Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aroma-Active Compounds in Yongchuan Douchi
2.2. Quantitation of Aroma-Active Compounds and Calculation of OAVs
2.3. Aroma Rcombination
2.4. Omission Experiment
2.5. Sources of Key Aroma-Active Compounds in Yongchuan Douchi
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Aroma Profile Evaluation
3.4. Isolation of the Volatiles: Solid-Phase Microextraction (SPME)
3.5. Isolation of the Volatiles: Solvent-Assisted Flavor Evaporation (SAFE)
3.6. Gas Chromatography-Olfactometry (GC–O) Analysis
3.7. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.8. Aroma Extract Dilution Analysis (AEDA)
3.9. Identification and Quantitation Analysis
3.10. Odor Activity Value (OAV)
3.11. Aroma Recombination and Omission Experiments
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, B.; Li, H.; Hu, Z.; Zhang, Y.; Sun, M.; Qiu, S.; Zeng, B. Difference in microbial community and taste compounds between Mucor-type and Aspergillus-type Douchi during koji-making. Food Res. Int. 2019, 121, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Ma, Y. Exploitation and utilization of microbial resources in Chinese traditional fermented soybean products. China Brew. 2005, 1–5. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGZ200502000.htm (accessed on 17 May 2021).
- Kameda, Y.; Ouhira, S.; Matsui, K.; Kanatomo, S.; Hase, T.; Atsusaka, T. Antitumor activity of bacillus natto. V. isolation and characterization of surfactin in the culture medium of bacillus natto KMD 2311. Chem. Pharm. Bull. 1974. [Google Scholar] [CrossRef] [Green Version]
- Leejeerajumnean, A.; Craig Duckham, S.; David Owens, J.; Ames, J.M. Volatile compounds in Bacillus-fermented soybeans. J. Sci. Food Agric. 2001, 81, 525–529. [Google Scholar] [CrossRef]
- Hu, H.; Hao, J.; Cheng, Y.; Yin, L.; Ma, Y.; Yu, Z.; Li, L. Effect of fermented rice culture on the microbiological, biochemical and sensory characteristics of low-salt douchi, a traditional Chinese fermented soybean condiment. Int. J. Food Sci. Technol. 2012, 47, 689–695. [Google Scholar] [CrossRef]
- Fujita, H.; Yamagami, T.; Ohshima, K. Fermented soybean-derived water-soluble touchi extract inhibits α-glucosidase and is antiglycemic in rats and humans after single oral treatments. J. Nutr. 2001, 131, 1211–1213. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Yang, J.; Zhuang, Z.; Yang, Y.; Lin, L.; Wang, S. Thrombolytic effects of Douchi Fibrinolytic enzyme from Bacillus subtilis LD-8547 in vitro and in vivo. BMC Biotechnol. 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Villares, A.; Rostagno, M.A.; García-Lafuente, A.; Guillamón, E.; Martínez, J.A. Content and profile of isoflavones in soy-based foods as a function of the production process. Food Bioprocess. Technol. 2011, 4, 27–38. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Liao, L.; Qin, Y.; Jiang, L.; Liu, Y. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2021, 130055. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, T.; Wang, H.; Song, J.; Suo, H. Correlation between the quality and microbial community of natural-type and artificial-type Yongchuan Douchi. LWT 2021, 140, 110788. [Google Scholar] [CrossRef]
- Wang, L.; Mu, H.; Liu, H.; Bhandari, B.; Saito, M.; Li, L. Volatile components in three commercial douchies, a chinese traditional salt-fermented soybean food. Int. J. Food Prop. 2010, 13, 1117–1133. [Google Scholar] [CrossRef]
- Acree, T.E. Peer Reviewed: GC/Olfactometry GC With a Sense of Smell. Anal. Chem. 1997, 69, 170A–175A. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Su, G.; Zhao, H.; Cai, Y.; Cui, C.; Sun-Waterhouse, D.; Zhao, M. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test. Food Chem. 2015, 167, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Steinhaus, P.; Schieberle, P. Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science. J. Agric. Food Chem. 2007, 55, 6262–6269. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y. Volatile flavor components in red fermented soybean (Glycine max) curds. J. Agric. Food Chem. 2000, 48, 1803–1809. [Google Scholar] [CrossRef]
- Chung, H.Y.; Fung, P.K.; Kim, J.S. Aroma impact components in commercial plain sufu. J. Agric. Food Chem. 2005, 53, 1684–1691. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lo, C.K.; Guo, S.T. Characterization of the volatile substances and aroma components from traditional soypaste. Molecules 2010, 15, 3421–3427. [Google Scholar] [CrossRef]
- Baek, H.H. Aroma quality assessment of Korean fermented red pepper paste (gochujang) by aroma extract dilution analysis and headspace solid-phase microextraction-gas chromatography-olfactometry. Food Chem. 2014, 145, 488–495. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, Y.; Wu, P.; Xu, X.; Pan, S. Aroma impact compounds in Liuyang douchi, a Chinese traditional fermented soya bean product. Int. J. Food Sci. Technol. 2011, 46, 1823–1829. [Google Scholar] [CrossRef]
- Jeleń, H.; Majcher, M.; Ginja, A.; Kuligowski, M. Determination of compounds responsible for tempeh aroma. Food Chem. 2013, 141, 459–465. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Delwiche, J.F.; Walker, S.D.; Liggett, R.E.; Miller, S.A.; Kleinhenz, M.D. Consumer liking and descriptive analysis of six varieties of organically grown edamame-type soybean. Food Qual. Prefer. 2005, 16, 651–658. [Google Scholar] [CrossRef]
- Song, H.; Liu, J. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Cao, Y.; Cai, Y.; Su, G.; Feng, Y. Identification of aroma-active compounds from Yang jiang Douchi by SDE and HS-SPME combined with GC-MS/O. Mod. Food Sci. Technol. 2016, 5, 264–275. [Google Scholar] [CrossRef]
- Li, Z.; Dong, L.; Jeon, J.; Kwon, S.Y.; Zhao, C.; Baek, H.H. Characterization and evaluation of aroma quality in Doubanjiang, a Chinese traditional fermented red pepper paste, using aroma extract dilution analysis and a sensory profile. Molecules 2019, 24, 3107. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, M.C.L.; Lubachevsky, G.; Rankin, S.A. A study of the volatile composition of Minas cheese. LWT-Food Sci. Technol. 2005, 38, 555–563. [Google Scholar] [CrossRef]
- Izco, J.M.; Torre, P. Characterisation of volatile flavour compounds in Roncal cheese extracted by the “purge and trap” method and analysed by GC-MS. Food Chem. 2000, 70, 409–417. [Google Scholar] [CrossRef]
- Qin, L.; Ding, X. Formation of taste and odor compounds during preparation of douchiba, a chinese traditional soy-fermented appetizer. J. Food Biochem. 2007, 230–251. [Google Scholar] [CrossRef]
- Yang, P.; Song, H.; Wang, L.; Jing, H. Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. J. Agric. Food Chem. 2019, 67, 7926. [Google Scholar] [CrossRef]
- Frank, D.C.; Owen, C.M.; Patterson, J. Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. LWT-Food Sci. Technol. 2004, 37, 139–154. [Google Scholar] [CrossRef]
- Wanakhachornkrai, P.; Lertsiri, S. Comparison of determination method for volatile compounds in Thai soy sauce. Food Chem. 2003, 83, 619–629. [Google Scholar] [CrossRef]
- Puvipirom, J.; Chaiseri, S. Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink). ACS Natl. Meet. Book Abstr. 2012, 19, 583–588. [Google Scholar]
- Budryn, G.; Nebesny, E.; Kula, J.; Majda, T.; Krysiak, W. HS-SPME/GC/MS profiles of convectively and microwave roasted Ivory Coast Robusta coffee brews. Czech. J. Food Sci. 2011, 29, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Lee, S.M.; Seo, B.C.; Kim, Y.S. Volatile compounds in fermented and acid-hydrolyzed soy sauces. J. Food Sci. 2006, 71, C146–C156. [Google Scholar] [CrossRef]
- Vuralhan, Z.; Morais, M.A.; Tai, S.L.; Piper, M.D.W.; Pronk, J.T. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 4534–4541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zeng, L.; Liu, X.; Gui, J.; Mei, X.; Fu, X.; Dong, F.; Tang, J.; Zhang, L.; Yang, Z. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [Google Scholar] [CrossRef]
- Costa, G.P.; Nicolli, K.P.; Welke, J.E.; Manfroi, V.; Zini, C.A. Volatile profile of sparkling wines produced with the addition of mannoproteins or lees before second fermentation performed with free and immobilized yeasts. J. Braz. Chem. Soc. 2018, 29, 1866–1875. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation-A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Grosch, W. Determination of potent odourants in foods by aroma extract dilution analysis (AEDA) and calculation of odour activity values (OAVs). Flavour Fragr. J. 1994, 9, 147–158. [Google Scholar] [CrossRef]
- Sun, J.; Sun, B.; Ren, F.; Chen, H.; Zhang, N.; Zhang, Y. Characterization of key odorants in hanyuan and hancheng fried pepper (Zanthoxylum bungeanum) oil. J. Agric. Food Chem. 2020. [Google Scholar] [CrossRef]
No. | Compounds | Odor a | RI b | Identification Methods c | Extraction Method d | ||
---|---|---|---|---|---|---|---|
TG-WAX | TG-5 | ||||||
1 | 2-methyl butanal | malty | 918 | MS/RI/O/STD | SPME | ||
2 | 2,3-butanedione | butter | 969 | <700 | MS/RI/O/STD | SAFE | |
3 | 1-hydroxy-2-propanone | herbal | 1306 | MS/RI/O/STD | SAFE | ||
4 | 2,5-dimethylpyrazine | nutty | 1333 | 973 | MS/RI/O/STD | SAFE | SPME |
5 | 6-methyl-5-hepten-2-one | grassy | 1344 | MS/RI/O/STD | SAFE | SPME | |
6 | 2-Isopropyl-5-methyl-2-hexenal | herbal | 1367 | 1167 | MS/RI/O/STD | SAFE | SPME |
7 | dimethyl trisulfide | garlic | 1386 | 1025 | MS/RI/O/STD | SAFE | SPME |
8 | 2-ethyl-6-methylpyrazine | roasted potato | 1394 | 1060 | MS/RI/O/STD | SAFE | |
9 | 2,3,5-trimethylpyrazine | nutty skin | 1416 | 1065 | MS/RI/O/STD | SAFE | SPME |
10 | acetic acid | pungent sour | 1419 | <700 | MS/RI/O/STD | SAFE | SPME |
11 | 2-ethyl-3,5-dimethylpyrazine | nutty | 1452 | 1141 | MS/RI/O/STD | SAFE | SPME |
12 | 3-(methylthio)propionaldehyde | roasted potato | 1462 | 912 | MS/RI/O/STD | SAFE | SPME |
13 | tetramethylpyrazine | chocolate | 1476 | MS/RI/O/STD | SAFE | ||
14 | 2-ethenyl-6-methylpyrazine | nutty | 1495 | MS/RI/O | SAFE | ||
15 | decanal | green, soap-like | 1502 | 1264 | MS/RI/O/STD | SAFE | |
16 | formic acid | vinegar | 1512 | MS/RI/O/STD | SAFE | ||
17 | benzaldehyde | almond | 1527 | 1017 | MS/RI/O/STD | SAFE | SPME |
18 | 2,3-butanediol | fruity | 1542 | 889 | MS/RI/O/STD | SAFE | |
19 | 3-methylbutanoic acid | rancid | 1570 | MS/RI/O/STD | SAFE | ||
20 | acetylpyrazine | popcorn | 1631 | MS/RI/O/STD | SAFE | SPME | |
21 | butyric acid | rancid | 1639 | MS/RI/O/STD | SAFE | ||
22 | benzeneacetaldehyde | flora | 1649 | 1100 | MS/RI/O/STD | SAFE | SPME |
23 | 3-methylbutanoic acid | rancid, fruity | 1674 | 958 | MS/RI/O/STD | SAFE | |
24 | γ-caprolactone | fruity | 1702 | MS/RI/O/STD | SAFE | SPME | |
25 | 5-methyl-2-furanmethanol | caramel | 1723 | MS/RI/O/STD | SAFE | SPME | |
26 | citronellol | flora | 1766 | 1288 | MS/RI/O/STD | SAFE | SPME |
27 | 3-methylvaleric acid | sweaty | 1800 | 954 | MS/RI/O/STD | SAFE | SPME |
28 | 4-methylvaleric acid | sweaty | 1808 | 1038 | MS/RI/O/STD | SAFE | SPME |
29 | β-damascenone | flora, honey | 1819 | MS/RI/O/STD | SAFE | ||
30 | methyl cyclopentenolone | herbal | 1828 | MS/RI/O/STD | SAFE | SPME | |
31 | 3-methyl-1,2-cyclopentanedione | caremelized | 1839 | 1090 | MS/RI/O/STD | SAFE | |
32 | 2-methoxyphenol (guaiacol) | woody, smoky | 1861 | 1151 | MS/RI/O/STD | SAFE | SPME |
33 | phenethyl alcohol | rosy | 1910 | MS/RI/O/STD | SAFE | SPME | |
34 | 3-hydroxy-2-methyl-4H-pyran-4-one (maltol) | malty | 1964 | 1181 | MS/RI/O/STD | SAFE | SPME |
35 | 2-acetylpyrrole | bread | 1971 | 1124 | MS/RI/O/STD | SAFE | SPME |
36 | phenol | plastic | 2008 | MS/RI/O/STD | SAFE | ||
37 | 2-pentadecanone | green | 2019 | MS/RI/O/STD | SAFE | ||
38 | γ-nonanolactone | coconut-like | 2031 | 1424 | MS/RI/O/STD | SAFE | SPME |
39 | octanoic acid | rancid | 2067 | MS/RI/O/STD | SAFE | ||
40 | 5-methyl-2-phenyl-2-hexenal | nutty, cocoa | 2076 | MS/RI/O/STD | SAFE | ||
41 | p-cresol | burnt | 2085 | MS/RI/O/STD | SAFE | ||
42 | unknow1 e | herbal | 2135 | O | SAFE | ||
43 | Eugenol | woody, spicy | 2168 | 1420 | MS/RI/O/STD | SAFE | |
44 | methyl palmitate | wax | 2215 | 1916 | MS/RI/O/STD | SAFE | SPME |
45 | 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one | burnt | 2223 | 1212 | MS/RI/O/ | SAFE | |
46 | 2,6-dimethoxyphenol | smoky | 2265 | 1413 | MS/RI/O/STD | SAFE | |
47 | levulinic acid | vinegar | 2343 | 1138 | MS/RI/O/STD | SAFE | |
48 | unknow2 e | burnt | 2380 | O | SAFE | ||
49 | benzoic acid | balsam | 2458 | 1243 | MS/RI/O/STD | SAFE | |
50 | phenylacetic acid | flora | 2573 | 1320 | MS/RI/O/STD | SAFE | |
51 | dihydro-4-hydroxy-2-(3H)-furanone | wax | 2606 | MS/RI/O/STD | SAFE |
No. | Compounds a | Odor | Comcentration (mg/kg) b | Odor Threshold in Water (mg/kg) c | Linear Equations d | FD e | OAVs f |
---|---|---|---|---|---|---|---|
1 | 2,3-butanedione | butter | 0.685 ± 0.005 | 0.006 | y = 0.099x − 0.0019 | 512 | 114 |
2 | dimethyl trisulfide | garlic | 0.088 ± 0.0002 | 0.00001 | y = 0.186x − 0.0028 | 32 | 8818 |
3 | acetic acid | rancid | 535.577 ± 3.314 | 99 | y = 0.0881x + 0.2166 | 2048 | 5 |
4 | 3-(methylthio)propionaldehyde | potato | 0.103 ± 0.001 | 0.00045 | y = 0.0551x − 0.0017 | 256 | 229 |
5 | decanal | green | 0.489 ± 0.001 | 0.245 | y = 0.3267x − 0.0202 | 16 | 2 |
6 | acetylpyrazine | popcorn | 0.102 ± 0.0004 | 0.06 | y = 0.3381x − 0.0101 | 16 | 2 |
7 | benzeneacetaldehyde | flora | 0.152 ± 0.001 | 0.0063 | y = 0.5732x − 0.0017 | 16 | 24 |
8 | 3-methylbutanoic acid | rancid, fruit | 14.213 ± 0.027 | 0.49 | y = 0.2843x − 0.9345 | 512 | 29 |
9 | citronellol | flora | 2.070 ± 0.004 | 0.062 | y = 0.5133x − 0.4318 | 16 | 33 |
10 | 3-methylvaleric acid | sweaty | 2.040 ± 0.006 | 0.28 | y = 0.057x − 0.0269 | 8 | 7 |
11 | 4-methylvaleric acid | sweaty | 3.553 ± 0.006 | 0.81 | y = 0.1827x − 0.2435 | 16 | 4 |
12 | β-damascenone | flora, honey | 0.006 ± 0.00001 | 0.000013 | y = 0.5055x − 0.0013 | 16 | 470 |
13 | 3-methyl-1,2-cyclopentanedione | caramel | 0.126 ± 0.002 | 0.3 | y = 0.0179x + 0.0015 | 16 | <1 |
14 | 2-methoxyphenol | woody, smoky | 2.106 ± 0.003 | 0.0016 | y = 0.7047x − 0.6626 | 16 | 1317 |
15 | phenethyl alcohol | rosy | 1.422 ± 0.002 | 0.5642 | y = 1.0889x − 0.8019 | 128 | 3 |
16 | maltol | malty | 153.227 ± 1.2 | 9 | y = 0.0062x − 0.0155 | 16 | 17 |
17 | γ-nonanolactone | coconut-like | 0.721 ± 0.002 | 0.027 | y = 0.4415x − 0.1204 | 512 | 27 |
18 | p-cresol | burnt | 0.025 ± 0.00003 | 0.0039 | y = 0.5119x − 0.0033 | 64 | 6 |
19 | eugenol | woody, spicy | 0.014 ± 0.0001 | 0.0025 | y = 0.0955x + 0.0003 | 16 | 5 |
20 | methyl palmitate | wax | 8.920 ± 0.055 | 2 | y = 0.0064x − 0.0025 | 128 | 4 |
21 | 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one | burnt | - | - | - | 256 | - |
22 | phenylacetic acid | flora | 1.324 ± 0.004 | 0.464 | y = 0.0344x − 0.0008 | 1024 | 3 |
No. | Compounds a | N b | Significant c |
---|---|---|---|
1 | 2,3-butanedione | 12 | *** |
2 | dimethyl trisulfide | 11 | *** |
3 | acetic acid | 12 | *** |
4 | 3-(methylthio)propionaldehyde | 7 | - |
5 | decanal | 7 | - |
6 | acetylpyrazine | 11 | *** |
7 | benzeneacetaldehyde | 7 | - |
8 | 3-methylbutanoic acid | 6 | - |
9 | citronellol | 5 | - |
10 | 3-methylvaleric acid | 10 | ** |
11 | 4-methylvaleric acid | 10 | ** |
12 | β-damascenone | 7 | - |
13 | 2-methoxyphenol | 11 | *** |
14 | phenethyl alcohol | 7 | - |
15 | maltol | 10 | ** |
16 | γ-nonanolactone | 9 | * |
17 | p-cresol | 6 | - |
18 | eugenol | 9 | * |
19 | methyl palmitate | 4 | - |
20 | phenylacetic acid | 10 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chang, Y.; Liu, B.; Chen, H.; Sun, B.; Zhang, N. Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach. Molecules 2021, 26, 3048. https://doi.org/10.3390/molecules26103048
Wang S, Chang Y, Liu B, Chen H, Sun B, Zhang N. Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach. Molecules. 2021; 26(10):3048. https://doi.org/10.3390/molecules26103048
Chicago/Turabian StyleWang, Shuqi, Yuan Chang, Bing Liu, Haitao Chen, Baoguo Sun, and Ning Zhang. 2021. "Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach" Molecules 26, no. 10: 3048. https://doi.org/10.3390/molecules26103048
APA StyleWang, S., Chang, Y., Liu, B., Chen, H., Sun, B., & Zhang, N. (2021). Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach. Molecules, 26(10), 3048. https://doi.org/10.3390/molecules26103048