Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π + 2π]-Cycloaddition of N-Carbocholesteroxyazepine to Alkynes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Procedures
3.2. Synthesis of Cholesteryl Azidoformate
3.3. Synthesis of N-Carbocholesteroxyazepine
3.4. Cycloaddition of N-Carbocholesteroxyazepine to Alkynes
3.5. Characterization of the Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carmichael, W.W.; Biggs, D.F.; Gorham, P.R. Toxicology and pharmacological action of anabaena flos-aquae toxin. Science 1975, 187, 542–544. [Google Scholar] [CrossRef]
- Devlin, J.P.; Edwards, O.E.; Gorham, P.R.; Hunter, N.R.; Pike, R.K.; Stavric, B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977, 55, 1367–1371. [Google Scholar] [CrossRef]
- Huber, C.S. The crystal structure and absolute configuration of 2,9-diacetyl-9-azabicyclo[4,2,1]non-2,3-ene. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 2577–2582. [Google Scholar] [CrossRef]
- Anastassiou, A.G.; Cellura, R.P. 9-Azabicyclo[4.2.1]nona-2,4,7-triene and derivatives. J. Org. Chem. 1972, 37, 3126–3129. [Google Scholar] [CrossRef]
- Bates, H.A.; Rapoport, H. Synthesis of anatoxin a via intramolecular cyclization of iminium salts. J. Am. Chem. Soc. 1979, 101, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Mansell, H.L. Synthetic approaches to anatoxin-a. Tetrahedron 1996, 52, 6025–6061. [Google Scholar] [CrossRef]
- Oh, C.-Y.; Kim, K.-S.; Ham, W.-H. A formal total synthesis of (±)-anatoxin-a by an intramolecular Pd-catalyzed aminocarbonylation reaction. Tetrahedron Lett. 1998, 39, 2133–2136. [Google Scholar] [CrossRef]
- Trost, B.M.; Oslob, J.D. Asymmetric Synthesis of (−)-Anatoxin-a via an Asymmetric Cyclization Using a New Ligand for Pd-Catalyzed Alkylations. J. Am. Chem. Soc. 1999, 121, 3057–3064. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Humphries, P.S.; Fenwick, A.A. Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring. Angew. Chem. Int. Ed. 1999, 38, 1985–1986. [Google Scholar] [CrossRef]
- Wegge, T.; Schwarz, S.; Seitz, G. A new and efficient synthetic route to enantiopure (+)-anatoxin-a from (−)-cocaine hydrochloride. Tetrahedron Asymmetry 2000, 11, 1405–1410. [Google Scholar] [CrossRef]
- Parsons, P.J.; Camp, N.P.; Edwards, N.; Sumoreeah, L.R. Synthesis of (±)-Anatoxin-a and Analogues. Tetrahedron 2000, 56, 309–315. [Google Scholar] [CrossRef]
- Brenneman, J.B.; Martin, S.F. Application of Intramolecular Enyne Metathesis to the Synthesis of Aza[4.2.1]bicyclics: Enantiospecific Total Synthesis of (+)-Anatoxin-a. Org. Lett. 2004, 6, 1329–1331. [Google Scholar] [CrossRef]
- Hjelmgaard, T.; Søtofte, I.; Tanner, D. Total Synthesis of Pinnamine and Anatoxin-a via a Common Intermediate. A Caveat on the Anatoxin-a Endgame. J. Org. Chem. 2005, 70, 5688–5697. [Google Scholar] [CrossRef] [PubMed]
- Wonnacott, S.; Gallagher, T. The Chemistry and Pharmacology of Anatoxin-a and Related Homotropanes with respect to Nicotinic Acetylcholine Receptors. Mar. Drugs 2006, 4, 228–254. [Google Scholar] [CrossRef] [Green Version]
- Hemming, K.; O’Gorman, P.A.; Page, M.I. The synthesis of azabicyclo[4.2.1]nonenes by the addition of a cyclopropenone to 4-vinyl substituted 1-azetines—isomers of the homotropane nucleus. Tetrahedron Lett. 2006, 47, 425–428. [Google Scholar] [CrossRef]
- Takada, N.; Iwatsuki, M.; Suenaga, K.; Uemura, D. Pinnamine, an alkaloidal marine toxin, isolated from Pinna muricata. Tetrahedron Lett. 2000, 41, 6425–6428. [Google Scholar] [CrossRef]
- Kigoshi, H.; Hayashi, N.; Uemura, D. Stereoselective synthesis of pinnamine, an alkaloidal marine toxin from Pinna muricata. Tetrahedron Lett. 2001, 42, 7469–7471. [Google Scholar] [CrossRef]
- Malpass, J.R.; A Hemmings, D.; Wallis, A.L. Synthesis of epibatidine homologues: Homoepibatidine and bis-homoepibatidine. Tetrahedron Lett. 1996, 37, 3911–3914. [Google Scholar] [CrossRef]
- Malpass, J.R.; Hemmings, D.A.; Wallis, A.L.; Fletcher, S.R.; Patel, S. Synthesis and nicotinic acetylcholine-binding properties of epibatidine homologues: Homoepibatidine and dihomoepibatidine. J. Chem. Soc. Perkin Trans. 2001, 1, 1044–1050. [Google Scholar] [CrossRef]
- Kanne, D.B.; Ashworth, D.J.; Cheng, M.T.; Mutter, L.C.; Abood, L.G. Synthesis of the first highly potent bridged nicotinoid 9-Azabicyclo[4.2.1]nona[2,3-c]pyridine (pyrido[3,4-b]homotropane). J. Am. Chem. Soc. 1986, 108, 7864–7865. [Google Scholar] [CrossRef]
- Sharples, C.G.V.; Karig, G.; Simpson, G.L.; Spencer, J.A.; Wright, E.; Millar, N.S.; Wonnacott, S.; Gallagher, T. Synthesis and Pharmacological Characterization of Novel Analogues of the Nicotinic Acetylcholine Receptor Agonist (±)-UB-165. J. Med. Chem. 2002, 45, 3235–3245. [Google Scholar] [CrossRef]
- Wright, E.; Gallagher, T.; Sharples, C.G.; Wonnacott, S. Synthesis of UB-165: A novel nicotinic ligand and anatoxin-a/epibatidine hybrid. Bioorg. Med. Chem. Lett. 1997, 7, 2867–2870. [Google Scholar] [CrossRef]
- Sutherland, A.; Gallagher, T.; Sharples, C.G.V.; Wonnacott, S. Synthesis of Two Fluoro Analogues of the Nicotinic Acetylcholine Receptor Agonist UB-165. J. Org. Chem. 2003, 68, 2475–2478. [Google Scholar] [CrossRef]
- Sharples, C.G.V.; Kaiser, S.; Soliakov, L.; Marks, M.J.; Collins, A.C.; Washburn, M.; Wright, E.; Spencer, J.A.; Gallagher, T.; Whiteaker, P.; et al. UB-165: A Novel Nicotinic Agonist with Subtype Selectivity Implicates the α4β2* Subtype in the Modulation of Dopamine Release from Rat Striatal Synaptosomes. J. Neurosci. 2000, 20, 2783–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohlke, H.; Gündisch, D.; Schwarz, S.; Seitz, G.; Tilotta, M.C.; Wegge, T. Synthesis and Nicotinic Binding Studies on Enantiopure Diazine Analogues of the Novel (2-Chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene UB-165. J. Med. Chem. 2002, 45, 1064–1072. [Google Scholar] [CrossRef]
- Gündisch, D.; Kämpchen, T.; Schwarz, S.; Seitz, G.; Siegl, J.; Wegge, T. Syntheses and evaluation of pyridazine and pyrimidine Containing bioisosteres of (±)-Pyrido[3.4-b]homotropane and Pyrido-[3.4-b]tropane as novel nAChR ligands. Bioorg. Med. Chem. 2002, 10, 1–9. [Google Scholar] [CrossRef]
- Karig, G.; Large, J.M.; Sharples, C.G.; Sutherland, A.; Gallagher, T.; Wonnacott, S. Synthesis and nicotinic binding of novel phenyl derivatives of UB-Identifying factors associated with α7 selectivity. Bioorg. Med. Chem. Lett. 2003, 13, 2825–2828. [Google Scholar] [CrossRef]
- Gohlke, H.; Schwarz, S.; Gündisch, D.; Tilotta, M.C.; Weber, A.; Wegge, T.; Seitz, G. 3D QSAR Analyses-Guided Rational Design of Novel Ligands for the (α4)2(β2)3Nicotinic Acetylcholine Receptor. J. Med. Chem. 2003, 46, 2031–2048. [Google Scholar] [CrossRef]
- Sardina, F.J.; Howard, M.H.; Koskinen, A.M.P.; Rapoport, H. Chirospecific synthesis of nitrogen and side chain modified analogs of (+)-anatoxin. J. Org. Chem. 1989, 54, 4654–4660. [Google Scholar] [CrossRef]
- Dyakonov, V.A.; Kadikova, G.N.; Dzhemilev, U.M. Transition metal complex-mediated chemistry of 1,3,5-cycloheptatrienes. Russ. Chem. Rev. 2018, 87, 797–820. [Google Scholar] [CrossRef]
- Rigby, J.H.; Ateeq, H.S.; Krueger, A.C. Metal promoted higher-order cycloaddition reactions. A facile entry into substituted eight- and ten-membered carbocycles. Tetrahedron Lett. 1992, 33, 5873–5876. [Google Scholar] [CrossRef]
- Rigby, J.H. Transition metal promoted higher-order cycloaddition reactions in organic synthesis. Acc. Chem. Res. 1993, 26, 579–585. [Google Scholar] [CrossRef]
- Rigby, J.H.; Ateeq, H.S.; Charles, N.R.; Cuisiat, S.V.; Ferguson, M.D.; Henshilwood, J.A.; Krueger, A.C.; Ogbu, C.O.; Short, K.M.; Heeg, M.J. Metal-promoted higher-order cycloaddition reactions. Stereochemical, regiochemical, and mechanistic aspects of the [6.pi. + 4.pi.] reaction. J. Am. Chem. Soc. 1993, 115, 1382–1396. [Google Scholar] [CrossRef]
- Rigby, J.H.; Ateeq, H.S.; Charles, N.R.; Henshilwood, J.A.; Short, K.M.; Sugathapala, P.M. Chromium(0) promoted [6π+2π] cycloaddition reactions. Tetrahedron 1993, 49, 5495–5506. [Google Scholar] [CrossRef]
- Rigby, J.H.; Pigge, F.C. Asymmetric Induction in the Metal-Promoted [6.pi. + 2.pi.] Cycloaddition of Azepines. Application to the Construction of Tropane Alkaloids and the Total Synthesis of (+)-Ferruginine. J. Org. Chem. 1995, 60, 7392–7393. [Google Scholar] [CrossRef]
- Chaffee, K.; Huo, P.; Sheridan, J.B.; Barbieri, A.; Aistars, A.; Lalancette, R.A.; Ostrander, R.L.; Rheingold, A.L. Metal-Mediated [6 + 2] Cycloadditions of Alkynes to Cycloheptatriene and N-Carbethoxyazepine. J. Am. Chem. Soc. 1995, 117, 1900–1907. [Google Scholar] [CrossRef]
- Morkan, I.A. High order cycloaddition reactions of M(CO)3-coordinated N-cyanoazepine with alkynes; M: Cr, Mo, W. J. Organomet. Chem. 2002, 651, 132–136. [Google Scholar] [CrossRef]
- Rigby, J.H.; Kondratenko, M.A.; Fiedler, C. Preparation of a Resin-Based Chromium Catalyst for Effecting [6π + 2π] Cycloaddition Reactions. Org. Lett. 2000, 2, 3917–3919. [Google Scholar] [CrossRef]
- D’Yakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Dzhemileva, L.U.; Dzhemilev, U.M. Targeted Synthesis of 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π+2π]-Cycloaddition of Alkynes to N -Substituted Azepines and Their Antitumor Activity. Eur. J. Org. Chem. 2020, 2020, 623–626. [Google Scholar] [CrossRef]
- Kadikova, G.N.; D’Yakonov, V.A.; Nasretdinov, R.N.; Dzhemileva, L.U.; Dzhemilev, U.M. Cobalt(I)-catalyzed [6π+2π]-cycloaddition of allenes to N-carbethoxy(phenoxy)azepines for the synthesis of 9-azabicyclo[4.2.1]nona-2,4-dienes. Tetrahedron 2020, 76, 130996. [Google Scholar] [CrossRef]
- Kadikova, G.N.; D’Yakonov, V.A.; Nasretdinov, R.N.; Dzhemileva, L.U.; Dzhemilev, U.M. Synthesis of new alkynyl containing 9-azabicyclo[4.2.1]nonatrienes from diynes and azepines. Mendeleev Commun. 2020, 30, 318–319. [Google Scholar] [CrossRef]
- Nes, W.D. Biosynthesis of Cholesterol and Other Sterols. Chem. Rev. 2011, 111, 6423–6451. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.; Elmegeed, G.; Abdel-Malek, H.; Younis, M. Synthesis of biologically active steroid derivatives by the utility of Lawesson’s reagent. Steroids 2005, 70, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lauro, F.-V.; Maria, L.-R.; Tomas, L.-G.; Francisco, D.C.; Rolando, G.-M.; Marcela, R.-N.; Virginia, M.-A.; Alejandra, G.-E.E.; Yazmin, O.-A. Design and synthesis of two new steroid derivatives with biological activity on heart failure via the M2-muscarinic receptor activation. Steroids 2020, 158, 108620. [Google Scholar] [CrossRef] [PubMed]
- Sribalan, R.; Padmini, V.; Lavanya, A.; Ponnuvel, K. Evaluation of antimicrobial activity of glycinate and carbonate derivatives of cholesterol: Synthesis and characterization. Saudi Pharm. J. 2016, 24, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Brunel, J.; Loncle, C.; Vidal, N.; Dherbomez, M.; Letourneux, Y. Synthesis and antifungal activity of oxygenated cholesterol derivatives. Steroids 2005, 70, 907–912. [Google Scholar] [CrossRef]
- Loncle, C.; Brunel, J.M.; Vidal, N.; Dherbomez, M.; Letourneux, Y. Synthesis and antifungal activity of cholesterol-hydrazone derivatives. Eur. J. Med. Chem. 2004, 39, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.W.; Doert, T.; Goutal, S.; Gruner, M.; Mende, F.; Kurzchalia, T.V.; Knölker, H.-J. Regio- and Stereospecific Synthesis of Cholesterol Derivatives and Their Hormonal Activity inCaenorhabditis elegans. Eur. J. Org. Chem. 2006, 2006, 3687–3706. [Google Scholar] [CrossRef]
- D’Yakonov, V.A.; Dzhemileva, L.U.; Tuktarova, R.A.; Makarov, A.A.; Islamov, I.I.; Mulyukova, A.R.; Dzhemilev, U.M. Catalytic cyclometallation in steroid chemistry III: Synthesis of steroidal derivatives of 5Z,9Z-dienoic acid and investigation of its human topoisomerase I inhibitory activity. Steroids 2015, 102, 110–117. [Google Scholar] [CrossRef]
- D’Yakonov, V.A.; Tuktarova, R.A.; Dzhemileva, L.U.; Ishmukhametova, S.R.; Yunusbaeva, M.M.; Dzhemilev, U.M. Catalytic cyclometallation in steroid chemistry V: Synthesis of hybrid molecules based on steroid oximes and (5Z,9Z)-tetradeca-5,9-dienedioic acid as potential anticancer agents. Steroids 2018, 138, 14–20. [Google Scholar] [CrossRef]
- D’Yakonov, V.A.; Tuktarova, R.A.; Dzhemileva, L.U.; Ishmukhametova, S.R.; Yunusbaeva, M.M.; Dzhemilev, U.M. Catalytic cyclometallation in steroid chemistry VI: Targeted synthesis of hybrid molecules based on steroids and tetradeca-5Z,9Z-diene-1,14-dicarboxylic acid and study of their antitumor activity. Steroids 2018, 138, 6–13. [Google Scholar] [CrossRef] [PubMed]
- D’Yakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Dzhemilev, U.M. Cobalt(I)-catalyzed [4π+2π] cycloaddition reactions of 1,3-diynes with 1,3,5-cyclooctatriene. Tetrahedron Lett. 2017, 58, 1839–1841. [Google Scholar] [CrossRef]
- D’Yakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Ramazanov, I.R.; Dzhemilev, U.M. Cobalt-Catalyzed [6 + 2] Cycloaddition of Alkynes with 1,3,5,7-Cyclooctatetraene as a Key Element in the Direct Construction of Substituted Bicyclo[4.3.1]decanes. J. Org. Chem. 2016, 82, 471–480. [Google Scholar] [CrossRef] [PubMed]
- D’Yakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Dzhemileva, L.U.; Dzhemilev, U.M. The Synthesis of Bicyclo[4.2.1]nona-2,4,7-trienes by [6π + 2π]-Cycloaddition of 1-Substituted 1,3,5-Cycloheptatrienes Catalyzed by Titanium and Cobalt Complexes. J. Org. Chem. 2019, 84, 9058–9066. [Google Scholar] [CrossRef] [PubMed]
- Kadikova, G.N.; Dzhemileva, L.U.; D’Yakonov, V.A.; Dzhemilev, U.M. Synthesis of Functionally Substituted Bicyclo[4.2.1]nona-2,4-dienes and Bicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-catalyzed [6π + 2π] Cycloaddition of 2-Tropylcyclohexanone. ACS Omega 2020, 5, 31440–31449. [Google Scholar] [CrossRef] [PubMed]
- Achard, M.; Tenaglia, A.; Buono, G. First Cobalt(I)-Catalyzed [6 + 2] Cycloadditions of Cycloheptatriene with Alkynes. Org. Lett. 2005, 7, 2353–2356. [Google Scholar] [CrossRef]
- Achard, M.; Mosrin, M.; Tenaglia, A.; Buono, G. Cobalt(I)-Catalyzed [6+2] Cycloadditions of Cyclooctatetra(tri)ene with Alkynes. J. Org. Chem. 2006, 71, 2907–2910. [Google Scholar] [CrossRef] [PubMed]
- Gunther, H. NMR Spectroscopy-An Introduction, 2nd ed.; Wiley–Blackwell: Stuttgart, German, 1980; pp. 343–344. [Google Scholar]
- Cotton, F.A.; Faut, O.D.; Goodgame, D.M.L.; Holm, R.H. Magnetic Investigations of Spin-free Cobaltous Complexes. VI.1 Complexes Containing Phosphines and the Position of Phosphines in the Spectrochemical Series. J. Am. Chem. Soc. 1961, 83, 1780–1785. [Google Scholar] [CrossRef]
- Bell, R.; Cottam, P.D.; Davies, J.; Jones, D.N. Synthesis of alkenyl sulphoxides by intramolecular and intermolecular addition of sulphenic acids to alkynes. J. Chem. Soc. Perkin Trans. 1981, 1, 2106–2115. [Google Scholar] [CrossRef]
- Brandsma, L. Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques; Elsevier Academic Press: Bilthoven, The Netherlands, 2004; p. 470. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadikova, G.N.; D’yakonov, V.A.; Dzhemilev, U.M. Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π + 2π]-Cycloaddition of N-Carbocholesteroxyazepine to Alkynes. Molecules 2021, 26, 2932. https://doi.org/10.3390/molecules26102932
Kadikova GN, D’yakonov VA, Dzhemilev UM. Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π + 2π]-Cycloaddition of N-Carbocholesteroxyazepine to Alkynes. Molecules. 2021; 26(10):2932. https://doi.org/10.3390/molecules26102932
Chicago/Turabian StyleKadikova, Gulnara N., Vladimir A. D’yakonov, and Usein M. Dzhemilev. 2021. "Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π + 2π]-Cycloaddition of N-Carbocholesteroxyazepine to Alkynes" Molecules 26, no. 10: 2932. https://doi.org/10.3390/molecules26102932
APA StyleKadikova, G. N., D’yakonov, V. A., & Dzhemilev, U. M. (2021). Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π + 2π]-Cycloaddition of N-Carbocholesteroxyazepine to Alkynes. Molecules, 26(10), 2932. https://doi.org/10.3390/molecules26102932