Isolation, Physicochemical Properties, and Structural Characteristics of Arabinoxylan from Hull-Less Barley
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties
2.2. SEM Images and FT-IR Spectroscopy Analysis
2.3. Methylation Analysis
2.4. NMR Analysis
2.5. Molecular Properties
3. Materials and Methods
3.1. Sample Preparation
3.2. Extraction and Purification of Arabinoxylan in Hull-Less Barley
3.3. Chemical Compositions
3.4. SEM and FT-IR Spectroscopy Analysis
3.5. Methylation and GC–MS Analysis
3.6. NMR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Guo, T.; Horvath, C.; Chen, L.; Chen, J.; Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (qingke): A review. Trends Food Sci. Tech. 2020, 103, 109–117. [Google Scholar] [CrossRef]
- Xiao, X.; Tan, C.; Sun, X.; Zhao, Y.; Zhang, J.; Zhu, Y.; Bai, J.; Dong, Y.; Zhou, X. Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan. Carbohyd. Polym. 2020, 231, 115685. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Cheng, W.; Yang, K.; Cai, L.; He, L.; Du, L.; Liu, Y.; Liu, A.; Zeng, Z.; et al. Impact of arabinoxylan on characteristics, stability and lipid oxidation of oil-in-water emulsions: Arabinoxylan from wheat bran, corn bran, rice bran, and rye bran. Food Chem. 2021, 358, 129813. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Li, T.; Zhang, Y.; Zhang, W.; Qian, H.; Li, Y.; Zhang, H.; Qi, X.; Wang, L. Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chem. 2021, 345, 128785. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Fan, M.; Li, T.; Li, Y.; Qian, H.; Wang, L.; Zhang, H.; Qi, X.; Rao, Z. Cereal-derived arabinoxylans: Structural features and structure-activity correlations. Trends Food Sci. Tech. 2020, 96, 157–165. [Google Scholar] [CrossRef]
- Guo, R.; Xu, Z.; Wu, S.; Li, X.; Li, J.; Hu, H.; Wu, Y.; Ai, L. Molecular properties and structural characterization of an alkaline extractable arabinoxylan from hull-less barley bran. Carbohyd. Polym. 2019, 218, 250–260. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Fu, Y.; Li, C.; Chen, D.; Chen, H. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J. Funct. Foods 2019, 54, 536–551. [Google Scholar] [CrossRef]
- Ogawa, K.; Takeuchi, M.; Nakamura, N. Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice. Biosci. Biotechnol. Biochem. 2005, 69, 19–25. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Guo, Y.; Wang, Q.; Peng, D.; Cao, L. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohyd. Polym. 2010, 81, 784–789. [Google Scholar] [CrossRef]
- Nyman, M. Importance of processing for physico-chemical and physiological properties of dietary fibre. Proc. Nutr. Soc. 2003, 62, 187–192. [Google Scholar]
- Liu, Y.; Wang, S.; Kang, J.; Wang, N.; Xiao, M.; Li, Z.; Wang, C.; Guo, Q.; Hu, X. Arabinoxylan from wheat bran: Molecular degradation and functional investigation. Food Hydrocoll. 2020, 107, 105914. [Google Scholar] [CrossRef]
- Köhnke, O.; Östlund, Å.; Brelid, H. Adsorption of arabinoxylan on cellulosic surfaces: Influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 2011, 12, 2633–2641. [Google Scholar] [CrossRef]
- Fadel, A.; Plunkett, A.; Li, W.; Tessu Gyamfi, V.E.; Nyaranga, R.R.; Fadel, F.; Dakak, S.; Ranneh, Y.; Salmon, Y.; Ashworth, J.J. Modulation of innate and adaptive immune responses by arabinoxylans. J. Food Biochem. 2017, 42, e12473. [Google Scholar] [CrossRef]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J.G. Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutr. Res. 2006, 26, 644–650. [Google Scholar] [CrossRef]
- Li, L.; Pan, M.; Pan, S.; Li, W.; Zhong, Y.; Hu, J.; Nie, S. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food Chem. Toxicol. 2019, 135, 110937. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 227–251. [Google Scholar]
- Hromádková, Z.; Paulsen, B.S.; Polovka, M.; Košťálová, Z.; Ebringerová, A. Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities. Carbohyd. Polym. 2013, 93, 22–30. [Google Scholar] [CrossRef]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohyd. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Laine, C.; Tamminen, T.; Vikkula, A.; Vuorinen, T. Methylation analysis as a tool for structural analysis of wood polysaccharides. Holzforschung 2002, 56, 607–614. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Zhang, T.; Zhang, J.; Pan, M.; Huang, X.; Yin, J.; Nie, S. Structural characteristics and rheological properties of alkali-extracted arabinoxylan from dehulled barley kernel. Carbohyd. Polym. 2020, 249, 116813. [Google Scholar] [CrossRef]
- Yadav, M.P.; Kale, M.S.; Hicks, K.B.; Hanah, K. Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops. Food Hydrocoll. 2017, 63, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R.A.; Kamerling, J.P.; Vliegenthart, J.F.G. Structural features of a water-soluble arabinoxylan from the endosperm of wheat. Carbohyd. Res. 1992, 226, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Qian, K.; Goff, D.H.; Wang, Q.; Cui, S.W. Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chem. 2018, 254, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, Y.; Yang, T.; Chen, D.; Xiao, Y.; Qin, W.; Wu, D.; Zhang, Q.; Lin, D.; Liu, Y.; et al. Interactive effects of molecular weight and degree of substitution on biological activities of arabinoxylan and its hydrolysates from triticale bran. Int. J. Biol. Macromol. 2021, 166, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.W. Food Carbohydrates: Chemistry, Physical Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Sun, Y.; Cui, S.W.; Gu, X.; Zhang, J. Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohyd. Polym. 2011, 85, 615–621. [Google Scholar] [CrossRef]
- Devi, S.; Lakhera, A.K.; Kumar, V. Structural analysis and antioxidant activity of an arabinoxylan from Malvastrum coromandelianum L. (Garcke). Rsc. Adv. 2019, 9, 24267–24279. [Google Scholar] [CrossRef] [Green Version]
- Benaoun, F.; Delattre, C.; Boual, Z.; Ursu, A.V.; Vial, C.; Gardarin, C.; Wadouachi, A.; Le Cerf, D.; Varacavoudin, T.; Ould El-Hadj, M.D.; et al. Structural characterization and rheological behavior of a heteroxylan extracted from Plantago notata Lagasca (Plantaginaceae) seeds. Carbohyd. Polym. 2017, 175, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Höije, A.; Sandström, C.; Roubroeks, J.P.; Andersson, R.; Gohil, S.; Gatenholm, P. Evidence of the presence of 2-O-β-D-xylopyranosyl-α-L-arabinofuranose side chains in barley husk arabinoxylan. Carbohyd. Res. 2006, 341, 2959–2966. [Google Scholar] [CrossRef]
- Yin, J.; Nie, S.; Guo, Q.; Wang, Q.; Cui, S.W.; Xie, M. Effect of calcium on solution and conformational characteristics of polysaccharide from seeds of Plantago asiatica L. Carbohyd. Polym. 2015, 124, 331–336. [Google Scholar] [CrossRef]
- Shi, X.; Yin, J.; Zhang, L.; Li, O.; Huang, X.; Nie, S. Studies on polysaccharides from leaf skin of Aloe barbadensis Miller: Part II. Structural characteristics and molecular properties of two lower molecular weight fractions. Food Hydrocoll. 2019, 86, 50–61. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.; Zhang, L.; Fang, Y.; Jiang, F.; Phillips, G.O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohyd. Polym. 2011, 86, 844–851. [Google Scholar] [CrossRef]
- Pavlovich-Abril, A.; Rouzaud-Sández, O.; Carvajal-Millán, E.; Navarro, R.E.; Robles-Sánchez, R.M.; Barrón-Hoyos, J.M. Molecular characterization of water extractable arabinoxylans isolated from wheat fine bran and their effect on dough viscosity. LWT-Food Sci. Technol. 2016, 74, 484–492. [Google Scholar] [CrossRef]
- Lazaridou, A.; Chornick, T.; Biliaderis, C.G.; Izydorczyk, M.S. Sequential solvent extraction and structural characterization of polysaccharides from the endosperm cell walls of barley grown in different environments. Carbohyd. Polym. 2008, 73, 621–639. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Delcour, J.A.; Vanhamel, S.; Geest, C.D. Physico-chemical and functional properties of rye nonstarch polysaccharides. I. Colorimetric analysis of pentosans and their relative monosaccharide compositions in fractionated (milled) rye products. Cereal Chem. 1989, 66, 107–111. [Google Scholar]
- Liu, D.; Tang, W.; Yin, J.; Nie, S.; Xie, M. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll. 2021, 116, 106641. [Google Scholar] [CrossRef]
- Stoklosa, R.J.; Latona, R.J.; Bonnaillie, L.M.; Yadav, M.P. Evaluation of arabinoxylan isolated from sorghum bran, biomass, and bagasse for film formation. Carbohydr. Polym. 2019, 213, 382–392. [Google Scholar] [CrossRef]
Sample | Yield (%) | Neutral Sugar (%) | Uronic Acid (%) | Protein (%) | Starch (%) | β-Glucan (%) | AX (%) | Monosaccharide Composition (%, w/w) c | A/X Ratio | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ara | Gal | Glc | Xyl | |||||||||
HBAX | 1.5 a | 83.6 ± 1.8 | 3.5 ± 0.6 | 10.2 ± 0.1 | 0.4 ± 0.2 | 1.6 ± 0.1 | 67.9 ± 2.2 | 26.3 ± 2.2 | 0.9 ± 0.1 | 5.1 ± 0.1 | 38.3 ± 0.6 | 0.7 |
HBAX-60 | 72.2 b | 98.3 ± 1.4 | n.d. | 7.0 ± 0.1 | 0.3 ± 0.1 | n.d. | 93.7 ± 3.0 | 40.7 ± 2.0 | n.d. | 0.1 ± 0.1 | 59.3 ± 6.6 | 0.7 |
Mass Fragments (m/z) | PMAAs a | Linkage Pattern | Relative Peak Area Percentage (%) b |
---|---|---|---|
43,101,102,117,118,161,162 | 1,5-di-O-acetyl-2,3,4-tri-O-methyl xylitol | Xylp-(1→ | 3.1 |
43,87,102,118,129,162,189,233 | 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol | →4)-Xylp-(1→ | 36.2 |
43,87,88,129,130,189,190,234 | 1,2,4,5-tera-O-acetyl-3-O-methyl xylitol | →2,4)-Xylp-(1→ | 1.2 |
43,59,85,118,160,201,261 | 1,3,4,5-tri-O-acetyl-2-O-methyl xylitol | →3,4)-Xylp-(1→ | 5.9 |
43,73,74,115,116,145,146,217,218,289,290 | 1,2,3,4,5-penta-O-acetyl-xylitol | →2,3,4)-Xylp-(1→ | 12.1 |
Total | 58.5 | ||
43,87,101,102,118,129,145,161,162,205 | 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol | Araf-(1→ | 34.4 |
43,87,88,101,129,130,161,190 | 1,2,4-tri-O-acetyl-3,5-di-O-methyl arabinitol | →2)-Araf-(1→ | 1.4 |
43,59,87,113,118,160,202,233 | 1,3,4-tri-O-acetyl-2,5-di-O-methyl arabinitol | →3)-Araf-(1→ | 1.7 |
43,59,87,102,117,118,129,189,234 | 1,4,5-tri-O-acetyl-2,3-di-O-methyl arabinitol | →5)-Araf-(1→ | 1.3 |
Total | 38.8 | ||
43,87,102,118,129,145,161,162,205 | 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol | Glcp-(1→ | 0.8 |
43,87,101,118,129,161,234 | 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol | →3)-Glcp-(1→ | 0.4 |
43,87,118,129,162,233 | 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol | →4)-Glcp-(1→ | 1.5 |
Total | 2.7 |
Code | Residue Linkages | H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 |
---|---|---|---|---|---|---|
A | α-Araf-(1→3 a | 5.34/107.57 | 3.88/82.00 | 3.65/77.85 | 3.96/86.73 | 3.44/61.49 |
B | α-Araf-(1→3 b | 5.12/108.33 | 3.82/80.45 | 3.68/78.03 | 3.84/85.19 | 3.45/61.60 |
C | α-Araf-(1→2 c | 4.99/109.35 | 3.27/75.67 | 3.49/76.15 | 3.85/84.68 | - |
D | →3)-α-Araf-(1→ | 4.77/108.48 | 3.43/76.07 | - | - | - |
E | →2,3,4)-β-Xylp-(1→ | 4.57/100.83 | 3.70/78.03 | 3.41/75.08 | 3.83/75.83 | 3.44/61.26 |
F | →3,4)-β-Xylp-(1→ | 4.32/102.18 | 3.05/73.38 | 3.26/76.97 | - | -/61.76 |
G | β-Xylp-(1→ | 4.26/102.18 | 3.04/73.54 | - | - | -/61.92 |
H | →4)-β-Xylp-(1→ | 4.24/102.18 | 3.03/73.22 | 3.25/74.44 | 3.62/73.70 | 3.32/63.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Wang, Y.; Yin, J.; Nie, S.; Xie, M. Isolation, Physicochemical Properties, and Structural Characteristics of Arabinoxylan from Hull-Less Barley. Molecules 2021, 26, 3026. https://doi.org/10.3390/molecules26103026
Yao H, Wang Y, Yin J, Nie S, Xie M. Isolation, Physicochemical Properties, and Structural Characteristics of Arabinoxylan from Hull-Less Barley. Molecules. 2021; 26(10):3026. https://doi.org/10.3390/molecules26103026
Chicago/Turabian StyleYao, Haoyingye, Yuxiao Wang, Junyi Yin, Shaoping Nie, and Mingyong Xie. 2021. "Isolation, Physicochemical Properties, and Structural Characteristics of Arabinoxylan from Hull-Less Barley" Molecules 26, no. 10: 3026. https://doi.org/10.3390/molecules26103026
APA StyleYao, H., Wang, Y., Yin, J., Nie, S., & Xie, M. (2021). Isolation, Physicochemical Properties, and Structural Characteristics of Arabinoxylan from Hull-Less Barley. Molecules, 26(10), 3026. https://doi.org/10.3390/molecules26103026