The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Other Materials
2.2. Analytical Instrumentation
2.3. Sampling Design
2.3.1. VOOs Produced at Industrial Scale
2.3.2. VOOs Produced at Laboratory Scale
2.4. Determination of Official Quality Indices
2.5. Determination of Fatty Acid (FA) Composition (% Fatty Acid Methyl Esters, FAMEs)
2.6. Determination of α-T Content
2.7. Colorimetric Estimation of TPP Content
2.8. UHPLC Determination of the Total Htyr and Tyr Content
3. Results and Discussion
3.1. VOO cv. Chondrolia Chalkidikis/Chalkidiki. VOOs Produced at Industrial Scale
3.1.1. Generic Authorized Health Claims for Oleic Acid and Vitamin E
3.1.2. Dedicated Authorized Health Claim for ‘Polyphenols’
3.2. VOOs Produced at Laboratory Scale
3.2.1. Evolution of Olive MI, Oil Yield, and VOO Quality Parameters
3.2.2. Evolution of Monounsaturated Fatty Acid Content
3.2.3. Evolution of α-T Content
3.2.4. Evolution of the TPP and the Total Htyr and Tyr Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borsellino, V.; Kaliji, S.A.; Schimmenti, E. COVID-19 Drives Consumer Behaviour and Agro-Food Markets towards Healthier and More Sustainable Patterns. Sustainability 2020, 12, 8366. [Google Scholar] [CrossRef]
- Boskou, D. Olive Fruit, Table Olives, and Olive Oil Bioactive Constituents. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; AOCS Press: Urbana, IL, USA, 2015; pp. 1–30. [Google Scholar]
- Visioli, F.; Davalos, A.; López de las Hazas, M.C.; Crespo, M.C. Tomé-Carneiro, J. An overview of the pharmacology of olive oil and its active ingredients. Br. J Pharmacol. 2020, 177, 1316–1330. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and the Council of the European Union. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur.Union 2006, L 404, 9–25. [Google Scholar]
- European Commission. Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Off. J. Eur. Union 2012, L136, 1–40. [Google Scholar]
- Tsimidou, M.Z.; Nenadis, N.; Mastralexi, A.; Servili, M.; Butinar, B.; Vichi, S.; Winkelmann, O.; García-González, D.L.; Toschi, T.G. Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). The Pros of a Fit for the Purpose Ultra High Performance Liquid Chromatography (UHPLC) Procedure. Molecules 2019, 24, 2429. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Mastralexi, A.; Tsimidou, M.Z. Quality Aspects of European Virgin Olive Oils with Registered Geographical Indications: Emphasis on Nutrient and Non-nutrient Bioactives. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Oxford, UK, 2021; pp. 257–293. [Google Scholar]
- Nenadis, N.; Mastralexi, A.; Tsimidou, M.Z. Physicochemical Characteristics and Antioxidant Potential of the Greek PDO and PGI Virgin Olive Oils (VOOs). Eur. J. Lipid Sci. Technol. 2019, 121, 1800172. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 581/2013 of 17 June 2013 Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications (Aγουρέλαιο Χαλκιδικής (Agoureleo Chalkidikis) (PDO)). Off. J. Eur. Union 2013, L 169, 30–31. [Google Scholar]
- International Olive Council [IOC]. Guide for the Determination of the Characteristics of Oil-Olives; COI/OH/Doc. No. 1; International Olive Council [IOC]: Madrid, Spain, 2011. [Google Scholar]
- Pokorny, J.; Kalinova, L.; Dysseler, P. Determination of Chlorophyll Pigments in Crude Vegetable Oils. Pure Appl. Chem. 1995, 67, 1781–1787. [Google Scholar] [CrossRef]
- Commission of the European communities. Regulation (EEC) No. 2568/1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Off. J. Eur. Union 1991, L248, 1–128. [Google Scholar]
- Psomiadou, E.; Tsimidou, M. Simultaneous HPLC Determination of Tocopherols, Carotenoids, and Chlorophylls for Monitoring Their Effect on Virgin Olive Oil Oxidation. J. Agric. Food Chem. 1998, 46, 5132–5138. [Google Scholar] [CrossRef]
- Nenadis, N.; Mastralexi, A.; Tsimidou, M.Z.; Vichi, S.; Quintanilla-Casas, B.; Donarski, J.; Bailey-Horne, V.; Butinar, B.; Miklavčič, M.; García González, D.L.; et al. Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). Extraction Solvent. Eur. J. Lipid Sci. Technol. 2018, 1800099, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tsimidou, M.Z.; Sotiroglou, M.; Mastralexi, A.; Nenadis, N.; García-González, D.L.; GallinaToschi, T. In House Validated UHPLC Protocol for the Determination of the Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil Fit for the Purpose of the Health Claim Introduced by the EC Regulation 432/2012 for “Olive Oil Polyphenols”. Molecules 2019, 24, 1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Olive Council [IOC]. Determination of Biophenols in Olive Oil by HPLC. COI/T.20/Doc. No. 29/Rev.1; International Olive Council [IOC]: Madrid, Spain, 2009. [Google Scholar]
- Kosma, I.; Vavoura, M.; Kontakos, S.; Karabagias, I. Characterization and Classification of Extra Virgin Olive Oil from Five Less Well-Known Greek Olive Cultivars. J. Am. Oil Chem. Soc. 2016, 93. [Google Scholar] [CrossRef]
- Kosma, I.; Vatavali, K.; Kontakos, S.; Kontominas, M.; Kiritsakis, A.; Badeka, A. Geographical Differentiation of Greek Extra Virgin Olive Oil from Late-Harvested Koroneiki Cultivar Fruits. J. Am. Oil Chem. Soc. 2017, 94, 1373–1384. [Google Scholar] [CrossRef]
- Skiada, V.; Tsarouhas, P.; Varzakas, T. Comparison and Discrimination of Two Major Monocultivar Extra Virgin Olive Oils in the Southern Region of Peloponnese, According to Specific Compositional/Traceability Markers. Foods 2020, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Mikrou, T.; Pantelidou, E.; Parasyri, N.; Papaioannou, A.; Kapsokefalou, M.; Gardeli, C.; Mallouchos, A. Varietal and Geographical Discrimination of Greek Monovarietal Extra Virgin Olive Oils Based on Squalene, Tocopherol, and Fatty Acid Composition. Molecules 2020, 25, 3818. [Google Scholar] [CrossRef] [PubMed]
- Boskou, D.; Blekas, G.; Tsimidou, M. Olive Oil Composition. In Olive Oil: Chemistry and Technology; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 2006; pp. 41–72. [Google Scholar]
- Kalogeropoulos, N.; Tsimidou, M.Z. Antioxidants in Greek Virgin Olive Oils. Antioxidants 2014, 3, 387–413. [Google Scholar] [CrossRef] [Green Version]
- Tsimidou, M.Z.; Mastralexi, A.; Ozdikicierler, O. Cold Pressed Virgin Olive Oils. In Cold Pressed Oils Green Technology, Bioactive Compounds, Functionality, and Applications; Ramadan, M.F., Ed.; Academic Press: London, UK, 2020; pp. 547–573. [Google Scholar]
- Psomiadou, E.; Tsimidou, M. Stability of Virgin Olive Oil. 1. Autoxidation Studies. J. Agric. Food Chem. 2002, 50, 716–721. [Google Scholar] [CrossRef]
- Ghanbari Shendi, E.; Sivri Ozay, D.; Ozkaya, M.T.; Ustunel, N.F. Changes Occurring in Chemical Composition and Oxidative Stability of Virgin Olive Oil during Storage. OCL Oilseeds Fats Crop. Lipids 2018, 25, 4–11. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and the Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Comm 2011, L304, 18–61. [Google Scholar]
- Tsimidou, M.Z.; Boskou, D. The Health Claim on “Olive Oil Polyphenols” and the Need for Meaningful Terminology and Effective Analytical Protocols. Eur. J. Lipid Sci. Technol. 2015, 117, 1091–1094. [Google Scholar] [CrossRef]
- Chalkidikis, A. Regulation (EC) No 510/2006 ‘AΓOΥΡΕΛAΙO ΧAΛΚΙΔΙΚHΣ’ (AGOURELEO CHALKIDIKIS) EC No: EL-PDO-0005-0736-14.01.2009 PGI ( ) PDO (X). Off. J. Eur. Union 2012, C294, 14–18. [Google Scholar]
- Beltrán, G.; Del Río, C.; Sánchez, S.; Martínez, L. Seasonal Changes in Olive Fruit Characteristics and Oil Accumulation during Ripening Process. J. Sci. Food Agric. 2004, 84, 1783–1790. [Google Scholar] [CrossRef]
- Hellenic National Meteorological Service. Available online: http://www.hnms.gr/emy/el/ (accessed on 10 December 2020).
- Gutiérrez, F.; Jímenez, B.; Ruíz, A.; Albi, M.A. Effect of Olive Ripeness on the Oxidative Stability of Virgin Olive Oil Extracted from the Varieties Picual and Hojiblanca and on the Different Components Involved. J. Agric. Food Chem. 1999, 47, 121–127. [Google Scholar] [CrossRef]
- Yousfi, K.; Cert, R.M.; García, J.M. Changes in Quality and Phenolic Compounds of Virgin Olive Oils during Objectively Described Fruit Maturation. Eur. Food Res. Technol. 2006, 223, 117–124. [Google Scholar] [CrossRef]
- Youssef, N.B.; Zarrouk, W.; Carrasco-Pancorbo, A.; Ouni, Y.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Daoud, D.; Zarrouk, M. Effect of Olive Ripeness on Chemical Properties and Phenolic Composition of Chétoui Virgin Olive Oil. J. Sci. Food Agric. 2010, 90, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulos, E.; Kalogeropoulos, N.; Kaliora, A.C.; Kountouri, A.M.; Andrikopoulos, N.K. The Influence of Ripening and Crop Year on Quality Indices, Polyphenols, Terpenic Acids, Squalene, Fatty Acid Profile, and Sterols in Virgin Olive Oil (Koroneiki cv.) Produced by Organic versus Non-Organic Cultivation Method. Int. J. Food Sci. Technol. 2011, 46, 170–178. [Google Scholar] [CrossRef]
- Lazzez, A.; Vichi, S.; Kammoun, N.G.; Arous, M.N.; Khlif, M.; Romero, A.; Cossentini, M. A Four Year Study to Determine the Optimal Harvesting Period for Tunisian Chemlali Olives. Eur. J. Lipid Sci. Technol. 2011, 113, 796–807. [Google Scholar] [CrossRef]
- Salvador, M.D.; Aranda, F.; Fregapane, G. Influence of Fruit Ripening on “Cornicabra” Virgin Olive Oil Quality: A Study of Four Successive Crop Seasons. Food Chem. 2001, 73, 45–53. [Google Scholar] [CrossRef]
- Baccouri, B.; Zarrouk, W.; Krichene, D.; Nouairi, I.; Ben Youssef, N.; Daoud, D.; Zarrouk, M. Influence of Fruit Ripening and Crop Yield on Chemical Properties of Virgin Olive Oils from Seven Selected Oleasters (Olea europea L.). J. Agron. 2007, 6, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Benito, M.; Lasa, M.J.; Gracia, P.; Oria, R.; Abenoza, M.; Varona, L.; Sanchez-Gimeno, A.C. Olive Oil Quality and Ripening in Super-High-Density Arbequina Orchard. J. Sci. Food Agric. 2013, 93, 2207–2220. [Google Scholar] [CrossRef] [Green Version]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of Time of Harvest and Maturity Index on Olive Oil Yield and Quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Dag, A.; Harlev, G.; Lavee, S.; Zipori, I.; Kerem, Z. Optimizing Olive Harvest Time under Hot Climatic Conditions of Jordan Valley, Israel. Eur. J. Lipid Sci. Technol. 2014, 116, 169–176. [Google Scholar] [CrossRef]
- Kafkaletou, M.; Ouzounidou, G.; Tsantili, E. Fruit Ripening, Antioxidants and Oil Composition in Koroneiki Olives (Olea europea L.) at Different Maturity Indices. Agronomy 2021, 11, 122. [Google Scholar] [CrossRef]
- Garcia, B.; Magalhães, J.; Fregapane, G.; Salvador, M.D.; Paiva-Martins, F. Potential of Selected Portuguese Cultivars for the Production of High Quality Monovarietal Virgin Olive Oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1070–1082. [Google Scholar] [CrossRef]
- Salvador, M.D.; Aranda, F.; Gómez-Alonso, S.; Fregapane, G. Quality Characteristics of Cornicabra Virgin Olive Oil. Res. Adv. Oil Chem. 2000, 1, 31–39. [Google Scholar]
- Tsimidou, M.Z.; Nenadis, N.; Servili, M.; García Gonzáles, D.L.; Toschi, T.G. Why Tyrosol Derivatives Have to Be Quantified in the Calculation of “ Olive Oil Polyphenols ” Content to Support the Health Claim Provisioned in the EC Reg. 432/2012. Eur. J. Lipid Sci. Technol. 2018, 120, 1800098. [Google Scholar] [CrossRef] [Green Version]
Samples | Storage Time (months) | SFA | UFA | C18:1 | C18:1/C18:2 | MUFA/PUFA | Samples | Storage Time (months) | SFA | UFA | C18:1 | C18:1/C18:2 | MUFA/PUFA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 15.5 | 84.5 | 74.8 | 9.7 | 9.2 | 7 | 0 | 16.0 | 84.0 | 74.5 | 10.4 | 9.7 |
6 | 15.1 | 84.9 | 75.1 | 9.8 | 9.3 | 6 | 15.6 | 84.4 | 75.0 | 10.6 | 9.8 | ||
12 | 15.1 | 84.9 | 75.1 | 9.9 | 9.3 | 12 | 15.6 | 84.4 | 75.0 | 10.6 | 9.9 | ||
18 | 15.2 | 84.8 | 75.2 | 9.9 | 9.4 | 18 | 15.6 | 84.4 | 75.1 | 10.7 | 9.9 | ||
2 | 0 | 16.0 | 84.0 | 75.0 | 11.1 | 10.2 | 8 | 0 | 16.0 | 84.0 | 74.4 | 10.1 | 9.5 |
6 | 15.4 | 84.6 | 75.0 | 11.4 | 10.5 | 6 | 15.0 | 85.0 | 75.4 | 10.2 | 9.6 | ||
12 | 15.4 | 84.6 | 75.7 | 11.4 | 10.5 | 12 | 15.1 | 84.9 | 75.4 | 10.3 | 9.7 | ||
18 | 15.3 | 84.7 | 75.8 | 11.6 | 10.7 | 18 | 15.1 | 84.9 | 75.4 | 10.4 | 9.7 | ||
3 | 0 | 16.0 | 84.0 | 75.1 | 10.8 | 10.0 | 9 | 0 | 14.8 | 85.2 | 74.9 | 8.9 | 8.6 |
6 | 15.7 | 84.3 | 75.1 | 10.7 | 10.0 | 6 | 14.3 | 85.7 | 75.2 | 8.9 | 8.5 | ||
12 | 15.5 | 84.5 | 75.1 | 11.0 | 10.2 | 12 | 14.3 | 85.7 | 75.1 | 8.9 | 8.5 | ||
18 | 15.7 | 84.3 | 75.4 | 10.8 | 10.0 | 18 | 14.3 | 85.7 | 75.2 | 8.9 | 8.5 | ||
4 | 0 | 16.6 | 83.4 | 74.2 | 11.0 | 10.1 | 10 | 0 | 14.7 | 85.3 | 74.1 | 8.0 | 7.6 |
6 | 16.1 | 83.9 | 74.9 | 11.1 | 10.3 | 6 | 14.3 | 85.7 | 74.2 | 7.8 | 7.5 | ||
12 | 15.9 | 84.1 | 75.1 | 11.2 | 10.3 | 12 | 14.2 | 85.8 | 74.3 | 7.8 | 7.5 | ||
18 | 15.7 | 84.3 | 75.3 | 11.2 | 10.3 | 18 | 14.4 | 85.6 | 74.2 | 7.9 | 7.5 | ||
5 | 0 | 15.6 | 84.4 | 72.3 | 7.2 | 6.8 | 11 | 0 | 16.2 | 83.8 | 75.1 | 11.5 | 10.7 |
6 | 15.1 | 84.9 | 72.9 | 7.3 | 7.0 | 6 | 16.1 | 83.9 | 73.2 | 8.3 | 7.8 | ||
12 | 15.1 | 84.9 | 73.0 | 7.4 | 7.0 | 12 | 15.0 | 85.0 | 76.4 | 11.9 | 11.1 | ||
18 | 15.3 | 84.7 | 72.8 | 7.4 | 7.0 | 18 | 14.9 | 85.1 | 76.4 | 11.8 | 11.0 | ||
6 | 0 | 15.3 | 84.7 | 74.9 | 9.7 | 9.1 | |||||||
6 | 14.5 | 85.5 | 76.1 | 10.1 | 9.5 | ||||||||
12 | 14.3 | 85.7 | 76.1 | 9.5 | 10.1 | ||||||||
18 | 15.1 | 84.9 | 75.1 | 9.7 | 9.1 |
α-Τ mg/kg Oil | |||||||||
---|---|---|---|---|---|---|---|---|---|
Storage Time (months) | |||||||||
Sample | 0 | 6 | 12 | 18 | Sample | 0 | 6 | 12 | 18 |
1 | 189 | 189 | 154 | 149 | 7 | 205 | 205 | 185 | 140 |
2 | 235 | 223 | 185 | 173 | 8 | 204 | 202 | 167 | 160 |
3 | 224 | 217 | 176 | 164 | 9 | 147 | 144 | 114 | 110 |
4 | 263 | 234 | 188 | 177 | 10 | 168 | 151 | 120 | 114 |
5 | 174 | 162 | 127 | 118 | 11 | 189 | 188 | 182 | 133 |
6 | 166 | 160 | 134 | 139 |
Sample | TPP mg/kg * | Total Htyr+Tyr mg/20 g ** | Sample | TPP mg/kg * | Total Htyr + Tyr mg/20 g ** | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Storage Time (months) | |||||||||||
0 | 0 | 6 | 12 | 18 | 0 | 0 | 6 | 12 | 18 | ||
1 | 247 | 5 | 5 | 5 | 5 | 7 | 261 | 7 | 5 | 6 | 6 |
2 | 348 | 8 | 6 | 7 | 5 | 8 | 184 | 4 | 3 | 3 | 3 |
3 | 211 | 3 | 3 | 3 | 3 | 9 | 290 | 6 | 5 | 4 | 4 |
4 | 215 | 4 | 3 | 4 | 3 | 10 | 445 | 8 | 7 | 6 | 6 |
5 | 255 | 8 | 6 | 7 | 7 | 11 | 240 | 9 | 8 | 7 | 7 |
6 | 277 | 7 | 6 | 7 | 7 |
Harvest Year | Harvest Date | ΜΙ | % Oil Yield | C ** | h ** | TChl ** | Acidity * (%oleic acid) | PV * (meqO2/kg) | K232 * | Κ270 * |
---|---|---|---|---|---|---|---|---|---|---|
VOOs produced at laboratory scale | ||||||||||
2017/18 | 15/9 | 0.9 ± 0.0 | 6.9 | 65.4 ± 0.5 | 98.3 ± 0.0 | 50.2 ± 0.1 | 0.22 | 6.3 | 1.83 | 0.13 |
8/10 | 2.0 ± 0.4 | 15.5 | 102.5 ± 2.2 | 94.6 ± 0.1 | 35.2 ± 0.1 | 0.22 | 5.8 | 1.95 | 0.13 | |
15/10 | 2.7 ± 0.5 | 17.1 | 88.4 ± 0.5 | 90.8 ± 0.0 | 16.8 ± 0.1 | 0.23 | 3.3 | 1.43 | 0.09 | |
22/10 | 3.2 ± 0.4 | 19.8 | 92.5 ± 0.7 | 91.4 ± 0.1 | 15.9 ± 0.1 | 0.23 | 6.0 | 1.71 | 0.13 | |
29/10 | 3.3 ± 0.5 | 19.8 | 91.6 ± 0.9 | 91.2 ± 0.1 | 14.8 ± 0.0 | 0.23 | 3.7 | 1.57 | 0.14 | |
16/11 | 3.7 ± 0.4 | 15.2 | 96.2 ± 0.2 | 90.8 ± 0.0 | 3.1 ± 0.0 | 0.28 | 1.6 | 1.36 | 0.10 | |
2018/19 | 15/9 | 0.9 ± 0.1 | 6.6 | 81.1 ± 4.0 | 91.4 ± 0.1 | 38.9 ± 0.1 | 0.34 | 8.5 | 1.56 | 0.09 |
3/10 | 1.3 ± 0.2 | 10.8 | 71.9 ± 0.7 | 90.7 ± 0.1 | 32.8 ± 0.1 | 0.33 | 8.2 | 1.73 | 0.13 | |
8/10 | 1.7 ± 0.6 | 11.4 | 75.7 ± 4.4 | 90.5 ± 0.1 | 32.6 ± 0.1 | 0.32 | 8.6 | 1.63 | 0.12 | |
15/10 | 2.3 ± 0.7 | 11.6 | 77.2 ± 1.6 | 89.4 ± 0.0 | 23.2 ± 0.0 | 0.32 | 10.3 | 1.70 | 0.13 | |
22/10 | 2.4 ± 0.5 | 11.7 | 73.9 ± 7.9 | 89.4 ± 0.2 | 24.8 ± 0.0 | 0.34 | 6.1 | 1.56 | 0.09 | |
2019/20 | 15/9 | 0.8 ± 0.0 | 8.0 | 50.6 ± 1.9 | 98.8 ± 0.3 | 25.9 ± 0.1 | 0.34 | 8.8 | 1.79 | 0.14 |
3/10 | 1.4 ± 0.1 | 8.3 | 54.6 ± 0.7 | 94.6 ± 0.1 | 30.8 ± 0.0 | 0.34 | 8.7 | 1.55 | 0.12 | |
8/10 | 2.1 ± 0.1 | 9.7 | 62.9 ± 0.7 | 91.3 ± 0.1 | 24.7 ± 0.1 | 0.37 | 8.5 | 1.67 | 0.15 | |
15/10 | 3.1 ± 0.3 | 12.7 | 73.2 ± 0.5 | 89.5 ± 0.0 | 9.5 ± 0.0 | 0.34 | 8.3 | 1.81 | 0.16 | |
22/10 | 3.6 ± 0.2 | 13.2 | 62.8 ± 0.4 | 92.1 ± 0.1 | 4.2 ± 0.2 | 0.42 | 8.1 | 1.54 | 0.13 | |
29/10 | 3.8 ± 03 | 14.4 | 67.0 ± 1.9 | 89.2 ± 0.1 | 5.5 ± 0.0 | 0.42 | 6.4 | 1.63 | 0.13 | |
16/11 | 4.0 ± 0.2 | 8.3 | 49.1 ± 0.8 | 89.1 ± 0.0 | 0.74 ± 0.02 | 0.51 | 7.6 | 1.50 | 0.10 | |
2020/21 | 15/9 | 1.0 ± 0.0 | 11.0 | 64.8 ± 5.2 | 92.0 ± 0.8 | 52.07 ± 0.78 | 0.28 | 9.2 | 1.66 | 0.12 |
3/10 | 2.2 ± 0.5 | 14.2 | 67.4 ± 0.7 | 91.3 ± 0.2 | 36.99 ± 0.19 | 0.25 | 10.2 | 1.49 | 0.11 | |
22/10 | 3.3 ± 0.4 | 14.0 | 75.2 ± 1.5 | 88.2 ± 0.3 | 24.22 ± 0.02 | 0.31 | 10.6 | 1.62 | 0.10 | |
29/10 | 3.8 ± 0.3 | 14.0 | 87.5 ± 1.9 | 88.3 ± 0.4 | 7.83 ± 0.02 | 0.36 | 10.0 | 1.49 | 0.11 | |
VOOs produced at industrial scale | ||||||||||
2017/18 Mill17_29/10 | 29/10 | 3.3 ± 0.5 | n.a. | 103.4 ± 06 | 90.2 ± 0.0 | 18.29 ± 0.09 | 0.23 | 8.1 | 1.47 | 0.14 |
2018/19 Mill18_22/10 | 22/10 | 2.4 ± 0.5 | n.a | 85 ± 3.4 | 86.8 ± 0.1 | 17.40 ± 0.01 | 0.73 | 13.4 | 1.77 | 0.11 |
2019/20 Mill19_16/11 | 16/11 | 4.1 ± 0.2 | n.a | 59.8 ± 0.6 | 86.8 ± 0.1 | 5.74 ± 0.04 | 0.53 | 8.2 | 1.54 | 0.11 |
2020/21 Mill20_29/10 | 29/10 | 3.8 ± 0.3 | n.a | 95.7 ± 0.2 | 84.8 ± 0.2 | 11.46 ± 0.22 | 0.62 | 14.0 | 1.70 | 0.13 |
% Fatty Acid Methyl Ester Composition * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Harvest Year | Harvest Date | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C18:1/C18:2 | MUFA/PUFA |
VOOs produced at laboratory scale | ||||||||||
2017/18 | 15/9 | 13.4 | 1.3 | 1.7 | 74.9 | 7.0 | 0.7 | 0.4 | 10.7 | 9.9 |
8/10 | 12.6‘ | 1.2 | 2.0 | 73.1 | 9.4 | 0.6 | 0.3 | 7.8 | 7.4 | |
15/10 | 12.9 | 1.2 | 2.0 | 71.8 | 10.4 | 0.7 | 0.3 | 6.9 | 6.6 | |
22/10 | 12.0 | 1.1 | 2.2 | 72.7 | 10.6 | 0.6 | 0.3 | 6.9 | 6.6 | |
29/10 | 11.9 | 1.0 | 3.1 | 71.7 | 10.8 | 0.6 | 0.3 | 6.6 | 6.4 | |
16/11 | 12.0 | 1.0 | 2.7 | 70.0 | 12.6 | 0.6 | 0.3 | 5.6 | 5.4 | |
2018/19 | 15/9 | 13.2 | 1.2 | 1.8 | 74.6 | 7.3 | 0.8 | 0.4 | 10.2 | 9.5 |
3/10 | 13.1 | 1.3 | 1.9 | 73.5 | 8.7 | 0.7 | 0.3 | 8.4 | 8.0 | |
8/10 | 12.2 | 1.0 | 2.0 | 74.4 | 8.4 | 0.7 | 0.5 | 8.9 | 8.4 | |
15/10 | 12.5 | 1.0 | 2.1 | 73.0 | 9.5 | 0.7 | 0.4 | 7.6 | 7.3 | |
22/10 | 12.9 | 1.1 | 2.0 | 72.8 | 9.4 | 0.7 | 0.4 | 7.7 | 7.3 | |
2019/20 | 15/9 | 13.1 | 0.9 | 1.9 | 74.5 | 8.0 | 0.7 | 0.3 | 9.3 | 8.8 |
3/10 | 13.1 | 1.0 | 1.8 | 73.4 | 9.1 | 0.6 | 0.4 | 8.1 | 7.7 | |
8/10 | 13.1 | 1.1 | 1.9 | 72.6 | 9.8 | 0.6 | 0.3 | 7.4 | 7.1 | |
15/10 | 13.1 | 1.0 | 2.1 | 71.1 | 11.0 | 0.7 | 0.5 | 6.5 | 6.2 | |
22/10 | 13.2 | 0.9 | 2.3 | 70.6 | 11.5 | 0.7 | 0.3 | 6.2 | 5.9 | |
29/10 | 12.5 | 0.8 | 2.0 | 74.8 | 9.6 | 0.6 | 0.3 | 7,8 | 7.4 | |
16/11 | 12.7 | 1.0 | 2.7 | 70.9 | 10.8 | 0.5 | 0.3 | 6.5 | 6.3 | |
2020/21 | 15/9 | 13.7 | 1.0 | 1.8 | 73.3 | 8.6 | 0.7 | 0.3 | 8.6 | 8.1 |
3/10 | 13.2 | 0.9 | 2.1 | 71.9 | 10.4 | 0.6 | 0.4 | 6,9 | 6.6 | |
22/10 | 12.5 | 0.8 | 1.6 | 77.1 | 6.1 | 0.7 | 0.4 | 12.6 | 11.4 | |
29/10 | 13.5 | 0.8 | 2.4 | 68.3 | 13.6 | 0.6 | 0.4 | 5.0 | 4.9 | |
VOOs produced at industrial scale | ||||||||||
2017/18 Mill17_29/10 | 29/10 | 11.7 | 0.9 | 2.3 | 74.1 | 9.3 | 0.6 | 0.4 | 8.0 | 7.6 |
2018/19 Mill18_22/10 | 22/10 | 13.3 | 1.3 | 1.7 | 73.6 | 8.5 | 0.7 | 0.3 | 8.6 | 8.2 |
2019/20 Mill19_16/11 | 16/11 | 12.1 | 1.1 | 2.3 | 74.9 | 8.2 | 0.6 | 0.3 | 9.1 | 8.6 |
2020/21 Mill20_29/10 | 29/10 | 12.7 | 0.8 | 2.6 | 69.8 | 12.5 | 0.7 | 0.3 | 5.6 | 5.4 |
α-Τ mg/kg | ||||
---|---|---|---|---|
Harvest Date | 2017/18 | 2018/19 | 2019/20 | 2020/21 |
VOOs produced at laboratory scale | ||||
15/9 | 219 | 236 | 170 | 176 |
3/10 | - | 203 | 190 | 177 |
8/10 | 197 | 210 | 185 | - |
15/10 | 173 | 195 | 135 | 192 |
22/10 | 171 | 199 | 135 | - |
29/10 | 179 | - | 132 | 153 |
16/11 | 177 | - | 122 | - |
VOOs produced at industrial scale | ||||
22/10 | - | 217 | - | - |
29/10 | 215 | - | - | 185 |
16/11 | - | - | 119 | - |
Harvest Date | 2017/18 | 2018/19 | 2019/20 | 2020/21 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TPPC * mg/kg | Total Htyr + Tyr mg/20 g | Htyr/Tyr | TPPC * mg/kg | Total Htyr + Tyr mg/20 g | Htyr/ Tyr | TPPC * mg/kg | Total Htyr + Tyr mg/20 g | Htyr/ Tyr | TPPC * mg/kg | Total Htyr + Tyr mg/20 g | Htyr/ Tyr | |
VOOs produced at laboratory scale | ||||||||||||
15/9 | 676 ± 49 | 24 | 0.44 | 372 ± 7 | 13 | 0.60 | 508 ± 11 | 12 | 0.70 | 463 ± 40 | 14 | 0.48 |
3/10 | - | - | 491 ± 10 | 20 | 0.66 | 819 ± 15 | 19 | 0.65 | 415 ± 9 | 12 | 0.54 | |
8/10 | 673 ± 28 | 26 | 0.46 | 495 ± 26 | 17 | 0.82 | 916 ± 34 | 21 | 0.50 | - | - | |
15/10 | 311 ± 11 | 13 | 0.31 | 515 ± 8 | 9 | 0.54 | 881 ± 10 | 19 | 0.47 | 371 ± 2 | 12 | 0.58 |
22/10 | 437 ± 11 | 15 | 0.51 | 440 ± 20 | 10 | 0.48 | 697 ± 31 | 20 | 0.43 | - | - | |
29/10 | 273 ± 6 | 15 | 0.52 | - | - | 798 ± 58 | 19 | 0.97 | 430 ± 5 | 11 | 0.91 | |
16/11 | 198 ± 9 | 8 | 0.97 | - | - | 794 ± 7 | 12 | 0.48 | - | - | ||
VOOs produced at industrial scale | ||||||||||||
22/10- | - | - | 218 ± 4 | 5 | 0.45 | - | - | - | - | |||
29/10 | 237 ± 12 | 13 | 0.38 | - | - | - | - | 271 ± 3 | 8 | |||
16/11 | - | - | - | - | 370 ± 5 | 8 | 0.70 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastralexi, A.; Tsimidou, M.Z. The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation. Molecules 2021, 26, 3184. https://doi.org/10.3390/molecules26113184
Mastralexi A, Tsimidou MZ. The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation. Molecules. 2021; 26(11):3184. https://doi.org/10.3390/molecules26113184
Chicago/Turabian StyleMastralexi, Aspasia, and Maria Z. Tsimidou. 2021. "The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation" Molecules 26, no. 11: 3184. https://doi.org/10.3390/molecules26113184
APA StyleMastralexi, A., & Tsimidou, M. Z. (2021). The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation. Molecules, 26(11), 3184. https://doi.org/10.3390/molecules26113184