Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
Synthesis of Aminated Tetracyclic Thioxanthenes
2.2. Biological Activity
Antitumor Activity
2.3. Fluorescence
2.4. Fluorescence Microscopy and Flow Cytometry Analysis
2.5. X-ray Crystallography
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Aminated Tetracyclic Thioxanthenes
Synthesis of 6-Propoxythiochromeno[4,3,2-de]quinazolin-2-amine (11)
Synthesis of 6-Propoxythiochromeno[4,3,2-de]quinazoline (12)
Synthesis of N-(2-Chlorobenzyl)-6-propoxythiochromeno[4,3,2-de]quinazolin-2-amine (13)
Synthesis of (E)-6-Propoxy-N,3-di-o-tolylthiochromeno[4,3,2-de]quinazolin-2(3H)-imine (14)
3.2. Biological Activity
Antitumor Activity
3.3. Photophysical Studies
3.4. Fluorescence Microscopy and Flow Cytometry Analysis
3.5. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paiva, A.M.; Pinto, M.M.; Sousa, E. A century of thioxanthones: Through synthesis and biological applications. Curr. Med. Chem. 2013, 20, 2438–2457. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem. 2005, 12, 2413–2446. [Google Scholar] [CrossRef]
- Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486–508. [Google Scholar] [CrossRef] [PubMed]
- Meanwell, N.A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529–2591. [Google Scholar] [CrossRef]
- Bessa, L.J.; Palmeira, A.; Gomes, A.S.; Vasconcelos, V.; Sousa, E.; Pinto, M.; Martins da Costa, P. Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus. Microb. Drug Resist. 2015, 21, 404–415. [Google Scholar] [CrossRef]
- Urbatzka, R.; Freitas, S.; Palmeira, A.; Almeida, T.; Moreira, J.; Azevedo, C.; Afonso, C.; Correia-da-Silva, M.; Sousa, E.; Pinto, M.; et al. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. Eur. J. Med. Chem. 2018, 151, 272–284. [Google Scholar] [CrossRef]
- Palmeira, A.; Vasconcelos, M.H.; Paiva, A.; Fernandes, M.X.; Pinto, M.; Sousa, E. Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. BioChem. Pharmacol. 2012, 83, 57–68. [Google Scholar] [CrossRef]
- Mokhtari Brikci-Nigassa, N.; Nauton, L.; Moreau, P.; Mongin, O.; Duval, R.E.; Picot, L.; Thiéry, V.; Souab, M.; Baratte, B.; Ruchaud, S.; et al. Functionalization of 9-thioxanthone at the 1-position: From arylamino derivatives to [1]benzo(thio)pyrano[4,3,2-de]benzothieno[2,3-b]quinolines of biological interest. Bioorg. Chem. 2020, 94, 103347. [Google Scholar] [CrossRef]
- Chen, C.-L.; Chen, T.-C.; Lee, C.-C.; Shih, L.-C.; Lin, C.-Y.; Hsieh, Y.-Y.; Ali, A.A.A.; Huang, H.-S. Synthesis and evaluation of new 3-substituted-4-chloro-thioxanthone derivatives as potent anti-breast cancer agents. Arab J. Chem. 2019, 12, 3503–3516. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.T.; Sousa, D.; Gomes, A.S.; Mendes, N.; Matthiesen, R.; Pedro, M.; Marques, F.; Pinto, M.M.; Sousa, E.; Vasconcelos, M.H. The Antitumor Activity of a Lead Thioxanthone is Associated with Alterations in Cholesterol Localization. Molecules 2018, 23, 3301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breloy, L.; Losantos, R.; Sampedro, D.; Marazzi, M.; Malval, J.-P.; Heo, Y.; Akimoto, J.; Ito, Y.; Brezová, V.; Versace, D.-L. Allyl amino-thioxanthone derivatives as highly efficient visible light H-donors and co-polymerizable photoinitiators. Polym. Chem. 2020, 11, 4297–4312. [Google Scholar] [CrossRef]
- Metin, E.; Arsu, N.; Catak, S.; Aviyente, V. Photophysical, kinetic and thermodynamic study of one-component Type II thioxanthone acetic acid photoinitiators. Eur. Polym. J. 2020, 136, 109909. [Google Scholar] [CrossRef]
- Batibay, G.S.; Gunkara, O.T.; Ocal, N.; Arsu, N. Thioxanthone attached polyhedral oligomeric silsesquioxane (POSS) nano-photoinitiator for preparation of PMMA hybrid networks in air atmosphere. Prog. Org. Coat. 2020, 149, 105939. [Google Scholar] [CrossRef]
- Hassan, S.I.; Haque, A.; Jeilani, Y.A.; Ilmi, R.; Faizi, M.S.H.; Khan, I.; Mushtaque, M. Thioxanthone-based organic probe with aggregation enhanced emission and exceptional mineral acids sensing abilities. J. Mol. Struct. 2021, 1224, 129004. [Google Scholar] [CrossRef]
- Archer, S.; Suter, C.M. The Preparation of Some 1-Alkylamino- and Dialkylaminoalkylaminothiaxanthones1. J. Am. Chem. Soc. 1952, 74, 4296–4309. [Google Scholar] [CrossRef]
- Rosi, D.; Peruzzotti, G.; Dennis, E.W.; Berberian, D.A.; Freele, H.; Tullar, B.F.; Archer, S. Hycanthone, a New Active Metabolite of Lucanthone. J. Med. Chem. 1967, 10, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Cioli, D.; Pica-Mattoccia, L.; Archer, S. Antischistosomal drugs: Past, present ... and future? Pharmacol. Ther. 1995, 68, 35–85. [Google Scholar] [CrossRef]
- Barbosa, J.; Lima, R.T.; Sousa, D.; Gomes, A.S.; Palmeira, A.; Seca, H.; Choosang, K.; Pakkong, P.; Bousbaa, H.; Pinto, M.M.; et al. Screening a Small Library of Xanthones for Antitumor Activity and Identification of a Hit Compound which Induces Apoptosis. Molecules 2016, 21, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, R.T.; Sousa, D.; Paiva, A.M.; Palmeira, A.; Barbosa, J.; Pedro, M.; Pinto, M.M.; Sousa, E.; Vasconcelos, M.H. Modulation of Autophagy by a Thioxanthone Decreases the Viability of Melanoma Cells. Molecules 2016, 21, 1343. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.M.M.; Palmeira, A.; Fernandes, C.; Resende, D.I.S.P.; Sousa, E.; Cidade, H.; Tiritan, M.E.; Correia-da-Silva, M.; Cravo, S. From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules 2021, 26, 431. [Google Scholar] [CrossRef] [PubMed]
- Penet, M.-F.; Chen, Z.; Kakkad, S.; Pomper, M.G.; Bhujwalla, Z.M. Theranostic imaging of cancer. Eur. J. Radiol. 2012, 81 (Suppl. S1), S124–S126. [Google Scholar] [CrossRef] [Green Version]
- Hedidi, M.; Maillard, J.; Erb, W.; Lassagne, F.; Halauko, Y.S.; Ivashkevich, O.A.; Matulis, V.E.; Roisnel, T.; Dorcet, V.; Hamzé, M.; et al. Fused Systems Based on 2-Aminopyrimidines: Synthesis Combining Deprotolithiation-in situ Zincation with N-Arylation Reactions and Biological Properties. Eur. J. Org. Chem. 2017, 2017, 5903–5915. [Google Scholar] [CrossRef]
- Ataci, N.; Arsu, N. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods. Spectrochim. Acta A Mol. BioMol. Spectrosc. 2016, 169, 128–133. [Google Scholar] [CrossRef]
- Ataci, N.; Kazancioglu, E.O.; Kalındemirtas, F.D.; Kuruca, S.E.; Arsu, N. The interaction of light-activaTable 2-thioxanthone thioacetic acid with ct-DNA and its cytotoxic activity: Novel theranostic agent. Spectrochim. Acta A Mol. BioMol. Spectrosc. 2020, 239, 118491. [Google Scholar] [CrossRef] [PubMed]
- Ataci, N.; Ozcelik, E.; Arsu, N. Spectrophotometric study on binding of 2-thioxanthone acetic acid with ct-DNA. Spectrochim. Acta A Mol. BioMol. Spectrosc. 2018, 204, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Esen, D.S.; Temel, G.; Balta, D.K.; Allonas, X.; Arsu, N. One-Component Thioxanthone Acetic Acid Derivative Photoinitiator for Free Radical Polymerization. PhotoChem. Photobiol. 2014, 90, 463–469. [Google Scholar] [CrossRef]
- Wang, D.Z.; Yan, L.; Ma, L. Facile Preparation of 4-Substituted Quinazoline Derivatives. J. Vis. Exp. 2016, 53662. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Jiang, Y.; Ma, D. Synthesis of 3-Substituted and 2,3-Disubstituted Quinazolinones via Cu-Catalyzed Aryl Amidation. Org. Lett. 2012, 14, 1150–1153. [Google Scholar] [CrossRef]
- Resch-Genger, U.; Rurack, K. Determination of the Photoluminescence Quantum Yield of Dilute Dye Solutions (IUPAC Technical Report). Chem. Int. Newsmag. IUPAC 2014, 36. [Google Scholar] [CrossRef] [Green Version]
- Gales, L.; Damas, A.M. Xanthones-A Structural Perspective. Curr. Med. Chem. 2005, 12, 2499–2515. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Gales, L.; Damas, A.M.; Ribeiro da Silva, M.D.M.C. Experimental and Computational Studies on the Structural and Thermodynamic Properties of Two Sulfur Heterocyclic Keto Compounds. J. Chem. Eng. Data 2010, 55, 5009–5017. [Google Scholar] [CrossRef]
- Badisa, R.B.; Ayuk-Takem, L.T.; Ikediobi, C.O.; Walker, E.H. Selective Anticancer Activity of Pure Licamichauxiioic-B Acid in Cultured Cell Lines. Pharm. Biol. 2006, 44, 141–145. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
Amine | Thioxanthene | Yield |
---|---|---|
7 | 11 | 25% |
8 | 12 | 11% |
9 | 13 | 45% |
10 | 14 | 13% |
Compound | Antitumor Activity (µM) | ||
---|---|---|---|
A375-C5 | MCF-7 | NCI-H460 | |
11 | 6.48 ± 0.88 | 6.39 ± 0.49 | 5.66 ± 0.89 |
12 | 38.77 ± 5.93 | 33.82 ± 1.61 | 31.19 ± 1.53 |
13 | 22.88 ± 3.75 | 18.85 ± 1.42 | 16.97 ± 3.12 |
14 | 8.02 ± 3.59 | 9.04 ± 0.89 | 10.64 ± 0.31 |
Doxorubicin | 0.016 ± 0.005 | 0.018 ± 0.003 | 0.024 ± 0.006 |
Compound | HPAEpiC | Selectivity Index | ||
---|---|---|---|---|
(GI50, µM) | A375-C5 | MCF-7 | NCI-H460 | |
11 | 26.75 ± 1.20 | 4.13 | 4.19 | 4.73 |
12 | 39.28 ± 0.25 | 1.01 | 1.16 | 1.26 |
13 | 127.90 ± 1.56 | 5.59 | 6.79 | 7.54 |
14 | >150 | - | - | - |
Doxorubicin | 0.054 ± 0.005 | 3.38 | 3.00 | 2.25 |
Compound | λmax (nm) | log ε | λem (nm) | Stokes’ Shift (nm) | ΦF % 1 |
---|---|---|---|---|---|
11 | 456 | 3.67 | 548 | 92 | 29.0 |
12 | 394 | 3.72 | 483 | 89 | 50.7 |
13 | 457 | 3.72 | 548 | 91 | 31.3 |
14 | 480 | 4.00 | 560 | 80 | <0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durães, F.; Silva, P.M.A.; Novais, P.; Amorim, I.; Gales, L.; Esteves, C.I.C.; Guieu, S.; Bousbaa, H.; Pinto, M.; Sousa, E. Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity. Molecules 2021, 26, 3315. https://doi.org/10.3390/molecules26113315
Durães F, Silva PMA, Novais P, Amorim I, Gales L, Esteves CIC, Guieu S, Bousbaa H, Pinto M, Sousa E. Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity. Molecules. 2021; 26(11):3315. https://doi.org/10.3390/molecules26113315
Chicago/Turabian StyleDurães, Fernando, Patrícia M. A. Silva, Pedro Novais, Isabel Amorim, Luís Gales, Cátia I. C. Esteves, Samuel Guieu, Hassan Bousbaa, Madalena Pinto, and Emília Sousa. 2021. "Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity" Molecules 26, no. 11: 3315. https://doi.org/10.3390/molecules26113315
APA StyleDurães, F., Silva, P. M. A., Novais, P., Amorim, I., Gales, L., Esteves, C. I. C., Guieu, S., Bousbaa, H., Pinto, M., & Sousa, E. (2021). Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity. Molecules, 26(11), 3315. https://doi.org/10.3390/molecules26113315