Effects of Charge Compensation on Colossal Permittivity and Electrical Properties of Grain Boundary of CaCu3Ti4O12 Ceramics Substituted by Al3+ and Ta5+/Nb5+
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hu, W.; Liu, Y.; Withers, R.L.; Frankcombe, T.J.; Norén, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H.; et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821–826. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Kidkhunthod, P.; Chanlek, N.; Thongbai, P. (Al3+, Nb5+) co–doped CaCu3Ti4O12: An extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity. J. Eur. Ceram. Soc. 2018, 38, 137–143. [Google Scholar] [CrossRef]
- Ren, P.; He, J.; Wang, X.; Sun, M.; Zhang, H.; Zhao, G. Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2. Scr. Mater. 2018, 146, 110–114. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Zhou, X.; Zhu, J.; Lei, X.; Liang, P.; Chao, X.; Yang, Z. Grain engineering inducing high energy storage in CdCu3Ti4O12 ceramics. Ceram. Int. 2020, 46, 14425–14430. [Google Scholar] [CrossRef]
- Peng, Z.; Zhou, X.; Wang, J.; Zhu, J.; Liang, P.; Chao, X.; Yang, Z. Origin of colossal permittivity and low dielectric loss in Na1/3Cd1/3Y1/3Cu3Ti4O12 ceramics. Ceram. Int. 2020, 46, 11154–11159. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, P.; Zhu, J.; Peng, Z.; Chao, X.; Yang, Z. Enhanced dielectric performance of (Ag1/4Nb3/4)0.01Ti0.99O2 ceramic prepared by a wet-chemistry method. Ceram. Int. 2020, 46, 11921–11925. [Google Scholar] [CrossRef]
- Jumpatam, J.; Putasaeng, B.; Chanlek, N.; Thongbai, P. Influences of Sr2+ Doping on Microstructure, Giant Dielectric Behavior, and Non-Ohmic Properties of CaCu3Ti4O12/CaTiO3 Ceramic Composites. Molecules 2021, 26, 1994. [Google Scholar] [CrossRef] [PubMed]
- Boonlakhorn, J.; Putasaeng, B.; Kidkhunthod, P.; Manyam, J.; Krongsuk, S.; Srepusharawoot, P.; Thongbai, P. First-principles calculations and experimental study of enhanced nonlinear and dielectric properties of Sn4+-doped CaCu2.95Mg0.05Ti4O12 ceramics. J. Eur. Ceram. Soc. 2021, 41, 5176–5183. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Chanlek, N.; Manyam, J.; Krongsuk, S.; Srepusharawoot, P.; Thongbai, P. Ge4+ doped CaCu2.95Zn0.05Ti4O12 ceramics: Two-step reduction of loss tangent. Ceram. Int. 2021, 47, 17099–17108. [Google Scholar] [CrossRef]
- Cotrim, G.; Cortés, J.A.; Moreno, H.; Freitas, S.M.; Rezende, M.V.S.; Hein, L.R.O.; Ramírez, M.A. Tunable capacitor-varistor response of CaCu3Ti4O12/CaTiO3 ceramic composites with SnO2 addition. Mater. Charact. 2020, 170, 110699. [Google Scholar] [CrossRef]
- Mao, P.; Wang, J.; Xiao, P.; Zhang, L.; Kang, F.; Gong, H. Colossal dielectric response and relaxation behavior in novel system of Zr4+ and Nb5+ co-substituted CaCu3Ti4O12 ceramics. Ceram. Int. 2021, 47, 111–120. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Li, D.; Duan, N.; Reisner, B.A.; Sleight, A.W. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. J. Solid State Chem. 2000, 151, 323–325. [Google Scholar] [CrossRef]
- Siddique, M.N.; Ahmed, A.; Tripathi, P. Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloys Compd. 2018, 735, 516–529. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Li, Y.; Liu, Y. Colossal permittivity and dielectric relaxation of (Li, In) Co-doped ZnO ceramics. J. Alloys Compd. 2017, 698, 200–206. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Zhang, X.; Qi, X.; Liu, Z.; Zhang, L.; Zhang, Y.; Wang, Y.; Sui, Y.; Song, B. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature. Appl. Phys. Lett. 2016, 109, 142903. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Kim, I.-D.; Kang, S.-J.L. Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 2004, 3, 774–778. [Google Scholar] [CrossRef]
- Choi, S.W.; Hong, S.H.; Kim, Y.M. Effect of Al Doping on the Electric and Dielectric Properties of CaCu3Ti4O12. J. Am. Ceram. Soc. 2007, 90, 4009–4011. [Google Scholar] [CrossRef]
- Hong, S.-H.; Kim, D.-Y.; Park, H.-M.; Kim, Y.-M. Electric and Dielectric Properties of Nb-Doped CaCu3Ti4O12 Ceramics. J. Am. Ceram. Soc. 2007, 90, 2118–2121. [Google Scholar] [CrossRef]
- Thongbai, P.; Jumpatam, J.; Yamwong, T.; Maensiri, S. Effects of Ta5+ doping on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 2012, 32, 2423–2430. [Google Scholar] [CrossRef]
- Espinoza-González, R.; Mosquera, E. Influence of micro- and nanoparticles of zirconium oxides on the dielectric properties of CaCu3Ti4O12. Ceram. Int. 2017, 43, 14659–14665. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Verma, M.K.; Singh, S.; Pandey, S.; Rai, V.S.; Prajapati, D.; Das, T.; Singh, N.B.; Mandal, K.D. Investigation of dielectric and electrochemical behavior of CaCu3−xMnxTi4O12 (x = 0, 1) ceramic synthesized through semi-wet route. Mater. Chem. Phys. 2020, 245, 122804. [Google Scholar] [CrossRef]
- Lin, H.; Xu, W.; Zhang, H.; Chen, C.; Zhou, Y.; Yi, Z. Origin of high dielectric performance in fine grain-sized CaCu3Ti4O12 materials. J. Eur. Ceram. Soc. 2020, 40, 1957–1966. [Google Scholar] [CrossRef]
- Moreno, H.; Cortés, J.A.; Praxedes, F.M.; Freitas, S.M.; Rezende, M.V.S.; Simões, A.Z.; Teixeira, V.C.; Ramirez, M.A. Tunable photoluminescence of CaCu3Ti4O12 based ceramics modified with tungsten. J. Alloys Compd. 2021, 850, 156652. [Google Scholar] [CrossRef]
- Li, T.; Sun, Y.; Dai, H.Y.; Liu, D.W.; Chen, J.; Xue, R.Z.; Chen, Z.Q. Influence of spark plasma sintering temperature on the microstructures, dielectric and I–V properties of CaCu3Ti4O12 ceramics. J. Alloys Compd. 2020, 829, 154595. [Google Scholar] [CrossRef]
- Peng, Z.; Liang, P.; Wang, X.; Peng, H.; Chen, X.; Yang, Z.; Chao, X. Fabrication and characterization of CdCu3Ti4O12 ceramics with colossal permittivity and low dielectric loss. Mater. Lett. 2018, 210, 301–304. [Google Scholar] [CrossRef]
- Jumpatam, J.; Somphan, W.; Boonlakhorn, J.; Putasaeng, B.; Kidkhunthod, P.; Thongbai, P.; Maensiri, S. Non-Ohmic Properties and Electrical Responses of Grains and Grain Boundaries of Na1/2Y1/2Cu3Ti4O12 Ceramics. J. Am. Ceram. Soc. 2017, 100, 157–166. [Google Scholar] [CrossRef]
- Sinclair, D.C.; Adams, T.B.; Morrison, F.D.; West, A.R. CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 2002, 80, 2153. [Google Scholar] [CrossRef]
- Ni, L.; Chen, X.M. Enhanced giant dielectric response in Mg-substituted CaCu3Ti4O12 ceramics. Solid State Commun. 2009, 149, 379–383. [Google Scholar] [CrossRef]
- Sarkar, S.; Chaudhuri, B.K.; Yang, H.D. Nanostripe domains in CaCu[sub 3]Ti[sub 4]O[sub 12]: Its origin and influences on high permittivity response. J. Appl. Phys. 2010, 108, 014114. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, H.; Lai, Y.; Li, J. The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics. Appl. Phys. A 2017, 123, 317. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, R.; Wang, Z.; Cao, E.; Zhang, Y.; Ju, L. Microstructure and enhanced dielectric response in Mg doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 2016, 663, 345–350. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, R.; Wang, Z.; Cao, E.; Zhang, Y.; Ju, L. Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics. RSC Adv. 2016, 6, 55984–55989. [Google Scholar] [CrossRef]
- Xu, Z.; Qiang, H.; Chen, Y.; Chen, Z. Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 2017, 191, 1–5. [Google Scholar] [CrossRef]
- Dong, W.; Hu, W.; Berlie, A.; Lau, K.; Chen, H.; Withers, R.L.; Liu, Y. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2. ACS Appl. Mater. Interfaces 2015, 7, 25321–25325. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lau, K.; Liu, Y.; Withers, R.L.; Chen, H.; Fu, L.; Gong, B.; Hutchison, W. Colossal Dielectric Permittivity in (Nb+Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure. Chem. Mater. 2015, 27, 4934–4942. [Google Scholar] [CrossRef]
- Tuichai, W.; Danwittayakul, S.; Chanlek, N.; Thongbai, P.; Maensiri, S. High-performance giant-dielectric properties of rutile TiO2 co-doped with acceptor-Sc3+ and donor-Nb5+ ions. J. Alloys Compd. 2017, 703, 139–147. [Google Scholar] [CrossRef]
- Tuichai, W.; Thongyong, N.; Danwittayakul, S.; Chanlek, N.; Srepusharawoot, P.; Thongbai, P.; Maensiri, S. Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 2017, 123 (Suppl. C), 15–23. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Chanlek, N.; Thongbai, P.; Srepusharawoot, P. Strongly Enhanced Dielectric Response and Structural Investigation of (Sr2+, Ge4+) Co-Doped CCTO Ceramics. J. Phys. Chem. C 2020, 124, 20682–20692. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Takagi, T. Grain-Boundary Chemistry of Barium Titanate and Strontium Titanate: I, High-Temperature Equilibrium Space Charge. J. Am. Ceram. Soc. 1990, 73, 3278–3285. [Google Scholar] [CrossRef]
- Schmidt, R.; Stennett, M.C.; Hyatt, N.C.; Pokorny, J.; Prado-Gonjal, J.; Li, M.; Sinclair, D.C. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 2012, 32, 3313–3323. [Google Scholar] [CrossRef]
- Ni, L.; Chen, X.M. Enhancement of Giant Dielectric Response in CaCu3Ti4O12 Ceramics by Zn Substitution. J. Am. Ceram. Soc. 2010, 93, 184–189. [Google Scholar] [CrossRef]
- Singh, L.; Rai, U.S.; Mandal, K.D. Dielectric properties of zinc doped nanocrystalline calcium copper titanate synthesized by different approach. Mater. Res. Bull. 2013, 48, 2117–2122. [Google Scholar] [CrossRef]
- Adams, T.; Sinclair, D.; West, A. Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 2006, 73, 094124. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Choi, J.-H.; Choi, J.-K. Tunable current-voltage characteristics in polycrystalline calcium copper titanate. Appl. Phys. Lett. 2007, 91, 091912. [Google Scholar] [CrossRef]
Sample | CCTO | NbTaAl025 | NbTaAl05 |
---|---|---|---|
a (Å) | 7.394 | 7.393 | 7.393 |
Rexp (%) | 5.323 | 5.309 | 5.406 |
Rp (%) | 4.200 | 3.758 | 4.473 |
Rwt (%) | 6.703 | 5.601 | 7.355 |
GOF | 1.586 | 1.113 | 1.851 |
G (μm) | 96.5 ± 25.8 | 61.2 ± 13.6 | 80.7 ± 22.4 |
Sample | ε′ | tanδ | Rg (Ω.cm) | Rgb (Ω.cm) | Eg (eV) | Egb (eV) | Eb (V/cm) | α |
---|---|---|---|---|---|---|---|---|
CCTO | 7.87 × 104 | 0.227 | 35 | 6.52 × 103 | 0.080 | 0.510 | 52 | 2.13 |
NbTaAl025 | 2.52 × 104 | 0.042 | 63 | 1.86 × 105 | 0.096 | 0.655 | 499 | 5.21 |
NbTaAl05 | 2.86 × 104 | 0.017 | 65 | 3.74 × 105 | 0.104 | 0.634 | 381 | 5.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonlakhorn, J.; Manyam, J.; Srepusharawoot, P.; Krongsuk, S.; Thongbai, P. Effects of Charge Compensation on Colossal Permittivity and Electrical Properties of Grain Boundary of CaCu3Ti4O12 Ceramics Substituted by Al3+ and Ta5+/Nb5+. Molecules 2021, 26, 3294. https://doi.org/10.3390/molecules26113294
Boonlakhorn J, Manyam J, Srepusharawoot P, Krongsuk S, Thongbai P. Effects of Charge Compensation on Colossal Permittivity and Electrical Properties of Grain Boundary of CaCu3Ti4O12 Ceramics Substituted by Al3+ and Ta5+/Nb5+. Molecules. 2021; 26(11):3294. https://doi.org/10.3390/molecules26113294
Chicago/Turabian StyleBoonlakhorn, Jakkree, Jedsada Manyam, Pornjuk Srepusharawoot, Sriprajak Krongsuk, and Prasit Thongbai. 2021. "Effects of Charge Compensation on Colossal Permittivity and Electrical Properties of Grain Boundary of CaCu3Ti4O12 Ceramics Substituted by Al3+ and Ta5+/Nb5+" Molecules 26, no. 11: 3294. https://doi.org/10.3390/molecules26113294
APA StyleBoonlakhorn, J., Manyam, J., Srepusharawoot, P., Krongsuk, S., & Thongbai, P. (2021). Effects of Charge Compensation on Colossal Permittivity and Electrical Properties of Grain Boundary of CaCu3Ti4O12 Ceramics Substituted by Al3+ and Ta5+/Nb5+. Molecules, 26(11), 3294. https://doi.org/10.3390/molecules26113294