pubescens Aqueous Extracts on Obesity, Inflammation, and Glucose Metabolism. J. Funct. Foods 2017, 35, 24–31. [Google Scholar] [CrossRef]
- Singh, S.K.; Kesari, A.N.; Gupta, R.K.; Jaiswal, D.; Watal, G. Assessment of Antidiabetic Potential of Cynodon Dactylon Extract in Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2007, 114, 174–179. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Salazar-Olivo, L.A. The Anti-Diabetic Properties of Guazuma Ulmifolia Lam Are Mediated by the Stimulation of Glucose Uptake in Normal and Diabetic Adipocytes without Inducing Adipogenesis. J. Ethnopharmacol. 2008, 118, 252–256. [Google Scholar] [CrossRef]
- Adnyana, I.K.; Yulinah, E.Y.; Kurniati, N.F. Antidiabetic Activity of Aqueous Leaf Extracts of Guazuma Ulmifolia Lamk., Ethanolic Extracts of Curcuma Xanthorrhiza and Their Combinations in Alloxan-Induced Diabetic Mice. Res. J. Med. Plant. 2013, 7, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Roman-Ramos, R.; Contreras-Weber, C.C.; Nohpal-Grajeda, G.; Flores-Saenz, J.L.; Alarcon-Aguilar, F.J. Blood Glucose Level Decrease Caused by Extracts and Fractions from Lepechinia Caulescens in Healthy and Alloxan-Diabetic Mice. Pharm. Biol. 2001, 39, 317–321. [Google Scholar] [CrossRef]
- Elberry, A.A.; Harraz, F.M.; Ghareib, S.A.; Gabr, S.A.; Nagy, A.A.; Abdel-Sattar, E. Methanolic Extract of Marrubium Vulgare Ameliorates Hyperglycemia and Dyslipidemia in Streptozotocin-Induced Diabetic Rats. Int. J. Diabetes Mellit. 2015, 3, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Inman, W.D.; Luo, J.; Jolad, S.D.; King, S.R.; Cooper, R. Antihyperglycemic Sesquiterpenes from Psacalium d Ecompositum. J. Nat. Prod. 1999, 62, 1088–1092. [Google Scholar] [CrossRef]
- Jimenez-Estrada, M.; Merino-Aguilar, H.; Lopez-Fernandez, A.; Rojano-Vilchis, N.A.; Roman-Ramos, R.; Alarcon-Aguilar, F.J. Chemical Characterization and Evaluation of the Hypoglycemic Effect of Fructooligosaccharides from Psacalium Decompositum. J. Complementary Integr. Med. 2011, 8. [Google Scholar] [CrossRef]
- Alarcon-Aguilar, F.J.; Jimenez-Estrada, M.; Reyes-Chilpa, R.; Roman-Ramos, R. Hypoglycemic Effect of Extracts and Fractions from Psacalium Decompositum in Healthy and Alloxan-Diabetic Mice. J. Ethnopharmacol. 2000, 72, 21–27. [Google Scholar] [CrossRef]
- Contreras, C.; Román, R.; Pérez, C.; Alarcón, F.; Zavala, M.; Pérez, S. Hypoglycemic Activity of a New Carbohydrate Isolated from the Roots of Psacalium Peltatum. Chem. Pharm. Bull. 2005, 53, 1408–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Weber, C.; Perez-Gutierrez, S.; Alarcon-Aguilar, F.; Roman-Ramos, R. Anti-Hyperglycemic Effect of Psacalium Peltatum. Proc. West Pharm. Soc. 2002, 45, 134–136. [Google Scholar]
- Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Flores-Saenz, J.L.; Aguirre-Garcia, F. Investigation on the Hypoglycaemic Effects of Extracts of Four Mexican Medicinal Plants in Normal and Alloxan-Diabetic Mice. Phytother. Res. 2002, 16, 383–386. [Google Scholar] [CrossRef]
- Avila-Acevedo, J.G.; García-Bores, A.M.; MArtínez-Ramírez, F.; Hernández-Delgado, C.T.; Ibarra-Barajas, M.; Romo de Vivar, A.; Flores-Maya, S.; Velasco-Lara, P.; Cespedes, C.L. Antihyperglycemic effect and genotoxicity of Psittacanthus calyculatus extract in streptozotocin-induced diabetic rats. Bol. Lat. Caribe Plantas Med. Aromát. 2012, 11, 345–353. [Google Scholar]
- Alonso-Castro, A.J.; Zapata-Bustos, R.; Romo-Yañez, J.; Camarillo-Ledesma, P.; Gómez-Sánchez, M.; Salazar-Olivo, L.A. The Antidiabetic Plants Tecoma stans (L.) Juss. Ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) Induce the Incorporation of Glucose in Insulin-Sensitive and Insulin-Resistant Murine and Human Adipocytes. J. Ethnopharmacol. 2010, 127, 1–6. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Revilla-Monsalve, C.; Wiedenfeld, H. Hypoglycemic Effect of Tournefortia hirsutissima L. on n-Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2007, 112, 96–100. [Google Scholar] [CrossRef]
- Xue, W.-L.; Li, X.-S.; Zhang, J.; Liu, Y.-H.; Wang, Z.-L.; Zhang, R.-J. Effect of Trigonella Foenum-Graecum (Fenugreek) Extract on Blood Glucose, Blood Lipid and Hemorheological Properties in Streptozotocin-Induced Diabetic Rats. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. S1), 422–426. [Google Scholar]
- Roman-Ramos, R.; Flores-Saenz, J.L.; Alarcon-Aguilar, F.J. Anti-Hyperglycemic Effect of Some Edible Plants. J. Ethnopharmacol. 1995, 48, 25–32. [Google Scholar] [CrossRef]
- Jagtap, A.G.; Patil, P.B. Antihyperglycemic Activity and Inhibition of Advanced Glycation End Product Formation by Cuminum Cyminum in Streptozotocin Induced Diabetic Rats. Food Chem. Toxicol. 2010, 48, 2030–2036. [Google Scholar] [CrossRef]
- Abubakar, N.S.; Florence, I.O.; Iyanu, O.O. Phytochemical Screening and Hypoglycemic Effect of Methanolic Fruit Pulp Extract of Cucumis sativus in Alloxan Induced Diabetic Rats. J. Med. Plants Res. 2014, 8, 1173–1178. [Google Scholar] [CrossRef] [Green Version]
- Alarcon-Aguilar, F.J.; Hernandez-Galicia, E.; Campos-Sepulveda, A.E.; Xolalpa-Molina, S.; Rivas-Vilchis, J.F.; Vazquez-Carrillo, L.I.; Roman-Ramos, R. Evaluation of the Hypoglycemic Effect of Cucurbita ficifolia Bouché (Cucurbitaceae) in Different Experimental Models. J. Ethnopharmacol. 2002, 82, 185–189. [Google Scholar] [CrossRef]
- Moya-Hernández, A.; Bosquez-Molina, E.; Serrato-Díaz, A.; Blancas-Flores, G.; Alarcón-Aguilar, F.J. Analysis of Genetic Diversity of Cucurbita Ficifolia Bouché from Different Regions of Mexico, Using AFLP Markers and Study of Its Hypoglycemic Effect in Mice. South Afr. J. Bot. 2018, 116, 110–115. [Google Scholar] [CrossRef]
- Miranda-Perez, M.E.; Ortega-Camarillo, C.; Del Carmen Escobar-Villanueva, M.; Blancas-Flores, G.; Alarcon-Aguilar, F.J. Cucurbita Ficifolia Bouché Increases Insulin Secretion in RINm5F Cells through an Influx of Ca2+ from the Endoplasmic reticulum. J. Ethnopharmacol. 2016, 188, 159–166. [Google Scholar] [CrossRef]
- Díaz-Flores, M.; Angeles-Mejia, S.; Baiza-Gutman, L.A.; Medina-Navarro, R.; Hernández-Saavedra, D.; Ortega-Camarillo, C.; Roman-Ramos, R.; Cruz, M.; Alarcon-Aguilar, F.J. Effect of an Aqueous Extract of Cucurbita ficifolia Bouché on the Glutathione Redox Cycle in Mice with STZ-Induced Diabetes. J. Ethnopharmacol. 2012, 144, 101–108. [Google Scholar] [CrossRef]
- Becerra-Jiménez, J.; Andrade-Cetto, A. Effect of Opuntia streptacantha Lem. on Alpha-Glucosidase Activity. J. Ethnopharmacol. 2012, 139, 493–496. [Google Scholar] [CrossRef]
- Alarcon-Aguilar, F.J.; Valdes-Arzate, A.; Xolalpa-Molina, S.; Banderas-Dorantes, T.; Jimenez-Estrada, M.; Hernandez-Galicia, E.; Roman-Ramos, R. Hypoglycemic Activity of Two Polysaccharides Isolated from Opuntia Ficus-Indica and O. Streptacantha. Proc. West Pharm. Soc. 2003, 46, 139–142. [Google Scholar]
- Valencia-Mejía, E.; Batista, K.A.; Fernández, J.J.A.; Fernandes, K.F. Antihyperglycemic and Hypoglycemic Activity of Naturally Occurring Peptides and Protein Hydrolysates from Easy-to-Cook and Hard-to-Cook Beans (Phaseolus Vulgaris L.). Food Res. Int. 2019, 121, 238–246. [Google Scholar] [CrossRef]
- Atlas De Las Plantas De La Medicina Tradicional Mexicana. Biblioteca de la Medicina Tradicional Mexicana, 1st ed.; Argueta, A., Gallardo Vázquez, M.C., Eds.; Instituto Nacional Indigenista: Mexico City, Mexico, 1994; ISBN 978-968-29-7323-9. [Google Scholar]
- Inouye, Y.; Uchida, Y.; Kakisawa, H. Synthetic Proof for the Structures of Maturinone and Cacalol. BCSJ 1977, 50, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Yuste, F.; Walls, F. Synthesis of (±)-Cacalol. Aust. J. Chem. 1976, 29, 2333. [Google Scholar] [CrossRef]
- Jimenez-Estrada, M.; Ayala, J.; Reyes-Chilpa, R.; Navarro, A. Nitration of Natural Products of Furanic and Benzofuranic Rings. Rev. Lat. Quím 1999, 27, 81–88. [Google Scholar]
- Hirai, Y.; Doe, M.; Kinoshita, T.; Morimoto, Y. Total Synthesis of Five Cacalol Families at Different Oxidation Stages, Modified Furanoeremophilane Sesquiterpenes from Cacalia and Senecio Species. Chem. Lett. 2004, 33, 136–137. [Google Scholar] [CrossRef]
- Tanikawa, S.; Ono, M.; Akita, H. The First Synthesis of (S)-(+)-Cacalol. ChemInform 2005, 36. [Google Scholar] [CrossRef]
- Banerjee, A.K.; Melean, C.E.; Mora, H.D.; Cabrera, E.V.; Laya, M.S. A Formal Total Synthesis of (±) -Cacalol. J. Chem. Res. 2007, 2007, 109–111. [Google Scholar] [CrossRef]
- Kedrowski, B.L.; Hoppe, R.W. A Concise Synthesis of (±)-Cacalol. J. Org. Chem. 2008, 73, 5177–5179. [Google Scholar] [CrossRef]
- Anaya, A.L.; Hernández-Bautista, B.E.; Torres-Barragán, A.; León-Cantero, J.; Jiménez-Estrada, M. Phytotoxicity of Cacalol and Some Derivatives Obtained from the Roots of Psacalium decompositum (A. Gray) H. Rob. & Brettell (Asteraceae), Matarique or Maturin. J. Chem. Ecol. 1996, 22, 393–403. [Google Scholar] [CrossRef]
- Jimenez-Estrada, M.; Lozcano, R.C.; Valdes, M.J.; León, C.; Alarcón, G.; Sveshtarova, P. Antimicrobial Activity of Cacalol and Its Derivatives. Rev. Latinoam. Quim. 1992, 23, 14–17. [Google Scholar]
- Merino-Aguilar, H.; Arrieta-Baez, D.; Jiménez-Estrada, M.; Magos-Guerrero, G.; Hernández-Bautista, R.J.; Susunaga-Notario, A.D.C.; Almanza-Pérez, J.C.; Blancas-Flores, G.; Román-Ramos, R.; Alarcón-Aguilar, F.J. Effect of Fructooligosaccharides Fraction from Psacalium Decompositum on Inflammation and Dyslipidemia in Rats with Fructose-Induced Obesity. Nutrients 2014, 6, 591–604. [Google Scholar] [CrossRef]
- Jimenez-Estrada, M.; Chilpa, R.R.; Apan, T.R.; Lledias, F.; Hansberg, W.; Arrieta, D.; Aguilar, F.J.A. Anti-Inflammatory Activity of Cacalol and Cacalone Sesquiterpenes Isolated from Psacalium decompositum. J. Ethnopharmacol. 2006, 105, 34–38. [Google Scholar] [CrossRef]
- Garcia-Palencia, P.; Rivas-Morales, C.; Oranday-Cardenas, A.; De La Garza-Ramos, M.; Leos-Rivas, C.; Loacute, T.; Pez, E. Evaluation of the Anti-Inflammatory and Cytotoxic Activity of Methanol Extracts of Psacalium decompositum and Scopulophyla parryi in VERO and Detroit Cell Lines. J. Med. Plants Prod. 2021, 10, 51–59. [Google Scholar] [CrossRef]
- Mora-Ramiro, B.; Jiménez-Estrada, M.; Zentella-Dehesa, A.; Ventura-Gallegos, J.L.; Gomez-Quiroz, L.E.; Rosiles-Alanis, W.; Alarcón-Aguilar, F.J.; Almanza-Pérez, J.C. Cacalol Acetate, a Sesquiterpene from Psacalium decompositum, Exerts an Anti-Inflammatory Effect through LPS/NF-KB Signaling in Raw 264.7 Macrophages. J. Nat. Prod. 2020, 83, 2447–2455. [Google Scholar] [CrossRef]
- Castillo-Arellano, J.; Gómez-Verjan, J.; Rojano-Vilchis, N.; Mendoza-Cruz, M.; Jiménez-Estrada, M.; López-Valdés, H.; Martínez-Coria, H.; Gutiérrez-Juárez, R.; González-Espinosa, C.; Reyes-Chilpa, R.; et al. Chemoinformatic Analysis of Selected Cacalolides from Psacalium decompositum (A. Gray) H. Rob. & Brettell and Psacalium peltatum (Kunth) Cass. and Their Effects on FcεRI-Dependent Degranulation in Mast Cells. Molecules 2018, 23, 3367. [Google Scholar] [CrossRef] [Green Version]
- Takasu, N.; Asawa, T.; Komiya, I.; Nagasawa, Y.; Yamada, T. Alloxan-Induced DNA Strand Breaks in Pancreatic Islets. Evidence for H2O2 as an Intermediate. J. Biol. Chem. 1991, 266, 2112–2114. [Google Scholar] [CrossRef]
- Herold, K.C.; Vezys, V.; Sun, Q.; Viktora, D.; Seung, E.; Reiner, S.; Brown, D.R. Regulation of Cytokine Production during Development of Autoimmune Diabetes Induced with Multiple Low Doses of Streptozotocin. J. Immunol. 1996, 156, 3521–3527. [Google Scholar]
- Hikino, H.; Takahashi, M.; Murakami, M.; Chohachikonno, M.Y.; Karikura, M.; Hayashi, T. Isolation and Hypoglycemic Activity of Arborans A and B, Glycans of Aloe Arborescens Var. Natalensis Leaves Int. J. Crude Drug Res. 1986, 24, 183–186. [Google Scholar] [CrossRef]
- Rosado-Pérez, J.; Mendza-Núñez, V.M. Chronic Inflammation and Oxidative Stress in Diabetes Mellitus. Bioquimia 2007, 32, 58–69. [Google Scholar]
- Rankin, J.A. Biological Mediators of Acute Inflammation. Aacn. Clin. Issues 2004, 15, 3–17. [Google Scholar] [CrossRef]
- Ceriello, A.; Testa, R. Antioxidant Anti-Inflammatory Treatment in Type 2 Diabetes. Diabetes Care 2009, 32, S232–S236. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.C.; Freitas, A.L.P.; Pessoa, C.D.S.; Paula, R.C.M.; Mesquita, J.X.; Leal, L.K.A.M.; Brito, G.A.C.; Gonçalves, D.O.; Viana, G.S.B. Pectin from Passiflora Edulis Shows Anti-Inflammatory Action as Well as Hypoglycemic and Hypotriglyceridemic Properties in Diabetic Rats. J. Med. Food 2011, 14, 1118–1126. [Google Scholar] [CrossRef]
- Iwalewa, E.O.; Adewale, I.O.; Taiwo, B.J.; Arogundade, T.; Osinowo, A.; Daniyan, O.M.; Adetogun, G.E. Effects of Harungana Madagascariensis Stem Bark Extract on the Antioxidant Markers in Alloxan Induced Diabetic and Carrageenan Induced Inflammatory Disorders in Rats. J. Complementary Integr. Med. 2008, 5. [Google Scholar] [CrossRef]
- Sobeh, M.; El-Raey, M.; Rezq, S.; Abdelfattah, M.A.O.; Petruk, G.; Osman, S.; El-Shazly, A.M.; El-Beshbishy, H.A.; Mahmoud, M.F.; Wink, M. Chemical Profiling of Secondary Metabolites of Eugenia Uniflora and Their Antioxidant, Anti-Inflammatory, Pain Killing and Anti-Diabetic Activities: A Comprehensive Approach. J. Ethnopharmacol. 2019, 240, 111939. [Google Scholar] [CrossRef]
- Ojewole, J.A.O. Evaluation of the Analgesic, Anti-in?Ammatory and Anti-Diabetic Properties of Sclerocarya birrea (A. Rich.) Hochst. Stem-Bark Aqueous Extract in Mice and Rats. Phytother. Res. 2004, 18, 601–608. [Google Scholar] [CrossRef]
- Lei, X.; Zhou, Y.; Ren, C.; Chen, X.; Shang, R.; He, J.; Dou, J. Typhae Pollen Polysaccharides Ameliorate Diabetic Retinal Injury in a Streptozotocin-Induced Diabetic Rat Model. J. Ethnopharmacol. 2018, 224, 169–176. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Zhou, B.; Li, H.; Zeng, J.; Gao, W. Anti-Diabetic Activity in Type 2 Diabetic Mice and α-Glucosidase Inhibitory, Antioxidant and Anti-Inflammatory Potential of Chemically Profiled Pear Peel and Pulp Extracts (Pyrus Spp.). J. Funct. Foods 2015, 13, 276–288. [Google Scholar] [CrossRef]
- de Sousa, E.; Zanatta, L.; Seifriz, I.; Creczynski-Pasa, T.B.; Pizzolatti, M.G.; Szpoganicz, B.; Silva, F.R.M.B. Hypoglycemic Effect and Antioxidant Potential of Kaempferol-3,7-O-(α)-Dirhamnoside from Bauhinia f Orficata Leaves. J. Nat. Prod. 2004, 67, 829–832. [Google Scholar] [CrossRef]
- Ojha, S.; Alkaabi, J.; Amir, N.; Sheikh, A.; Agil, A.; Fahim, M.A.; Adem, A. Withania Coagulans Fruit Extract Reduces Oxidative Stress and Inflammation in Kidneys of Streptozotocin-Induced Diabetic Rats. Oxidative Med. Cell. Longev. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadvand, H.; Shahsavari, G.; Tavafi, M.; Bagheri, S.; Moradkhani, M.R.; Kkorramabadi, R.M.; Khosravi, P.; Jafari, M.; Zahabi, K.; Eftekhar, R.; et al. Protective Effects of Oleuropein against Renal Injury Oxidativedamage in Alloxan-Induced Diabetic Rats; a Histological Andbiochemical Study. J. Nephropathol. 2017, 6, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Fatehi Hassanabad, Z.; Gholamnezhad, Z.; Jafarzadeh, M.; Fatehi, M. The Anti-Inflammatory Effects of Aqueous Extract of Ginger Root in Diabetic Mice. Daru J. Pharm. Sci. 2005, 13, 70–73. [Google Scholar]
- Nwaehujor, C.O.; Udegbunam, R.I.; Ode, J.O.; Asuzu, O.V. Amelioration of Chronic Inflammation and Oxidative Stress Indices in Diabetic Wistar Rats Using Methanol Leaf Extract of Bridelia micrantha (Hochst) Baill. (Euphorbiaceae). J. Complementary Integr. Med. 2015, 12. [Google Scholar] [CrossRef] [PubMed]
- Raut, N.A.; Gaikwad, N.J. Antidiabetic Activity of Hydro-Ethanolic Extract of Cyperus rotundus in Alloxan Induced Diabetes in Rats. Fitoterapia 2006, 77, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Aragão, D.M.O.; Guarize, L.; Lanini, J.; da Costa, J.C.; Garcia, R.M.G.; Scio, E. Hypoglycemic Effects of Cecropia pachystachya in Normal and Alloxan-Induced Diabetic Rats. J. Ethnopharmacol. 2010, 128, 629–633. [Google Scholar] [CrossRef]
- Park, J.-S.; Yang, J.-S.; Hwang, B.-Y.; Yoo, B.-K.; Han, K. Hypoglycemic Effect of Yacon Tuber Extract and Its Constituent, Chlorogenic Acid, in Streptozotocin-Induced Diabetic Rats. Biomol. Ther. 2009, 17, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, N.; Colomeu, T.; de Figueiredo, D.; Carvalho, V.; Cazarin, C.; Prado, M.; Meletti, L.; Zollner, R. Identification and Antioxidant Activity of the Extracts of Eugenia uniflora Leaves. Characterization of the Anti-Inflammatory Properties of Aqueous Extract on Diabetes Expression in an Experimental Model of Spontaneous Type 1 Diabetes (NOD Mice). Antioxidants 2015, 4, 662–680. [Google Scholar] [CrossRef] [Green Version]
- Colomeu, T.C.; Figueiredo, D.; Cazarin, C.B.B.; Schumacher, N.S.G.; Maróstica, M.R.; Meletti, L.M.M.; Zollner, R.L. Antioxidant and Anti-Diabetic Potential of Passiflora Alata Curtis aqueous Leaves Extract in Type 1 Diabetes Mellitus (NOD-Mice). Int. Immunopharmacol. 2014, 18, 106–115. [Google Scholar] [CrossRef]
- Hogan, S.; Zhang, L.; Li, J.; Sun, S.; Canning, C.; Zhou, K. Antioxidant Rich Grape Pomace Extract Suppresses Postprandial Hyperglycemia in Diabetic Mice by Specifically Inhibiting Alpha-Glucosidase. Nutr. Metab. 2010, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Cai, Y.; Yan, J.; Sun, M.; Corke, H. Hypoglycemic and Hypolipidemic Effects and Antioxidant Activity of Fruit Extracts from Lycium barbarum. Life Sci. 2004, 76, 137–149. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Gweon, O.-C.; Seo, Y.-J.; Im, J.; Kang, M.-J.; Kim, M.-J.; Kim, J.-I. Antioxidant Effect of Garlic and Aged Black Garlic in Animal Model of Type 2 Diabetes Mellitus. Nutr. Res. Pr. 2009, 3, 156. [Google Scholar] [CrossRef] [Green Version]
- Jeszka-Skowron, M.; Flaczyk, E.; Jeszka, J.; Krejpcio, Z.; Król, E.; Buchowski, M.S. Mulberry Leaf Extract Intake Reduces Hyperglycaemia in Streptozotocin (STZ)-Induced Diabetic Rats Fed High-Fat Diet. J. Funct. Foods 2014, 8, 9–17. [Google Scholar] [CrossRef]
- Kaleem, M.; Asif, M.; Ahmed, Q.U.; Bano, B. Antidiabetic and Antioxidant Activity of Annona squamosa Extract in Streptozotocin-Induced Diabetic Rats. Singap. Med. J. 2006, 47, 670–675. [Google Scholar]
- Rathod, N.; Raghuveer, I.; Chitme, H.; Chandra, R. Free Radical Scavenging Activity of Calotropis Gigantea on Streptozotocin-Induced Diabetic Rats. Indian J. Pharm. Sci. 2009, 71, 615. [Google Scholar] [CrossRef] [Green Version]
- Nain, P.; Saini, V.; Sharma, S.; Nain, J. Antidiabetic and Antioxidant Potential of Emblica officinalis Gaertn. Leaves Extract in Streptozotocin-Induced Type-2 Diabetes Mellitus (T2DM) Rats. J. Ethnopharmacol. 2012, 142, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Choi, E.-J.; Han, W.C.; Oh, M.; Kim, J.; Hwang, J.-Y.; Park, P.-J.; Moon, S.-H.; Kim, Y.-S.; Kim, E.-K. Moringa Oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. J. Med. Food 2017, 20, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Malhotra, R.; Kumar, D. Antidiabetic and Free Radicals Scavenging Potential of Euphorbia hirta Flower Extract. Indian J. Pharm. Sci. 2010, 72, 533. [Google Scholar] [CrossRef] [Green Version]
- Chandran, R.; Parimelazhagan, T.; George, B.P. Antihyperglycemic Activity of the Bark Methanolic Extract of Syzygium Mundagam in Diabetic Rats. Alex. J. Med. 2017, 53, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Tran, M.; Truong, H.; Le, L. Spray-Drying Microencapsulation of High Concentration of Bioactive Compounds Fragments from Euphorbia hirta L. Extract and Their Effect on Diabetes Mellitus. Foods 2020, 9, 881. [Google Scholar] [CrossRef]
- Kumar, S.; Vasudeva, N.; Sharma, S. GC-MS Analysis and Screening of Antidiabetic, Antioxidant and Hypolipidemic Potential of Cinnamomum Tamala Oil in Streptozotocin Induced Diabetes Mellitus in Rats. Cardiovasc. Diabetol. 2012, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Talukder, F.Z.; Khan, K.A.; Uddin, R.; Jahan, N.; Alam, M.A. In Vitro Free Radical Scavenging and Anti-Hyperglycemic Activities of Achyranthes Aspera Extract in Alloxan-Induced Diabetic Mice. Drug Discov. 2012, 6, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Kumar, R.; Prasad, S.; Sairam, K.; Hemalatha, S. Antidiabetic and in Vitro Antioxidant Potential of Hybanthus enneaspermus (Linn) F. Muell in Streptozotocin–Induced Diabetic Rats. Asian Pac. J. Trop. Biomed. 2011, 1, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, M.; Rokeya, B.; Ahmed, S.; Bhowmik, A.; Khalil, M.; Gan, S. In Vitro Antioxidant Effects of Aloe Barbadensis Miller Extracts and the Potential Role of These Extracts as Antidiabetic and Antilipidemic Agents on Streptozotocin-Induced Type 2 Diabetic Model Rats. Molecules 2012, 17, 12851–12867. [Google Scholar] [CrossRef]
- Rodrigues, G.R.; Di Naso, F.C.; Porawski, M.; Marcolin, É.; Kretzmann, N.A.; de Ferraz, A.B.F.; Richter, M.F.; Marroni, C.A.; Marroni, N.P. Treatment with Aqueous Extract from Croton Cajucara Benth Reduces Hepatic Oxidative Stress in Streptozotocin-Diabetic Rats. J. Biomed. Biotechnol. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saddala, R.R.; Thopireddy, L.; Ganapathi, N.; Kesireddy, S.R. Regulation of Cardiac Oxidative Stress and Lipid Peroxidation in Streptozotocin-Induced Diabetic Rats Treated with Aqueous Extract of Pimpinella tirupatiensis Tuberous Root. Exp. Toxicol. Pathol. 2013, 65, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Sharmila Banu, G.; Ganesan Murugesan, A. Effect of Helicteres Isora Bark Extracts on Heart Antioxidant Status and Lipid Peroxidation in Streptozotocin Diabetic Rats. J. Appl. Biomed. 2008, 6, 89–95. [Google Scholar] [CrossRef] [Green Version]
- De, D.; Chatterjee, K.; Ali, K.M.; Mandal, S.; Barik, B.; Ghosh, D. Antidiabetic and Antioxidative Effects of Hydro-Methanolic Extract of Sepals of Salmalia malabarica in Streptozotocin Induced Diabetic Rats. J. Appl. Biomed. 2010, 8, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Zulfiker, A.H.M.; Ripa, F.A.; Rahman, M.M.; Ullah, M.O.; Hamid, K.; Khan, M.M.R.; Rana, M.S. Antidiabetic and Antioxidant Effect of Scoparia Dulcis in Alloxan Induced Albino Mice. Int. J. Pharmtech. Res. 2010, 2, 2527–2534. [Google Scholar]
- Ahmadvand, H.; Tavafi, M.; Khalatbary, A.R. Hepatoprotective and Hypolipidemic Effects of Satureja Khuzestanica Essential Oil in Alloxan-Induced Type 1 Diabetic Rats. Iran J. Pharm. Res. 2012, 11, 1219–1226. [Google Scholar]
- Pushparaj, P.N.; Tan, B.K.H.; Tan, C.H. The Mechanism of Hypoglycemic Action of the Semi-Purified Fractions of Averrhoa bilimbi in Streptozotocin-Diabetic Rats. Life Sci. 2001, 70, 535–547. [Google Scholar] [CrossRef]
- Tan, B.K.H.; Tan, C.H.; Pushparaj, P.N. Anti–Diabetic Activity of the Semi–Purified Fractions of Averrhoa bilimbi in High Fat Diet Fed–Streptozotocin–Induced Diabetic Rats. Life Sci. 2005, 76, 2827–2839. [Google Scholar] [CrossRef]
- Saha, S.S.; Ghosh, M. Antioxidant and Anti-Inflammatory Effect of Conjugated Linolenic Acid Isomers against Streptozotocin-Induced Diabetes. Br. J. Nutr. 2012, 108, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Sureka, C.; Ramesh, T.; Begum, V.H. Attenuation of Erythrocyte Membrane Oxidative Stress by Sesbania Grandiflora in Streptozotocin-Induced Diabetic Rats. Biochem. Cell Biol. 2015, 93, 385–395. [Google Scholar] [CrossRef]
- Rezaeizadeh, A.; Zakaria, Z.B.A.B.; Abdollani, M.; Meng, G.Y.; Mustapha, N.M.; Hamid, M.B.; Ibrahim, T.A.B.T. Antioxidant and Antihyperglycaemic Effects of an Aqueous Extract from Momordica charantia Fruit in a Type II Diabetic Rat Model. J. Med. Plants Res. 2011, 5, 2990–3001. [Google Scholar]
- Okoro, I.O.; Umar, I.A.; Atawodi, S.E.; Anigo, K.M. Comparative Antihyperglycemic Effect of Petroleum Ether, Acetone, Ethanol and Aqueous Extracts of Cleome Rutidosperma DC and Senecio biafrae (Oliv. and Hiern) in Streptozotocin-Induced Diabetic Mice. Br. J. Pharmacol. Toxicol. 2014, 5, 115–124. [Google Scholar] [CrossRef]
- Ardestani, A.; Yazdanparast, R.; Jamshidi, S. Therapeutic Effects of Teucrium Polium Extract on Oxidative Stress in Pancreas of Streptozotocin-Induced Diabetic Rats. J. Med. Food 2008, 11, 525–532. [Google Scholar] [CrossRef]
- Alarcon-Aguilar, F.J.; Fortis-Barrera, A.; Angeles-Mejia, S.; Banderas-Dorantes, T.R.; Jasso-Villagomez, E.I.; Almanza-Perez, J.C.; Blancas-Flores, G.; Zamilpa, A.; Diaz-Flores, M.; Roman-Ramos, R. Anti-Inflammatory and Antioxidant Effects of a Hypoglycemic Fructan Fraction from Psacalium peltatum (H.B.K.) Cass. in Streptozotocin-Induced Diabetes Mice. J. Ethnopharmacol. 2010, 132, 400–407. [Google Scholar] [CrossRef]
- Houcher, Z.; Boudiaf, K.; Benboubetra, M.; Houcher, B. Effects of Methanolic Extract and Commercial Oil of Nigella sativa L. on Blood Glucose and Antioxidant Capacity in Alloxan-Induced Diabetic Rats. Pteridines 2007, 18, 8–18. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Ranjbar, A.; Hosseini, A.; Khanavi, M. The Effect of Green Tea Extract on Oxidative Stress and Spatial Learning in Streptozotocin-Diabetic Rats. Iran J. Pharm. Res. 2017, 16, 201–209. [Google Scholar]
- Kapoor, R.; Srivastava, S.; Kakkar, P. Bacopa Monnieri Modulates Antioxidant Responses in Brain and Kidney of Diabetic Rats. Environ. Toxicol. Pharmacol. 2009, 27, 62–69. [Google Scholar] [CrossRef]
- Irudayaraj, S.S.; Sunil, C.; Duraipandiyan, V.; Ignacimuthu, S. Antidiabetic and Antioxidant Activities of Toddalia asiatica (L.) Lam. Leaves in Streptozotocin Induced Diabetic Rats. J. Ethnopharmacol. 2012, 143, 515–523. [Google Scholar] [CrossRef]
- AlAmri, O.D.; Albeltagy, R.S.; Akabawy, A.; Mahgoub, S.; Abdel-Mohsen, D.M.; Abdel Moneim, A.E.; Amin, H.K. Investigation of Antioxidant and Anti-Inflammatory Activities as Well as the Renal Protective Potential of Green Coffee Extract in High Fat-Diet/Streptozotocin-Induced Diabetes in Male Albino Rats. J. Funct. Foods 2020, 71, 103996. [Google Scholar] [CrossRef]
- Althunibat, O.Y.; Al-Mustafa, A.H.; Tarawneh, K.; Khleifat, K.M.; Ridzwan, B.H.; Qaralleh, H.N. Protective Role of Punica Granatum L. Peel Extract against Oxidative Damage in Experimental Diabetic Rats. Process Biochem. 2010, 45, 581–585. [Google Scholar] [CrossRef]
- Shanmugam, K.R.; Mallikarjuna, K.; Kesireddy, N.; Sathyavelu Reddy, K. Neuroprotective Effect of Ginger on Anti-Oxidant Enzymes in Streptozotocin-Induced Diabetic Rats. Food Chem. Toxicol. 2011, 49, 893–897. [Google Scholar] [CrossRef]
- Bakırel, T.; Bakırel, U.; Keleş, O.A.; Ülgen, S.G.; Yardibi, H. In Vivo Assessment of Antidiabetic and Antioxidant Activities of Rosemary (Rosmarinus officinalis) in Alloxan-Diabetic Rabbits. J. Ethnopharmacol. 2008, 116, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Giribabu, N.; Rao, P.V.; Kumar, K.P.; Muniandy, S.; Swapna Rekha, S.; Salleh, N. Aqueous Extract of Phyllanthus Niruri Leaves Displays In Vitro Antioxidant Activity and Prevents the Elevation of Oxidative Stress in the Kidney of Streptozotocin-Induced Diabetic Male Rats. Evid. Based Complementary Altern. Med. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- de Lino, C.S.; Diógenes, J.P.L.; Pereira, B.A.; Faria, R.A.P.G.; Andrade Neto, M.; Alves, R.S.; de Queiroz, M.G.R.; de Sousa, F.C.F.; Viana, G.S.B. Antidiabetic Activity of Bauhinia forficata Extracts in Alloxan-Diabetic Rats. Biol. Pharm. Bull. 2004, 27, 125–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwanjo, H.U. Efficacy of Aqueous Leaf Extract of Vernonia amygdalina on Plasma Lipoprotein and Oxidative Status in Diabetic Rat Models. Niger J. Physiol. Sci. 2005, 20, 39–42. [Google Scholar]
- Shindo, K.; Kimura, M.; Iga, M. Potent Antioxidative Activity of Cacalol, a Sesquiterpene Contained in Cacalia Delphiniifolia Sleb et Zucc. Biosci. Biotechnol. Biochem. 2004, 68, 1393–1394. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Vidales, V.; Granados-Oliveros, G.; Nieto-Camacho, A.; Reyes-Solís, M.; Jiménez-Estrada, M. Cacalol and Cacalol Acetate as Photoproducers of Singlet Oxygen and as Free Radical Scavengers, Evaluated by EPR Spectroscopy and TBARS. RSC Adv. 2014, 4, 1371–1377. [Google Scholar] [CrossRef]
- De Rodríguez, D.J.; García-Hernández, L.C.; Rocha-Guzmán, N.E.; Moreno-Jiménez, M.R.; Rodríguez-García, R.; Díaz-Jiménez, M.L.V.; Flores-López, M.L.; Villarreal-Quintanilla, J.A.; Peña-Ramos, F.M.; Carrillo-Lomelí, D.A. Hypoglycemic and Anti-Inflammatory Effects of Psacalium paucicapitatum Corms Infusions. Ind. Crop. Prod. 2017, 107, 482–488. [Google Scholar] [CrossRef]
- Nazaruk, J.; Borzym-Kluczyk, M. The Role of Triterpenes in the Management of Diabetes Mellitus and Its Complications. Phytochem. Rev. 2015, 14, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Bhowmik, B.; do Vale Moreira, N.C. COVID-19 and Diabetes: Knowledge in Progress. Diabetes Res. Clin. Pract. 2020, 162, 108142. [Google Scholar] [CrossRef]
- Sun, B.; Huang, S.; Zhou, J. Perspectives of Antidiabetic Drugs in Diabetes with Coronavirus Infections. Front. Pharmacol. 2021, 11, 592439. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239. [Google Scholar] [CrossRef]
- La Peña, J.E.; Rascón-Pacheco, R.A.; de Ascencio-Montiel, I.J.; González-Figueroa, E.; Fernández-Gárate, J.E.; Medina-Gómez, O.S.; Borja-Bustamante, P.; Santillán-Oropeza, J.A.; Borja-Aburto, V.H. Hypertension, Diabetes and Obesity, Major Risk Factors for Death in Patients With COVID-19 in Mexico. Arch. Med. Res. 2020, S0188440920322438. [Google Scholar] [CrossRef]
- Singer, M. Deadly Companions: COVID-19 and Diabetes in Mexico. Med. Anthropol. 2020, 39, 660–665. [Google Scholar] [CrossRef]
- Sosa-Rubí, S.G.; Seiglie, J.A.; Chivardi, C.; Manne-Goehler, J.; Meigs, J.B.; Wexler, D.J.; Wirtz, V.J.; Gómez-Dantés, O.; Serván-Mori, E. Incremental Risk of Developing Severe COVID-19 Among Mexican Patients With Diabetes Attributed to Social and Health Care Access Disadvantages. Dia Care 2021, 44, 373–380. [Google Scholar] [CrossRef]
- Muniyappa, R.; Gubbi, S. COVID-19 Pandemic, Coronaviruses, and Diabetes Mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E736–E741. [Google Scholar] [CrossRef] [Green Version]
- Benarba, B.; Pandiella, A. Medicinal Plants as Sources of Active Molecules against COVID-19. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef]
- Babich, O.; Sukhikh, S.; Prosekov, A.; Asyakina, L.; Ivanova, S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals 2020, 13, 313. [Google Scholar] [CrossRef]
- Tabatabaei-Malazy, O.; Abdollahi, M.; Larijani, B. Beneficial Effects of Anti-Oxidative Herbal Medicines in Diabetic Patients Infected with COVID-19: A Hypothesis. DMSO 2020, 13, 3113–3116. [Google Scholar] [CrossRef]
- Muhseen, Z.T.; Hameed, A.R.; Al-Hasani, H.M.H.; Tahir ul Qamar, M.; Li, G. Promising Terpenes as SARS-CoV-2 Spike Receptor-Binding Domain (RBD) Attachment Inhibitors to the Human ACE2 Receptor: Integrated Computational Approach. J. Mol. Liq. 2020, 320, 114493. [Google Scholar] [CrossRef]
- Diniz, L.R.L.; Perez-Castillo, Y.; Elshabrawy, H.A.; da Filho, C.; de Sousa, D.P. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies. Biomolecules 2021, 11, 74. [Google Scholar] [CrossRef]
Chemical Type | # Active Molecules | Subtype | Reference |
---|---|---|---|
Flavonoids | 28 | Flavonols | [21,22,23,24,25,26] |
Flavones | [27,28,29,30,31] | ||
Dihydrochalcones | [32,33] | ||
Biflavone | [30] | ||
Flavanone | [34] | ||
Flavan-3-ols | [30,35,36,37] | ||
Aromatic compounds | 25 | Coumarins | [38,39] |
Hydroxycinnamic acids | [28,35,40,41] | ||
Chromones | [24,42] | ||
Depsides | [43] | ||
Phthalides | [44] | ||
α-pyrone glycosides | [38,39] | ||
Stilbene | [45] | ||
Hydroxybenzoic acid | [35] | ||
Terpenoids | 23 | Sesquiterpenes | [8,28,42,46,47,48,49,50,51] |
Diterpene | [30] | ||
Limonoids | [52,53] | ||
Cucurbitane | [54] | ||
Oleananes | [55,56,57] | ||
Ursarnes | [58,59] | ||
Steroids | 4 | [29,54] | |
Oligosaccharides | 4 | [60] | |
Polyalcohol | 1 | [61] |
Scientific Name | Botanical Family | Common Name | Used Part of the Plant for Infusion | Reference |
---|---|---|---|---|
Acourtia thurberi | Asteraceae | Matarique | Root | [8,46,66] |
Bauhinia divaricata | Fabaceae | Pezuña de vaca | Leaves | [67] |
Bidens odorata | Asteraceae | Aceitilla | Whole Plant | [68] |
Buddleia americana | Scrophulariaceae | Tepozán | Leaves | [67] |
Calea zacatechichi | Asteraceae | Prodigiosa | Stem, Leaves and Root | [67] |
Cecropia obtusifolia | Cecropiaceae | Guarumbo | Leaves | [9,40,65,69,70] |
Coix lacryma | Poaceae | Lágrimas de San Pedro | Stem and Leaves | [67] |
Crataegus pubescens | Rosaceae | Tejocote | Root | [67,71] |
Cynodon dactylon | Poaceae | Grama | Stem and Leaves | [67,72] |
Eriobotrya japonica | Rosaceae | Níspero | Leaves | [65] |
Euphorbia prostrata | Euphorbiaceae | Golondrina | Whole Plant | [17,64] |
Guaiacum coulteri | Zygophyllaceae | Guayacan | Stem | [67] |
Guazuma ulmifolia | Malvaceae | Guacima | Leaves | [64,73,74] |
Lepechinia caulescens | Lamiaceae | Salvia | Flowers | [64,65,75] |
Marrubium vulgare | Lamiaceae | Marrubio | Stem, Leaves and Root | [67,76] |
Musa sapientum | Musaceae | Plátano | Fresh Flowers | [64] |
Psacalium decompositum | Asteraceae | Matarique | Root | [48,77,78,79] |
Psacalium peltatum | Asteraceae | Matarique | Root | [65,80,81,82] |
Psittacanthus calyculatus | Loranthaceae | Muérdago | Stem, Leaves and Flowers | [83] |
Rhizophora mangle | Rhizophoraceae | Mangle rojo | Stem | [37,64] |
Salpianthus macrodonthus | Nyctaginaceae | Catarinilla | Stem and Leaves | [65] |
Solanum verbascifolium | Solanaceae | Malabar | Stem and Leaves | [65] |
Tecoma stans | Bignoniaceae | Tronadora | Stem and Leaves | [65,74,84] |
Teucrium cubense | Lamiaceae | Agrimonia | Stem and Leaves | [65,84] |
Tournefortia hirsutissina | Heliotropiaceae | Lágrimas de San Pedro | Stem | [64,85] |
Trigonella foenum-graecum | Fabaceae | Paracata | Leaves | [64,86] |
Turnera diffusa | Passifloraceae | Damiana | Leaves | [49,64] |
Scientific Name | Botanical Family | Common Name | Used Part of the Plant | Reference |
---|---|---|---|---|
Cuminum cyminum | Apiaceae | Comino | Seed Infusion | [87,88] |
Cucumis sativus | Cucurbitaceae | Pepino | Fruit Juice | [87,89] |
Cucurbita ficifolia | Cucurbitaceae | Chilacayote | Fruit Juice | [87,90,91,92,93] |
Opuntia streptacantha | Cactaceae | Nopal | Stem Juice | [87,94,95] |
Phaseolus vulgaris | Fabaceae | Fríjol | Sheath Infusion | [87,96] |
Spinacea oleracea | Amaranthaceae | Espinaca | Leaves Juice | [87] |
Biological Target | Name of the Assay | Plant Species/Part of the Plant Used or Active Molecule | Diabetic Animal Model/Doses of the Plant Used | Reference |
---|---|---|---|---|
Acute inflammation | Carrageenan and histamine-induced paw edema | Passiflora edulis (Passifloraceae)/Flour fruit peel; | Alloxan induced diabetic mice/0.5–25 mg/kg; | [118,119,120,121] |
Harungana madagascariensis | Alloxan induced diabetic rats/25, 50 and 100 mg/kg; | |||
(Hypericaceae)/Stem-bark ethanolic extract; | STZ induced diabetic rats/100 mg/kg; | |||
Eugenia uniflora(Myrtaceae)/Methanolic extract of leaves; | STZ induced diabetic mice/25–1600 mg/kg; | |||
Sclerocarya birrea (Anacardiaceae)/Aqueous stem-bark; | ||||
Xylene-induced ear edema thickness and weight | Typha orientalis (Typhaceae)/Polysaccharides of pollen; | STZ induced diabetic rats/0.1, 0.2 and 0.4 g/kg; | [122,123] | |
Pyrus bretschnrideri, P. communis, P. ussuriensis (Rosaceae)/Peel and pulp | STZ induced diabetic mice/500 mg/kg | |||
Myeloperoxidase (MPO) | Kaempferol-3,7-O-(α)-dirhamnoside; | Alloxan induced diabetic rats/50, 100 and 200 mg/kg; | [124,125,126] | |
Withania coagulans (Solanaceae)/Aqueous fruit extract; | STZ induced diabetic rats/10 mg/kg; | |||
Oleuropein/ | Alloxan induced diabetic rats/15 mg/kg | |||
Chronic inflammation | Cotton pellet-induced granuloma | Zingiber officinale (Zingiberaceae)/Aqueous extract; Bridelia micrantha (Phyllantaceae)/Methanolic extract of leaves | STZ induced diabetic mice/100, 200 and 400 mg/ | [127,128] |
100 mL; | ||||
STZ induced diabetic rats/100, 200 and 400 mg/kg | ||||
Antioxidant in vitro activity | Diphenyl-picryl-hydrazyl radical scavenging | Pyrus bretschnrideri, P. communis, P. ussuriensis (Rosaceae)/Peel and pulp; | STZ induced diabetic mice/500 mg/kg; | [123,124,129,130,131] |
(DPPH) | Kaempferol-3,7-O-(α)-dirhamnoside; | Alloxan induced diabetic rats/50, 100 and 200 mg/kg; Alloxan induced diabetic rats/200 and 500 mg/kg; Alloxan induced diabetic rats/80 mg/kg; | ||
Cyperus rotundus (Cyperaceae)/Ethanol extract of rhizomes; Cecropia pachystachya (Urticaceae)/Methanol extract of leaves; | STZ induced diabetic mice/200 mg/kg | |||
Smallanthus sonchifolius (Asteraceae)/Tuber extract and chlorogenic acid | ||||
Oxygen radical absorbance capacity (ORAC) | Eugenia uniflora (Myrtaceae)/Aqueous extract; | NOD mice/0.06 g/100 mL; | [132,133,134] | |
Passiflora alata (Passifloraceae)/Aqueous leaves extract; | NOD mice/15 g leaf/L; | |||
Grape pomace extract | STZ induced diabetic rats/400 mg/kg | |||
Trolox equivalent antioxidant capacity (TEAC) | Lycium barbarum (Solanaceae)/Fruit water decoction; | Alloxan induced diabetic rabbits/0.25 g/kg and 10 mg/kg; db/db (+/+) C57BL/KsL mice/5% of the diet | [135,136] | |
garlic and aged black garlic/water extract | ||||
Ferric reducing antioxidant power (FRAP) | Morus alba (Moraceae)/leaves; | STZ induced diabetic rats/6 and 22 mg/g HF diet; NOD mice/15 g leaf/L; | [132,133,137] | |
Passiflora alata (Passifloraceae)/Aqueous leaves extract; | NOD mice/0.06 g/100 mL | |||
Eugenia uniflora (Myrtaceae)/Aqueous extract; | ||||
Superoxide anion radical scavenging (SOD) | Annona squamosal (Annonaceae)/Aqueous extract; | STZ induced diabetic rats/300 mg/kg; | [138,139,140] | |
Calotropis gigantea (Asclepiadaceae)/chloroform extracts of leaf and flower; Emblica officinalis | STZ induced diabetic rats/10, 20 and 50 mg/kg; | |||
(Phyllanthaceae)/Hydromethanolic extract of leaves | STZ induced diabetic rats/100, 200, 300 and 400 mg/kg | |||
Hydroxyl radical scavenging | Cyperus rotundus (Cyperaceae)/Hydroethanolic extract; | Alloxan induced diabetic rats/200 and 500 mg/kg; | [129,141] | |
Moringa oleifera (Moringaceae)/Ethanolic leaf extract | C57BLKS/J Iar-+Leprdb/+Ledprdb mice/150 mg/kg | |||
Nitric oxide radical scavenging | Euphorbia hirta (Euphorbiaceae)/Ethanolic and petroleum ether flower extracts; | Alloxan induced diabetic mice/250 and 500 mg/kg; | [142,143] | |
Syzygium mundagam (Myrtaceae)/Petroleum ether, ethyl acetate, methanol and hot water extracts of bark | STZ induced diabetic rats/250 and 500 mg/kg | |||
Total phenolic content | Grape pomace extract; | STZ induced diabetic rats/400 mg/kg; | [134,144] | |
Euphorbia hirta (Euphorbiaceae)/Petroleum ether, chloroform and ethyl acetate extracts of aerial parts | STZ induced diabetic mice/500 mg/kg | |||
Metal chelating activity | Syzygium mundagam (Myrtaceae)/Petroleum ether, ethyl acetate, methanol and hot water extracts of bark; | STZ induced diabetic rats/250 and 500 mg/kg; | [143,145] | |
Cinnamomum tamala (Lauraceae)/Oil of leaves | STZ induced diabetic rats/100 and 200 mg/kg | |||
Hydrogen peroxide (H2O2) radical scavenging | Achyranthes aspera (Amaranthaceae)/Ethanolic extract of stem and leaves; | Alloxan induced diabetic mice/200 and 400 mg/kg; | [145,146] | |
Cinnamomum tamala (Lauraceae)/Oil of leaves | STZ induced diabetic rats/100 and 200 mg/kg | |||
Reducing power (RP) | Euphorbia hirta (Euphorbiaceae)/Ethanolic and petroleum ether flower extracts; | Alloxan induced diabetic mice/250 and 500 mg/kg; Alloxan induced diabetic mice/200 and 400 mg/kg | [142,146] | |
Achyranthes aspera (Amaranthaceae)/Ethanolic extract of stem and leaves | ||||
Total flavonoid | Grape pomace extract; | STZ induced diabetic rats/400 mg/kg; | [134,147,148] | |
Hybanthus enneaspermus (Violaceae)/Alcoholic extract; | STZ- induced diabetic rats/250 and 500 mg/kg; | |||
Aloe barbadensis (Asphodelaceae)/Ethanolic skin leaves extract | STZ- induced diabetic rats/1.25 g/kg | |||
Xanthine oxidase | Croton cajucara (Euphorbiaceae)/Aqueous extract of bark; | STZ- induced diabetic rats/1.5 mL i.g.; | [149,150] | |
Pimpinella tirupatiensis (Apiaceae)/Aqueous extract of tuberous root | ||||
STZ- induced diabetic rats/750 mg/kg | ||||
Conjugated diene | Helicteres isora (Sterculiaceae)/Aqueous extratc of bark; | STZ- induced diabetic rats/100 and 200 mg/kg; | [151,152] | |
Salmalia malabarica (Malvaceae)/Hydromethanolic extract of sepals | STZ- induced diabetic rats/20 mg/0.5 mL distilled water/100 g | |||
Phosphomolybdenum method | Scoparia dulcis (Plantaginaceae)/Ethanolic extract of aerial parts; | Alloxan induced diabetic mice/100 and 200 mg/kg; Alloxan induced diabetic rats/ppm | [153,154] | |
Satureja khuzestanica (Lamiaceae)/Oil of aerial parts | ||||
Cytochrome tests | Averrhoa bilimbi (Oxalidaceae)/Aqueous soluble, butanol soluble, ethyl acetate and hexane fractions of ethanolic leaf extract; | STZ- induced diabetic rats/125 mg/kg; | [155,156] | |
Averrhoa bilimbi (Oxalidaceae)/Aqueous and butanol fractions of ethanolic leaf extract | ||||
STZ- induced diabetic rats/125 mg/kg; | ||||
Erythrocyte ghost systems | α-eleostearic acid and punicic acid; | STZ- induced diabetic rats/0.5% of the total lipid given for each isomer; | [157,158] | |
Sesbania grandiflora (Fabaceae)/Methanolic extract of flowers | STZ- induced diabetic rats/250 mg/kg | |||
Ferric thiocyanate (FTC) | Momordica charantia (Cucurbitaceae); | STZ- induced diabetic rats/20 mg/kg; | [159,160] | |
Aqueous extract of the fruit; Cleome rutidosperma (Cleomaceae) and Senecio biafrae (Asteraceae)/Petroleum ether, acetone, ethanol, and aqueous extract of aerial parts | STZ- induced diabetic mice/500 mg/kg | |||
Thiobarbituric acid (TBARs) | Morus alba (Moraceae)/leaves; Morus alba; (Moraceae)/Hydroethanolic extract of leaves; | STZ- induced diabetic rats/0.25, 0.5 and 1 g/kg; | [161,162,163,164] | |
Linum usitatissimum (Linaceae)/Aqueous extract of the seed; | ||||
Alnus nitida (Betulaceae)/Methanol, hexane, chloroform, ethyl acetate and soluble residual aqueous fractions of leaves | STZ induced diabetic rats/6 and 22 mg/g HF diet; Alloxan induced diabetic mice/1 mL of extract; | |||
Alloxan induced diabetic rats/100 and 200 mg/kg | ||||
Antioxidant in vivo activity | Reduced GSH activity | Emblica officinalis | STZ induced diabetic rats/100, 200, 300 and 400 mg/kg; | [125,140] |
(Phyllanthaceae)/Hydromethanolic extract of leaves; | STZ induced diabetic rats/10 mg/kg | |||
Withania coagulans (Solanaceae)/Aqueous fruit extract | ||||
Estimation of MDA | Teucrium polium (Lamiaceae)/Aqueous extract; | STZ- induced diabetic rats/0.5 g/kg; | [125,161,162] | |
Withania coagulans (Solanaceae)/Aqueous fruit extract; | STZ induced diabetic rats/10 mg/kg; | |||
Psacalium peltatum (Asteraceae)/Aqueous fraction with fructan content of roots extract | STZ induced diabetic mice/200 mg/kg | |||
Ferric reducing ability of plasma | Nigella sativa (Ranunculaceae)/Methanolic extract of seed, and oil; | Alloxan induced diabetic rats/270 and 810 mg/kg; 2.5 mL/kg of oil; | [163,164] | |
Camellia sinensis (Theaceae)/Hydromethanolic extract | STZ- induced diabetic rats/3 mg/L | |||
Catalase (CAT) | Calotropis gigantea (Asclepiadaceae)/Chloroform extracts of leaf and flower; | STZ induced diabetic rats/10, 20 and 50 mg/kg; | [139,165,166,167] | |
Bacopa monnieri (Plantaginaceae)/Hydroethanolic extract of aerial parts; | ||||
Toddalia asiatica (Rutaceae)/Hexane, ethyl acetate and methanol extract of leaves; | STZ induced diabetic rats/125 and 250 mg/kg; | |||
Coffea arabica (Rubiaceae)/aqueous extract of green beans | ||||
STZ induced diabetic rats/250 and 500 mg/kg; | ||||
STZ induced diabetic01 rats/50 mg/kg | ||||
Glutathione reductase (GR) | Punica granatum (Lythraceae)/Peels extract; | STZ- induced diabetic rats/10 and 20 mg kg−1; | [168,169] | |
Zingiber officinale (Zingiberaceae)/Ethanolic extract | ||||
STZ- induced diabetic rats/200 mg/kg | ||||
Lipid peroxidation (LPO) | Rosmarinus officinalis (Lamiaceae)/Ethanolic extract; | STZ- induced diabetic rabbits/50, 100 and 200 mg/kg; | [170,171] | |
Phyllanthus niruri (Phyllanthaceae)/Aqueous extract of leaves | STZ- induced diabetic rats/200 and 400 mg/kg | |||
LDL assay | Bauhinia orficata (Fabaceae)/Aqueous, hexane and methanol extract of leaves; | Alloxan induced diabetic rats/200 and 400 mg/kg; | [172,173] | |
Vernonia amigdalina (Asteraceae)/Aqueous extract of leaves | STZ- induced diabetic rats/200 mg/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Estrada, M.; Huerta-Reyes, M.; Tavera-Hernández, R.; Alvarado-Sansininea, J.J.; Alvarez, A.B. Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules 2021, 26, 2892. https://doi.org/10.3390/molecules26102892
Jiménez-Estrada M, Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Alvarez AB. Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules. 2021; 26(10):2892. https://doi.org/10.3390/molecules26102892
Chicago/Turabian StyleJiménez-Estrada, Manuel, Maira Huerta-Reyes, Rosario Tavera-Hernández, J. Javier Alvarado-Sansininea, and Ana Berenice Alvarez. 2021. "Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell" Molecules 26, no. 10: 2892. https://doi.org/10.3390/molecules26102892
APA StyleJiménez-Estrada, M., Huerta-Reyes, M., Tavera-Hernández, R., Alvarado-Sansininea, J. J., & Alvarez, A. B. (2021). Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules, 26(10), 2892. https://doi.org/10.3390/molecules26102892