Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of DACHPt Metallodendrimers
2.2. DNA Binding Assays
2.3. Biological Studies
2.3.1. In Vitro Cytotoxicity Assays
2.3.2. Hemotoxicity Assays
2.4. Drug Loading
2.4.1. Loading of 5-FU
2.4.2. Cytotoxicity of the Complex
2.4.3. Hemotoxicity of the Complex
2.4.4. In Vitro Drug Release
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization
3.2.1. Preparation of DACHPtCl2
3.2.2. Aquation of DACHPtCl2
3.2.3. Preparation of DACHPt Metallodendrimers
Anionic PAMAM Dendrimer Generation 0.5-G0.5COO(DACHPt)4
Anionic PAMAM Dendrimer Generation 1.5-G1.5COO(DACHPt)8
Anionic PAMAM Dendrimer Generation 2.5-G2.5COO(DACHPt)16
Anionic PAMAM Dendrimer Generation 3.5-G3.5COO(DACHPt)32
3.3. DNA Binding Studies by UV–Vis Spectroscopy
3.4. Cell Culture and Cytotoxicity Evaluation
3.5. Hemotoxicity Evaluation
3.6. Studies with 5-Fluorouracil Loaded Dendrimers
3.6.1. Loading of 5-FU
3.6.2. In Vitro Drug Release of 5-FU
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Desoize, B. Metals and metal compounds in cancer treatment. Anticancer Res. 2004, 24, 1529–1544. [Google Scholar] [PubMed]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Gao, C.; Liu, Q.; Yu, C.; Zhang, Z.; Cai, L.; Yang, B.; Qian, Y.; Yang, J.; Liao, X. Research progress in modern structure of platinum complexes. Eur. J. Med. Chem. 2017, 140, 349–382. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, H.S.; Nukolova, N.V.; Kabanov, A.V.; Bronich, T.K. Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev. 2013, 65, 1667–1685. [Google Scholar] [CrossRef] [Green Version]
- Raymond, E.; Chaney, S.G.; Taamma, A.; Cvitkovic, E. Oxaliplatin: A review of preclinical and clinical studies. Ann. Oncol. 1998, 9, 1053–1071. [Google Scholar] [CrossRef] [PubMed]
- Galanski, M.; Yasemi, A.; Slaby, S.; Jakupec, M.A.; Arion, V.B.; Rausch, M.; Nazarov, A.A.; Keppler, B.K. Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. Eur. J. Med. Chem. 2004, 39, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Alcindor, T.; Beauger, N. Oxaliplatin: A Review in the Era of Molecularly Targeted Therapy. Curr. Oncol. 2011, 18, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Boulikas, T. Molecular mechanisms of cisplatin and its liposomally encapsulated form, LipoplatinTM. LipoplatinTM as a chemotherapy and antiangiogenesis drug. Cancer Ther. 2007, 5, 349–376. Available online: https://www.regulon.com/BoulikasCT.pdf (accessed on 30 March 2021).
- Brabec, V.; Hrabina, O.; Kasparkova, J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord. Chem. Rev. 2017, 351, 2–31. [Google Scholar] [CrossRef]
- Di Francesco, A.M.; Ruggiero, A.; Riccardi, R. Cellular and molecular aspects of drugs of the future: Oxaliplatin. Cell. Mol. Life Sci. 2002, 59, 1914–1927. [Google Scholar] [CrossRef] [PubMed]
- Leopold, W.R.; Batzinger, R.P.; Miller, E.C.; Miller, J.A.; Earhart, R.H. Mutagenicity, tumorigenicity, and electrophilic reactivity of the stereoisomeric platinum(II) complexes of 1,2-diaminocyclohexane. Cancer Res. 1981, 41, 4368–4377. Available online: https://cancerres.aacrjournals.org/content/canres/41/11_Part_1/4368.full.pdf (accessed on 30 March 2021).
- Fisher, D.M.; Bednarski, P.J.; Grunert, R.; Turner, P.; Fenton, R.R.; Aldrich-Wright, J.R. Chiral Platinum(II) Metallointercalators with Potent in vitro Cytotoxic Activity. ChemMedChem 2007, 2, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Haxton, K.J.; Burt, H.M. Polymeric drug delivery of platinum-based anticancer agents. J. Pharm. Sci. 2009, 98, 2299–2316. [Google Scholar] [CrossRef]
- Mehmood, R.K. Review of cisplatin and oxaliplatin in current immunogenic and monoclonal antibodies perspective. Oncol. Rev. 2014, 8, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Ammar, A.; Raveendran, R.; Gibson, D.; Nassar, T.; Benita, S. A Lipophilic Pt(IV) Oxaliplatin Derivative Enhances Antitumor Activity. J. Med. Chem. 2016, 59, 9035–9046. [Google Scholar] [CrossRef]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perpective. Drug Des. Dev. Ther. 2017, 11, 599–616. [Google Scholar] [CrossRef] [Green Version]
- Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016, 77, 1103–1124. [Google Scholar] [CrossRef]
- Wilson, J.J.; Lippard, S.J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem. Rev. 2014, 114, 4470–4495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattak, M.A. Calcium and magnesium prophylaxis for oxaliplatin-related neurotoxicity: Is it a trade-off between drug efficacy and toxicity? Oncologist 2011, 16, 1780–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, C.S.; Urgellés, M.; Tomás, H.; Lahoz, F.; Rodrigues, J. New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. J. Mater. Chem. B 2020, 8, 10314–10326. [Google Scholar] [CrossRef]
- Maciel, D.; Guerrero-Beltrán, C.; Ceña-Diez, R.; Tomás, H.; Muñoz-Fernández, M.Á.; Rodrigues, J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019, 11, 9679–9690. [Google Scholar] [CrossRef]
- Jardim, M.G.; Rissanen, K.; Rodrigues, J. Preparation and Characterization of Novel Poly(alkylidenamine) Nitrile Ruthenium Metallodendrimers. Eur. J. Inorg. Chem. 2010, 2010, 1729–1735. [Google Scholar] [CrossRef]
- Ornelas, C.; Vertlib, V.; Rodrigues, J.; Rissanen, K. Ruthenium Metallodendrimers Based on Nitrile-Functionalized Poly(alkylidene imine)s. Eur. J. Inorg. Chem. 2006, 2006, 47–50. [Google Scholar] [CrossRef]
- Goncalves, M.; Castro, R.; Rodrigues, J.; Tomas, H. The effect of PAMAM dendrimers on mesenchymal stem cell viability and differentiation. Curr. Med. Chem. 2012, 19, 4969–4975. [Google Scholar] [CrossRef]
- Williams, K.M.; Poynter, A.D.; Hendrie, J.D.; Jackson, D.C.; Martin, V.K. Comparison of N-acetylmethionine reactivity between oxaliplatin and an oxaliplatin derivative with chiral (S,S) amine nitrogen atoms. Inorganica Chim. Acta 2013, 401, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhang, J.; Jiang, K.; Li, K.; Cong, Y.; Pu, S.; Jin, Y.; Lin, J. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 152, 501–508. [Google Scholar] [CrossRef]
- Li, B.; Meng, Z.; Li, Q.; Huang, X.; Kang, Z.; Dong, H.; Chen, J.; Sun, J.; Dong, Y.; Li, J.; et al. A pH responsive complexation-based drug delivery system for oxaliplatin. Chem. Sci. 2017, 8, 4458–4464. [Google Scholar] [CrossRef] [Green Version]
- Aderibigbe, B.A.; Mugogodi, A.; Nwamadi, M.; Ray, S.S.; Steenkamp, V.; Balogun, M.O.; Matshe, W.M.R. Polyamidoamine-Drug Conjugates Containing Metal-Based Anticancer Compounds. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1503–1518. [Google Scholar] [CrossRef]
- Haruko, I.; Junnosuke, F.; Kazuo, S. Absorption Spectra and Circular Dichroisms of Metal Complexes. I. Platinum(II)-, Palladium(II)- and Gold(III)-Complexes Containing Optically Active Diamines. Bull. Chem. Soc. Jpn. 1967, 40, 2584–2591. [Google Scholar] [CrossRef] [Green Version]
- Howell, B.A.; Fan, D. Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents. Proc. R. Soc. A 2010, 466, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Still, B.M.; Kumar, P.G.A.; Aldrich-Wright, J.R.; Price, W.S. 195Pt NMR—Theory and application. Chem. Soc. Rev. 2007, 36, 665–686. [Google Scholar] [CrossRef]
- Priqueler, J.R.L.; Butler, I.S.; Rochon, F.D. An Overview of 195Pt Nuclear Magnetic Resonance Spectroscopy. Appl. Spectrosc. Rev. 2006, 41, 185–226. [Google Scholar] [CrossRef]
- Avaji, P.G.; Park, J.H.; Lee, H.J.; Jun, Y.J.; Park, K.S.; Lee, K.E.; Choi, S.-J.; Lee, H.J.; Sohn, Y.S. Design of a novel theranostic nanomedicine: Synthesis and physicochemical properties of a biocompatible polyphosphazene–docetaxel conjugate. Int. J. Nanomed. 2016, 11, 837–851. [Google Scholar] [CrossRef] [Green Version]
- Tomalia, D.A.; Klajnert-Maculewicz, B.; Johnson, K.A.-M.; Brinkman, H.F.; Janaszewska, A.; Hedstrand, D.M. Non-traditional intrinsic luminescence: Inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog. Polym. Sci. 2019, 90, 35–117. [Google Scholar] [CrossRef]
- Zou, Y.; Biao, L.; Xu, F.; Liu, R.; Liu, Z.; Fu, Y. Structural study on the interactions of oxaliplatin and linear DNA. Scanning 2016, 38, 880–888. [Google Scholar] [CrossRef]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B Biol. 2013, 124, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Badisa, R.B.; Darling-Reed, S.F.; Joseph, P.; Cooperwood, J.S.; Latinwo, L.M.; Goodman, C.B. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009, 29, 2993–2996. Available online: https://ar.iiarjournals.org/content/anticanres/29/8/2993.full.pdf (accessed on 30 March 2021). [PubMed]
- De Oliveira, P.F.; Alves, J.M.; Damasceno, J.L.; Oliveira, R.A.M.; Dias, H.J.; Crotti, A.E.M.; Tavares, D.C. Cytotoxicity screening of essential oils in cancer cell lines. Rev. Bras. Farm. 2015, 25, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Allison, M.; Caramés-méndez, P.; Christopher, M.P.; Phillips, R.M.; Lord, R.M.; Patrick, C.M. Bis(bipyridine)ruthenium(II) ferrocenyl beta-diketonate complexes: Exhibiting nanomolar potency against human cancer cell lines. Chem. A Eur. J. 2020, 27, 1–10. [Google Scholar] [CrossRef]
- Kirkpatrick, G.J.; Plumb, J.A.; Sutcliffe, O.B.; Flint, D.J.; Wheate, N.J. Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J. Inorg. Biochem. 2011, 105, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Malik, N.; Evagorou, E.G.; Duncan, R. Dendrimer-platinate: A novel approach to cancer chemotherapy. Anti Cancer Drugs 1999, 10, 767–776. [Google Scholar] [CrossRef]
- Kulhari, H.; Pooja, D.; Singh, M.K.; Chauhan, A.S. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev. Ind. Pharm. 2015, 41, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Trohopoulos, P.N.; Stefi, A.L.; Kollia, Z.; Gavriil, V.E.; Bourkoula, A.; Petrou, P.S.; Kakabakos, S.; Semashko, V.V.; et al. Selective aggregation of PAMAM dendrimer nanocarriers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: A photodynamic therapy for atherosclerosis. Nanoscale Res. Lett. 2015, 10, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enciso, A.E.; Neun, B.; Rodriguez, J.; Ranjan, A.P.; Dobrovolskaia, M.A.; Simanek, E.E. Nanoparticle Effects on Human Platelets in Vitro: A Comparison between PAMAM and Triazine Dendrimers. Molecules 2016, 21, 428. [Google Scholar] [CrossRef] [PubMed]
- Vidal, F.; Vásquez, P.; Cayumán, F.R.; Díaz, C.; Fuentealba, J.; Aguayo, L.G.; Yévenes, G.E.; Alderete, J.; Guzmán, L. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. Nanomaterials 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buczkowski, A.; Sekowski, S.; Grala, A.; Palecz, D.; Milowska, K.; Urbaniak, P.; Gabryelak, T.; Piekarski, H.; Palecz, B. Interaction between PAMAM-NH2 G4 dendrimer and 5-fluorouracil in aqueous solution. Int. J. Pharm. 2011, 408, 266–270. [Google Scholar] [CrossRef]
- Devarakonda, B.; Otto, D.P.; Judefeind, A.; Hill, R.A.; De Villiers, M.M. Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. Int. J. Pharm. 2007, 345, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Olukman, M.; Şanlı, O.; Solak, E.K. Release of Anticancer Drug 5-Fluorouracil from Different Ionically Crosslinked Alginate Beads. J. Biomater. Nanobiotechnol. 2012, 3, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Chandran, S.P.; Natarajan, S.B.; Chandraseharan, S.; Mohd Shahimi, M.S.B. Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer. J. Cancer Res. Pract. 2017, 4, 45–48. [Google Scholar] [CrossRef]
- Villarreal-Gómez, L.J.; Serrano-Medina, A.; Torres-Martínez, E.J.; Perez-González, G.L.; Cornejo-Bravo, J.M. Polymeric advanced delivery systems for antineoplasic drugs: Doxorubicin and 5-fluorouracil. e-Polymers 2018, 18, 359–372. [Google Scholar] [CrossRef]
- Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int. J. Nanomed. 2020, 15, 5445–5458. [Google Scholar] [CrossRef] [PubMed]
- Cid, N.P.; Novas, M.J.; Tomei, A.A. Process for Preparation of 1,2-dianimo-cyclohexane-platinum (II) Complexes. U.S. Patent US8637692B2, 28 January 2014. (expired).
- Nguyen, H.; Nguyen, N.H.; Tran, N.Q.; Nguyen, C.K. Improved Method for Preparing Cisplatin-Dendrimer Nanocomplex and Its Behavior Against NCI-H460 Lung Cancer Cell. J. Nanosci. Nanotechnol. 2015, 15, 4106–4110. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.Q.; Nguyen, C.K.; Nguyen, T.P. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- International Committee for Standardization in Haematology. International Committee for Standardization in Haematology Recommendations for reference method for haemoglobinometry in human blood (ICSH Standard EP 6/2: 1977) and specifications for international haemiglobincyanide reference preparation (ICSH Standard EP 6/3: 1997). J. Clin. Pathol. 1978, 31, 139–143. [Google Scholar]
Compounds | Zeta-Potential (mV) |
---|---|
G0.5(COONa)8 | −19 ± 1 |
G0.5COO(DACHPt)4 | −2.3 ± 0.5 |
G1.5(COONa)16 | −40.8 ± 0.7 |
G1.5COO(DACHPt)8 | −17 ± 2 |
G2.5(COONa)32 | −48 ± 1 |
G2.5COO(DACHPt)16 | −10.8 ± 0.3 |
G3.5(COONa)64 | −51 ± 1 |
G3.5COO(DACHPt)32 | 4.0 ± 0.6 |
Compounds | Change in Absorbance | Kb (M−1) | −ΔG/KJ mol−1 |
---|---|---|---|
G2.5COO(DACHPt)16 | Hyperchromism | (3.6 ± 0.9) × 104 | 0.25 ± 0.01 |
DACHPtCl2 | Hyperchromism | (3 ± 1) × 103 | 0.19 ± 0.01 |
Oxaliplatin | Hyperchromism | (3.1 ± 0.6) × 103 | 0.19 ± 0.01 |
Compounds | A2780 IC50 ± SD (µM) | A2780cisR IC50 ± SD (µM) | MCF-7 IC50 ± SD (µM) | CACO-2 IC50 ± SD (µM) | BJ IC50 ± SD (µM) |
---|---|---|---|---|---|
Oxaliplatin | 0.48 ± 0.03 | 3.5 ± 0.5 | >10 | 0.91 ± 0.03 | >10 |
DACHPtCl2 | 0.3 ± 0.2 | 1.7 ± 0.4 | 5 ± 2 | >10 | >9 |
G0.5COO(DACHPt)4 | 0.03 ± 0.01 | 1.7 ± 0.3 | 1.6 ± 0.8 | 0.18 ± 0.08 | 3 ± 1 |
G1.5COO(DACHPt)8 | 0.04 ± 0.02 | 0.6 ± 0.2 | 1.6 ± 0.7 | 0.3 ± 0.1 | 1.3 ± 0.2 |
G2.5COO(DACHPt)16 | 0.04 ± 0.03 | 1.1 ± 0.2 | 3 ± 1 | 0.35 ± 0.09 | 1.8 ± 0.7 |
G3.5COO(DACHPt)32 | 0.08 ± 0.02 | 1.2 ± 0.5 | 4.1 ± 0.8 | 0.39 ± 0.09 | 3 ± 1 |
5-FU | − | >154 | – | >154 | – |
G2.5COO(DACHPt)16/5FU * | − | 0.2 ± 0.1 | – | 0.65 ± 0.06 | – |
G2.5(COONa)32/5-FU * | − | >2.5 | – | >2.5 | – |
Relative Potency (RP) | ||||
---|---|---|---|---|
Compounds | A2780 | A2780CisR | MCF-7 | CACO-2 |
DACHPtCl2 | 1.7 | 2 | >1.9 | >0.1 |
G0.5COO(DACHPt)4 | 16 | 2.1 | >6.4 | 5 |
G1.5COO(DACHPt)8 | 12 | 5.9 | >6.3 | 3.6 |
G2.5COO(DACHPt)16 | 12 | 3.2 | >3.4 | 2.6 |
G3.5COO(DACHPt)32 | 6 | 2.9 | >2.4 | 2.3 |
Selectivity Index (SI) | ||||
---|---|---|---|---|
Compounds | A2780 | A2780CisR | MCF-7 | CACO-2 |
Oxaliplatin | >20.8 | >2.9 | >1 | >11 |
DACHPtCl2 | >32 | >5.2 | >1.7 | >0.9 |
G0.5COO(DACHPt)4 | 103 | 1.9 | 2 | 17 |
G1.5COO(DACHPt)8 | 31 | 2 | 0.8 | 5 |
G2.5COO(DACHPt)16 | 46 | 1.7 | 0.6 | 5 |
G3.5COO(DACHPt)32 | 32 | 2 | 0.6 | 6.6 |
Compounds | Resistance Factor (Rf) |
---|---|
Oxaliplatin | 7.2 |
DACHPtCl2 | 6.2 |
G0.5COO(DACHPt)4 | 55.3 |
G1.5COO(DACHPt)8 | 14.8 |
G2.5COO(DACHPt)16 | 27 |
G3.5COO(DACHPt)32 | 15 |
Compounds | LE% | LC% | N° of Encapsulated Molecules 1 |
---|---|---|---|
G2.5COO(DACHPt)16/5-FU | 75 ± 8 | 14 ± 1 | 11 |
G2.5(COONa)32/5-FU | 86 ± 2 | 32 ± 1 | 13 |
Compounds | Zeta-Potential (mV) |
---|---|
G2.5COO(DACHPt)16 | −10.8 ± 0.3 |
G2.5COO(DACHPt)16/5FU | 0.8 ± 0.1 |
G2.5(COONa)32 | −48 ± 1 |
G2.5(COONa)32/5FU | −41.1 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, C.; Tomás, H.; Rodrigues, J. Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules 2021, 26, 2924. https://doi.org/10.3390/molecules26102924
Camacho C, Tomás H, Rodrigues J. Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules. 2021; 26(10):2924. https://doi.org/10.3390/molecules26102924
Chicago/Turabian StyleCamacho, Cláudia, Helena Tomás, and João Rodrigues. 2021. "Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs" Molecules 26, no. 10: 2924. https://doi.org/10.3390/molecules26102924
APA StyleCamacho, C., Tomás, H., & Rodrigues, J. (2021). Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules, 26(10), 2924. https://doi.org/10.3390/molecules26102924