TiO2 Decorated Low-Molecular Chitosan a Microsized Adsorbent for a 68Ge/68Ga Generator System
Abstract
:1. Introduction
2. Results
2.1. Preparation and Characterization of LC-TiO2
2.2. Acid Resistance
2.3. Distribution Coefficient
2.4. Column Study
2.5. Radiolabeling and In Vivo Evaluation
3. Discussion
4. Materials and Methods
4.1. General
4.2. Preparation and Characterization of Chitosan-TiO2 Adsorbent
4.3. Acid Resistance Study
4.4. Distribution Coefficients (Kd)
4.5. Column Study
4.6. 68Ga Elution Profile and 68Ge Breakthrough
4.7. Equilibrium Time of 68Ge/68Ga
4.8. Radiolabeling and In Vivo Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bé, M.M.; Schönfeld, E. Table de Radionucléide. 2012. Available online: http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed on 9 April 2021).
- Sanchez-Crespo, A. Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl. Radiat. Isot. 2013, 76, 55–62. [Google Scholar] [CrossRef]
- Banerjee, S.R.; Pomper, M.G. Clinical applications of Gallium-68. Appl. Radiat. Isot. 2013, 76, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fani, M.; Andre, J.P.; Maecke, H.R. 68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol. Imaging 2008, 3, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Velikyan, I. 68Ga-based radiopharmaceuticals: Production and application relationship. Molecules 2015, 20, 12913–12943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauwels, E.; Cleeren, F.; Bormans, G.; Deroose, C.M. Somatostatin receptor PET ligands-the next generation for clinical practice. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 311. [Google Scholar] [PubMed]
- Ray Banerjee, S.; Chen, Z.; Pullambhatla, M.; Lisok, A.; Chen, J.; Mease, R.C.; Pomper, M.G. Preclinical comparative study of 68Ga-labeled DOTA, NOTA, and HBED-CC chelated radiotracers for targeting PSMA. Bioconjug. Chem. 2016, 27, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Tsionou, M.I.; Knapp, C.E.; Foley, C.A.; Munteanu, C.R.; Cakebread, A.; Imberti, C.; Eykyn, T.R.; Young, J.D.; Paterson, B.M.; Blower, P.J. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017, 7, 49586–49599. [Google Scholar] [CrossRef] [Green Version]
- Rösch, F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2013, 76, 24–30. [Google Scholar] [CrossRef]
- Chakravarty, R.; Chakraborty, S.; Ram, R.; Vatsa, R.; Bhusari, P.; Shukla, J.; Mittal, B.; Dash, A. Detailed evaluation of different 68Ge/68Ga generators: An attempt toward achieving efficient 68Ga radiopharmacy. J. Label. Compd. Radiopharm. 2016, 59, 87–94. [Google Scholar] [CrossRef]
- Kumar, K.Y.; Muralidhara, H.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 2013, 246, 125–136. [Google Scholar] [CrossRef]
- Mironyuk, I.; Tatarchuk, T.; Vasylyeva, H.; Naushad, M.; Mykytyn, I. Adsorption of Sr (II) cations onto phosphated mesoporous titanium dioxide: Mechanism, isotherm and kinetics studies. J. Environ. Chem. Eng. 2019, 7, 103430. [Google Scholar] [CrossRef]
- Mainier, F.B.; Monteiro, L.P.; Tavares, S.S.; Leta, F.R.; Pardal, J.M. Evaluation of titanium in hydrochloric acid solutions containing corrosion inhibitors. IOSR J. Mech. Civ. Eng. 2003, 10, 66–69. [Google Scholar] [CrossRef]
- de Blois, E.; Chan, H.S.; Naidoo, C.; Prince, D.; Krenning, E.P.; Breeman, W.A. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl. Radiat. Isot. 2011, 69, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Egamediev, S.; Khujaev, S.; Mamatkazina, A. Influence of preliminary treatment of aluminum oxide on the separation of 68Ge-68Ga radionuclide chain. J. Radioanal. Nucl. Chem. 2000, 246, 593–596. [Google Scholar] [CrossRef]
- Lin, M.; Ranganathan, D.; Mori, T.; Hagooly, A.; Rossin, R.; Welch, M.J.; Lapi, S.E. Long-term evaluation of TiO2-based 68Ge/68Ga generators and optimized automation of [68Ga] DOTATOC radiosynthesis. Appl. Radiat. Isot. 2012, 70, 2539–2544. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; Ruvalcaba-Gómez, J.M.; Maytorena-Verdugo, C.I.; González-Silva, N.; Romero-Toledo, R.; Aguilera-Aguirre, S.; Pérez-Larios, A. Chitosan-TiO2: A Versatile Hybrid Composite. Materials 2020, 13, 811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deveci, I.; Doğaç, Y.I.; Teke, M.; Mercimek, B. Synthesis and characterization of chitosan/TiO2 composite beads for improving stability of porcine pancreatic lipase. Appl. Biochem. Biotechnol. 2015, 175, 1052–1068. [Google Scholar] [CrossRef]
- Jiang, R.; Zhu, H.-Y.; Chen, H.-H.; Yao, J.; Fu, Y.-Q.; Zhang, Z.-Y.; Xu, Y.-M. Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly (vinyl alcohol) hydrogel beads as a template. Appl. Surf. Sci. 2014, 319, 189–196. [Google Scholar] [CrossRef]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef] [Green Version]
- Franca, E.F.; Freitas, L.C.; Lins, R.D. Chitosan molecular structure as a function of N-acetylation. Biopolymers 2011, 95, 448–460. [Google Scholar] [CrossRef]
- Rashid, S.; Shen, C.; Yang, J.; Liu, J.; Li, J. Preparation and properties of chitosan–metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution. J. Environ. Sci. 2018, 66, 301–309. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2020, 251, 117000. [Google Scholar] [CrossRef] [PubMed]
- Vyas, C.K.; Lee, J.Y.; Hur, M.G.; Yang, S.D.; Kong, Y.B.; Lee, E.J.; Park, J.H. Chitosan-TiO2 composite: A potential 68Ge/68Ga generator column material. Appl. Radiat. Isot. 2019, 149, 206–213. [Google Scholar] [CrossRef]
- Luong, H.T.; Liu, J. Flotation separation of gallium from aqueous solution–effects of chemical speciation and solubility. Sep. Purif. Technol. 2014, 132, 115–119. [Google Scholar] [CrossRef]
- Bacsa, R.R.; Grätzel, M. Rutile formation in hydrothermally crystallized nanosized titania. J. Am. Ceram. Soc. 1996, 79, 2185–2188. [Google Scholar] [CrossRef]
Elements | Measured Conc. | Blank Conc. |
---|---|---|
Sc | 0.37 ± 0.016 | 0.43 ± 0.010 |
Ti | 4.05 ± 0.004 | 0.13 ± 0.003 |
V | 0.41 ± 0.008 | 0.42 ± 0.004 |
Cr | 0.95 ± 0.040 | 0.92 ± 0.006 |
Mn | 0.21 ± 0.001 | 0.15 ± 0.001 |
Zn | 12.0 ± 0.041 | 4.82 ± 0.010 |
Ru | 0.14 ± 0.001 | 0.14 ± 0.001 |
Rh | N.A. | N.A. |
Pd | 0.31 ± 0.001 | 0.33 ± 0.001 |
Ag | N.A. | N.A. |
Cd | 0.19 ± 0.000 | 0.19 ± 0.001 |
Parameter | Previous Work [23] | This Work |
---|---|---|
Separation factor | 1145 | 5439 |
Loaded activity (68Ge) | 185 kBq | 69 MBq |
Eluent | 0.01 M HCl | 0.05 M HCl |
68Ga elution yield (5 mL·min−1) | 93.1% | 93.2% |
68Ga elution yield (gravity) | n/a | 92% |
Fraction volume | 1.5 mL | 1.0 mL |
68Ge breakthrough (5 mL·min−1) | 2.3 × 10−4 | 1.6 × 10−4 |
68Ge breakthrough (gravity) | n/a | 3.1 × 10−4 |
Metallic impurities | <100 ppb | <10 ppb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; Choi, P.-S.; Yang, S.-D.; Park, J.-H. TiO2 Decorated Low-Molecular Chitosan a Microsized Adsorbent for a 68Ge/68Ga Generator System. Molecules 2021, 26, 3185. https://doi.org/10.3390/molecules26113185
Lee J-Y, Choi P-S, Yang S-D, Park J-H. TiO2 Decorated Low-Molecular Chitosan a Microsized Adsorbent for a 68Ge/68Ga Generator System. Molecules. 2021; 26(11):3185. https://doi.org/10.3390/molecules26113185
Chicago/Turabian StyleLee, Jun-Young, Pyeong-Seok Choi, Seung-Dae Yang, and Jeong-Hoon Park. 2021. "TiO2 Decorated Low-Molecular Chitosan a Microsized Adsorbent for a 68Ge/68Ga Generator System" Molecules 26, no. 11: 3185. https://doi.org/10.3390/molecules26113185
APA StyleLee, J. -Y., Choi, P. -S., Yang, S. -D., & Park, J. -H. (2021). TiO2 Decorated Low-Molecular Chitosan a Microsized Adsorbent for a 68Ge/68Ga Generator System. Molecules, 26(11), 3185. https://doi.org/10.3390/molecules26113185