Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review Since 2013
Abstract
:1. Introduction
2. Phytochemistry
2.1. Polysaccharides and Monosaccharide
2.2. Norlignans
2.3. Chlorophenolic Glucosides
2.4. Phenolic Compounds
2.5. Terpenoids
2.6. Cyclic Peptides
3. Pharmacological Properties
3.1. Anti-Diabetic Activity
3.2. Anti-Osteoporosis
3.3. Antioxidant
3.4. Neuroprotective Effect
3.5. Antitumor
3.6. Antibacteria
3.7. Anti-Inflammation and Anti-Arthritis
3.8. Anti-Diarrhea and Anti-Nociception
3.9. Effect on Perimenopausal Syndrome
3.10. Male Reproductive Improvement
3.11. Cardio-Protection
3.12. Other Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.Y.; Chen, D.X.; Qin, S.Y.; Li, Q.S.; Zhong, G.Y. Studies on genetic relationship of seven species of Curculigo plant from China using SRAP. China J. Chin. Mater. Med. 2008, 33, 117–120. [Google Scholar]
- World Checklist of Hypoxidaceae. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://apps.kew.org/wcsp/ (accessed on 20 March 2016).
- Chinese Academy of Sciences; Editorial Board of Flora of China. Flora of China; Science Press: Beijing, China, 2000; Volume 24, pp. 264–273. [Google Scholar]
- Mehta, J.; Nama, K.S. A Review on Ethnomedicines of Curculigo orchioides Gaertn (Kali Musli): Black Gold. Int. J. Pharm. Biomedic. Res. 2014, 1, 12–16. [Google Scholar]
- Editorial Board of China Herbal. China Herbal (Chinese Herbal Medicine); Shanghai Science and Technology Press: Shanghai, China, 1999; Volume 22, pp. 215–219. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2007; p. 22. [Google Scholar]
- Editorial Board of China Herbal. China Herbal (Chinese Herbal Medicine); Shanghai Science and Technology Press: Shanghai, China, 2005; Volume 34, pp. 104–105. [Google Scholar]
- Chen, X.Q. The Genus Curculigo in China. Acta Phytotaxon. Sin. 1966, 11, 131–132. [Google Scholar]
- Karigidi, K.O.; Olaiya, C.O. In vitro Antidiabetic, Antioxidant and Antilipid peroxidative Activities of Corn Steep Liquor Extracts of Curculigo pilosa and its Solvent Fractions. J. Herbs Spices Med. Plants 2019, 25, 377–388. [Google Scholar] [CrossRef]
- Kusamba, C.; Messana, I.; Galeffi, C.; De Vicente, Y. Research on African medicinal plants -XXV- the (1, 2S) absolute configuration of nyasicoside. Its occurrence in Curculigo recurvata. Tetrahedron 1991, 47, 4369–4374. [Google Scholar]
- Nie, Y.; Dong, X.; He, Y.J.; Yuan, T.T.; Han, T.; Rahman, K.; Qin, L.P.; Zhang, Q.Y. Medicinal plants of genus Curculigo: Traditional uses and a phytochemical and ethnopharmacological review. J. Ethnopharmacol. 2013, 147, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.S.; Chen, W.Q.; Yang, S.Y. Pharmacologic study of Curculigo orchioides Gaertn. China J. Chin. Mater. Med. 1989, 14, 618–620. [Google Scholar]
- Lakshmi, V.; Pandey, K.; Puri, A.; Saxena, R.; Saxena, K. Immunostimulant principles from Curculigo orchioides. J. Ethnopharmacol. 2003, 89, 181–184. [Google Scholar] [CrossRef]
- Wang, K.-J.; Li, N. Antioxidant phenolic compounds from rhizomes of Curculigo crassifolia. Arch. Pharm. Res. 2007, 30, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-J.; Li, N. Norlignan derivatives from Curculigo crassifolia and their DPPH radical scavenging activity. Arch. Pharm. Res. 2008, 31, 1313–1316. [Google Scholar] [CrossRef]
- Zhu, F.B.; Wang, J.Y.; Zhang, Y.L.; Quan, R.F.; Yue, Z.S.; Zeng, L.R.; Zheng, W.J.; Hou, Q.; Yan, S.G.; Hu, Y.G. Curculigoside regulates proliferation, differentiation, and pro-inflammatory cytokines levels in dexamethasone -induced rat calvarial osteo-blasts. Int. J. Clin. Exp. Med. 2015, 8, 12337–12346. [Google Scholar] [PubMed]
- Chauhan, N.; Rao, C.V.; Dixit, V. Effect of Curculigo orchioides rhizomes on sexual behaviour of male rats. Fitoterapia 2007, 78, 530–534. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Y.; Chen, Y.; Liu, S.; Wu, N.; Jia, D. Curculigoside attenuates myocardial ischemia-reperfusion injury by inhibiting the opening of the mitochondrial permeability transition pore. Int. J. Mol. Med. 2020, 45, 1514–1524. [Google Scholar] [CrossRef]
- Ge, J.-F.; Gao, W.-C.; Cheng, W.-M.; Lu, W.-L.; Tang, J.; Peng, L.; Li, N.; Chen, F.-H. Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress. Eur. Neuropsychopharmacol. 2014, 24, 172–180. [Google Scholar] [CrossRef]
- Miao, M.; Tian, S.; Bai, M.; Weiyun, X. Total glucosides of Curculigo rhizome to perimenopausal period mice model. Pak. J. Pharm. Sci. 2017, 30, 975–978. [Google Scholar]
- Zhang, Y.; Ge, J.-F.; Wang, F.-F.; Liu, F.; Shi, C.; Li, N. Crassifoside H improve the depressive-like behavior of rats under chronic unpredictable mild stress: Possible involved mechanisms. Brain Res. Bull. 2017, 135, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Singla, K.; Singh, R. Nephroprotective effect of Curculigo orchiodies in streptozotocin–nicotinamide induced diabetic nephropathy in wistar rats. J. Ayurveda Integr. Med. 2020, 11, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.; Yang, S.-T. Curculigoside Improves Osteogenesis of Human Amniotic Fluid-Derived Stem Cells. Stem Cells Dev. 2014, 23, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Zhao, L.; Shen, Y.; He, Y.Q.; Cheng, G.; Yin, M.; Zhang, Q.Y.; Qin, L.P. Curculigoside Protects against ex-cess-iron-induced bone loss by attenuating Akt-FoxO1- dependent oxidative damage to mice and osteoblastic MC3T3-E1 cells. Oxid. Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Y.D.; Liu, X.M.; Gao, L.; Zhang, Y.P.; Dang, L.Z. The study of terpeniods from Curculigo orchioides. J. Yunnan Univ. 2019, 41, 367–371. [Google Scholar]
- Tan, S.; Xu, J.; Lai, A.; Cui, R.; Bai, R.; Liang, W.; Zhang, G.; Jiang, S.; Liu, S.; Zheng, M.; et al. Curculigoside exerts sig-nificant anti-arthritic effects in vivo and in vitro via regulation of the JAK/STAT/NF-κB signaling pathway. Mol. Med. Rep. 2019, 19, 2057–2064. [Google Scholar]
- Xia, L.-F.; Liang, S.-H.; Tang, J.; Huang, Y.; Wen, H. Anti-tumor effect of polysaccharides from rhizome of Curculigo orchioides Gaertn on cervical cancer. Trop. J. Pharm. Res. 2016, 15, 1731. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, P.; Mukherjee, P.K.; Kumar, S.N.; Nema, N.K.; Bandyopadhyay, A.; Fukui, H.; Mizuguchi, H. Mast cell stabilization and antihistaminic potentials of Curculigo orchioides rhizomes. J. Ethnopharmacol. 2009, 126, 434–436. [Google Scholar] [CrossRef]
- Zabidi, N.A.; Ishak, N.A.; Hamid, M.; Ashari, S.E.; Latif, M.A.M. Inhibitory evaluation of Curculigo latifolia on α-glucosidase, DPP (IV) and in vitro studies in antidiabetic with molecular docking relevance to type 2 diabetes mellitus. J. Enzym. Inhib. Med. Chem. 2021, 36, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Q.; Liu, X.X.; Yi, X.H.; Zhou, J.; Yang, D. Research progress on chemical constituents of genus Curculigo. J. Guilin Norm. Coll. 2012, 26, 163–169. (In Chinese) [Google Scholar]
- Yang, H.; Pei, G.; Chen, S.B. Research progress on medicinal herbs of genus Curculigo. Cent. South Pharm. 2011, 9, 916–920. (In Chinese) [Google Scholar]
- Pradeep, G.; Atul, K. A review on phytochemical and pharmacological profile on Curculigo orchioides. Plant Cell Bio-Technol. Mol. Biol. 2020, 21, 243–252. [Google Scholar]
- Wang, X.; Zhang, M.; Zhang, D.; Wang, S.; Yan, C. An O-acetyl-glucomannan from the rhizomes of Curculigo orchioides: Structural characterization and anti-osteoporosis activity in vitro. Carbohydr. Polym. 2017, 174, 48–56. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhang, D.; Wang, S.M.; Yan, C.Y. Structural elucidation and anti-osteoporosis activities of polysaccha-rides obtained from Curculigo orchioides. Carbohydr. Polym. 2019, 203, 292–301. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, Z.Z.; Yang, L.P.; Zhai, Y.Y.; Wang, Z.H. Chemical Constituents of Curculigo orchioides. Chem. Nat. Compd. 2020, 56, 1–3. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.-J.; Zhao, Y.-X.; Zhou, J. Three new norlignans from Curculigo capitulata. J. Asian Nat. Prod. Res. 2005, 7, 189–195. [Google Scholar] [CrossRef]
- Li, N.; Wang, K.-J.; Chen, J.-J.; Zhou, J. Two novel glucosyl-fused compounds from Curculigo crassifolia (Hypoxidaceae). Tetrahedron Lett. 2005, 46, 6445–6447. [Google Scholar] [CrossRef]
- Li, N.; Li, S.-P.; Wang, K.-J.; Yan, G.-Q.; Zhu, Y.-Y. Novel norlignan glucosides from rhizomes of Curculigo sinensis. Carbohydr. Res. 2012, 351, 64–67. [Google Scholar] [CrossRef]
- Li, S.; Yu, J.-H.; Fan, Y.-Y.; Liu, Q.-F.; Li, Z.-C.; Xie, Z.-X.; Li, Y.; Yue, J.-M. Structural Elucidation and Total Synthesis of Three 9-Norlignans from Curculigo capitulata. J. Org. Chem. 2019, 84, 5195–5202. [Google Scholar] [CrossRef]
- Paresh, M.V.; Chepuri, V.R. Total synthesis of sinenside A. Org. Lett. 2015, 17, 1717–1724. [Google Scholar]
- Xu, J.P.; Dong, Q.Y. Chemical study on Curculigo orchioides II, The isolation and structural determination of new compound curculigine A. Chin. Tradit. Herb. Drugs 1987, 18, 194–196. (In Chinese) [Google Scholar]
- Xu, J.P.; Xu, R.S. Phenyl glucosides Curculigo orchioides. Acta Pharm. Sin. 1992, 27, 353–357. [Google Scholar]
- Cao, D.P.; Han, T.; Zheng, Y.N.; Qin, L.P.; Zhang, Q.Y. Phenolic glycosides and lignans components in Curculigo orchioides Gaertn. Acad. J. Second Milit. Univ. 2009, 30, 194–197. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Huang, J.; Ma, X.-C.; Li, G.-Y.; Ma, Y.-P.; Li, N.; Wang, J.-H. Phenolic glycosides from Curculigo orchioides Gaertn. Fitoterapia 2013, 86, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Ma, X.C.; Li, G.Y.; Niu, C.; Ma, Y.P.; Kasimu, R.; Huang, J.; Wang, J.H. Four new phenolic glucosides from Curculigo orchioides Gaertn. Phytochem. Lett. 2014, 9, 153–157. [Google Scholar] [CrossRef]
- Wang, Z.H.; Gong, X.Y.; Zhou, D.J.; Xu, P.F.; Huang, M.; Zhang, Q.L.; Meng, Y.L.; Niu, C.; Zhang, Y.R. Three new chloro-phenolic glucosides from Curculigo orchioides Gaertn. Phytochem. Lett. 2018, 26, 9–11. [Google Scholar] [CrossRef]
- Deng, X.-L.; Zheng, R.-R.; Han, Z.-Z.; Gu, L.-H.; Wang, Z.-T. New chlorophenolic glycoside from Curculigo orchioides and their activities on 5α-reductase. J. Asian Nat. Prod. Res. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Zuo, A.; Deng, Z.; Huang, X.; Zhang, X.; Geng, C.; Li, T.; Chen, J. New phenolic glycosides from Curculigo orchioides and their xanthine oxidase inhibitory activities. Fitoterapia 2017, 122, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Chen, X.; Wang, H.; Lu, R.; Shao, H. A new hepatotoxic triterpenoid ketone from Curculigo orchioides. Fitoterapia 2013, 84, 1–5. [Google Scholar] [CrossRef]
- Karigidi, K.O.; Akintimehin, E.S.; Omoboyowa, D.A.; Adetuyi, F.O.; Olaiya, C.O. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J. Diabetes Metab. Disord. 2020, 19, 1173–1184. [Google Scholar] [CrossRef]
- Karigidi, K.O.; Olaiya, C.O. Curculigo pilosa mitigates against oxidative stress and structural derangements in pancreas and kidney of streptozotocin-induced diabetic rats. J. Complement. Integr. Med. 2020, 20190217. [Google Scholar] [CrossRef]
- Karigidi, K.O.; Olaiya, C.O. Antidiabetic activity of corn steep liquor extract of Curculigo pilosa and its solvent fractions in streptozotocin-induced diabetic rats. J. Tradit. Complement. Med. 2020, 10, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Ishak, N.A.; Ismail, M.; Hamid, M.; Ahmad, Z.; Ghafar, S.A.A. Antidiabetic and Hypolipidemic Activities of Curculigo latifolia Fruit:Root Extract in High Fat Fed Diet and Low Dose STZ Induced Diabetic Rats. Evid. Based Complement. Altern. Med. 2013, 2013, 601838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulati, V.; Gulati, P.; Harding, I.H.; Palombo, E.A. Exploring the anti-diabetic potential of Australian Aboriginal and Indian Ayurvedic plant extracts using cell-based assays. BMC Complement. Altern. Med. 2015, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508–1514. [Google Scholar] [CrossRef]
- Cao, D.; Zheng, Y.; Qin, L.; Han, T.; Zhang, H.; Rahman, K.; Zhang, Q. Curculigo orchioides, a traditional Chinese medicinal plant, prevents bone loss in ovariectomized rats. Maturitas 2008, 59, 373–380. [Google Scholar] [CrossRef]
- Han, J.; Wan, M.; Ma, Z.; Hu, C.; Yi, H. Prediction of Targets of Curculigoside A in Osteoporosis and Rheumatoid Arthritis Using Network Pharmacology and Experimental Verification. Drug Des. Dev. Ther. 2020, 14, 5235–5250. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Yuan, F.; Zhu, J. An LC-MS/MS method for determination of curculigoside with anti-osteoporotic activity in rat plasma and application to a pharmacokinetic study. Biomed. Chromatogr. 2013, 28, 341–347. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, G.; Zhang, Y.; Wang, X.; Zhao, L.; Xu, P.; Shou, D. A Network Pharmacology Approach to Determine the Active Components and Potential Targets of Curculigo orchioides in the Treatment of Osteoporosis. Med. Sci. Monit. 2017, 23, 5113–5122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.P.; Zeng, D.L.; Zhou, Y.T.; Xia, L.G.; Zhao, Y.F.; Qiao, G.Y.; Xu, L.Y.; Liu, Y.; Zhu, Z.Y.; Jiang, X.Q. Curculigoside promotes osteogenic differentiation of bone marrow stromal cells from ovariectomized rats. J. Pharm. Pharmacol. 2013, 65, 1005–1013. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, S.; Wang, Y.; Zhang, Q.; Zhao, W.; Wang, Z.; Yin, M. Effects of Curculigoside on Memory Impairment and Bone Loss via Anti-Oxidative Character in APP/PS1 Mutated Transgenic Mice. PLoS ONE 2015, 10, e0133289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 1994, 344, 721–724. [Google Scholar] [CrossRef]
- Kang, T.H.; Na Hong, B.; Jung, S.-Y.; Lee, J.-H.; So, H.-S.; Park, R.; You, Y.-O. Curculigo orchioides Protects Cisplatin-Induced Cell Damage. Am. J. Chin. Med. 2013, 41, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Murali, V.P.; Kuttan, G. Enhancement of Cancer Chemotherapeutic Efficacy of Cyclophosphamide by Curculigo orchioides Gaertn and Its Ameliorative Effects on Cyclophosphamide-Induced Oxidative Stress. Integr. Cancer Ther. 2015, 14, 172–183. [Google Scholar] [CrossRef]
- Tacchini, M.; Spagnoletti, A.; Marieschi, M.; Caligiani, A.; Bruni, R.; Efferth, T.; Sacchetti, G.; Guerrini, A. Phytochemical profile and bioactivity of traditional ayurvedic decoctions and hydro-alcoholic macerations of Boerhaavia diffusa L. and Curculigo orchioides Gaertn. Nat. Prod. Res. 2015, 29, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Navya, K.; Kumar, G.; Anilakumar, K. Ameliorating effect of Curculigo orchoides on chromium(VI) induced oxidative stress via, modulation of cytokines, transcription factors and apoptotic genes. J. Appl. Biomed. 2017, 15, 299–306. [Google Scholar] [CrossRef]
- Hejazi, I.I.; Khanam, R.; Mehdi, S.H.; Bhat, A.R.; Rizvi, M.M.A.; Thakur, S.C.; Athar, F. Antioxidative and anti-proliferative potential of Curculigo orchioides Gaertn in oxidative stress induced cytotoxicity: In vitro, exvivo and in silico studies. Food Chem. Toxicol. 2018, 115, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Adefegha, S.A.; Oyeleye, S.I.; Oboh, G. African crocus (Curculigo pilosa) and wonderful kola (Buchholzia coriacea) seeds modulate critical enzymes relevant to erectile dysfunction and oxidative stress. J. Complement. Integr. Med. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Ogunlana, O.O.; Ogunlana, O.E.; Ugochukwu, S.K.; Adeyemi, A.O. Assessment of the ameliorative effect of Ruzu Herbal Bitters on the biochemical and antioxidant abnormalities induced by high fat diet in Wistar rats. Int. J. Pharmacol. 2018, 14, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Farzinebrahimi, R.; Taha, R.M.; Rashid, K.A.; Ahmed, B.A.; Danaee, M.; Rozali, S.E. Preliminary Screening of Antioxidant and Antibacterial Activities and Establishment of an Efficient Callus Induction in Curculigo latifolia Dryand (Lemba). Evid. Based Complement. Altern. Med. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zabidi, N.A.; Ishak, N.A.; Hamid, M.; Ashari, S.E. Subcritical Water Extraction of Antioxidants from Curculigo latifolia Root. J. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Pratap, G.K.; Shantaram, M. A kinetic study of acetylcholinesterase inhibition by fractions of Oleo dioica Roxb. leaf and Curculigo orchioides Gaertn rhizome for the treatment of Alzheimer’s disease. EJMP 2019, 30, 1–12. [Google Scholar]
- Pratap, G.K. In Vitro Anti-Cholinesterase activity and mass spectrometric analysis of Curculigo orchioides Gaertn. Rhizome ex-tract. Anal. Chem. Lett. 2020, 10, 442–458. [Google Scholar] [CrossRef]
- Li, R.C.; Zeng, M.Y.; Su, Y.L.; Wu, C.X. Effects of curculigoside on the behavior and hippocampal neuronal apoptosis of Alzheimer’s rat. Chin. J. Clin. Pharmacol. 2019, 35, 654–670. (In Chinese) [Google Scholar]
- Ramchandani, D.; Ganeshpurkar, A.; Bansal, D.; Karchuli, M.S.; Dubey, N. Protective Effect of Curculigo orchioides Extract on Cyclophospha-mide-Induced Neurotoxicity in Murine Model. Toxicol. Int. 2014, 21, 232–235. [Google Scholar]
- Wang, J.; Zhao, X.-L.; Gao, L. Anti-depressant-like effect of curculigoside isolated from Curculigo orchioides Gaertn root. Trop. J. Pharm. Res. 2016, 15, 2165. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-J.; Song, Z.-J.; Wang, X.-C.; Zhang, Z.-R.; Wu, S.-B.; Zhu, G.-Q. Curculigoside facilitates fear extinction and prevents depression-like behaviors in a mouse learned helplessness model through increasing hippocampal BDNF. Acta Pharmacol. Sin. 2019, 40, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zhu, H.; Luan, H.; Han, F.; Jiang, W. Curculigoside A induces angiogenesis through VCAM-1/Egr-3/CREB/VEGF signaling pathway. Neuroscience 2014, 267, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; He, J.; Ye, L.; Lin, F.; Hou, J.; Zhong, Y.; Jiang, W. Mechanisms of angiogenesis in a Curculigoside A-treated rat model of cerebral ischemia and reperfusion injury. Toxicol. Appl. Pharmacol. 2015, 288, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yu, W.; Liu, H.-B.; Zhang, N.; Li, X.-B.; Zhao, M.-G.; Liu, S.-B. Neuroprotective effects of curculigoside against NMDA-induced neuronal excitoxicity in vitro. Food Chem. Toxicol. 2012, 50, 4010–4015. [Google Scholar] [CrossRef]
- Li, H.N.; Wu, K.F.; Zhang, Y.; Li, N.; Wang, K.J. Crassifoside H ameliorates depressant-like behavior in CUMS rats: Involving improvement of HPA axis dysfunction and inhibition of inflammation in hippocampus. Trop. J. Pharm. Res. 2020, 19, 1693–1699. [Google Scholar] [CrossRef]
- Kayalvizhi, T.; Ravikumar, S.; Venkatachalam, P. Green Synthesis of Metallic Silver Nanoparticles Using Curculigo orchioides Rhizome Extracts and Evaluation of Its Antibacterial, Larvicidal, and Anticancer Activity. J. Environ. Eng. 2016, 142, 4016002. [Google Scholar] [CrossRef]
- Selvaraj, T.; Agastian, P. In vitro anticancer activity of ethyl acetate extract and green nanoparticles synthesized from Curculigo orchioides gaertn—An endangered medicinal. Int. J. Pharm. Sci. Res. 2017, 8, 3030–3038. [Google Scholar]
- Murali, V.P.; Kuttan, G. Curculigoside augments cell-mediated immune responses in metastatic tumor-bearing animals. Immunopharmacol. Immunotoxicol. 2016, 38, 264–269. [Google Scholar] [CrossRef]
- Nahak, P.; Gajbhiye, R.L.; Karmakar, G.; Guha, P.; Roy, B.; Besra, S.E.; Bikov, A.G.; Akentiev, A.V.; Noskov, B.A.; Nag, K.; et al. Orcinol Glucoside Loaded Polymer—Lipid Hybrid Nanostructured Lipid Carriers: Potential Cytotoxic Agents against Gastric, Colon and Hepatoma Carcinoma Cell Lines. Pharm. Res. 2018, 35, 198. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L.; Lao, Y.; Zhang, H.; Xu, H. Natural Products Targeting EGFR Signaling Pathways as Potential Anti-cancer Drugs. Curr. Protein Pept. Sci. 2018, 19, 380–388. [Google Scholar] [CrossRef]
- Marasini, B.P.; Baral, P.; Aryal, P.; Ghimire, K.R.; Sanjiv, N.; Nabaraj, D.; Anjana, S.; Laxman, G.; Kanti, S. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. BioMed Res. Int. 2015, 2015, 265425. [Google Scholar] [CrossRef] [Green Version]
- Perumal, V.; Thamilchelvan, K.; Jinu, U.; Giovanni, B.; Natesan, G. Enhanced antibacterial and cytotoxic activity of phyto-chemical loaded-silver nanoparticles using Curculigo orchioides leaf extracts with different extraction techniques. J. Cluster Sci. 2017, 28, 607–619. [Google Scholar]
- Nwokonkwo, D.C. Antibacterial Susceptibility of the Constituents of Ethanol Crude Extract and the Neutral Metabolite of the Root of Curculigo pilosa Hypoxidaceae. Int. J. Chem. 2014, 6, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.; Ahmad, S.; Mahamoud, M.S.; Chakrabarty, N.; Shoibe, M. Comparative study of hypoglycemic and antibacterial activity of organic extracts of four Bangladeshi plants. J. Coast. Life Med. 2016, 4, 231–235. [Google Scholar] [CrossRef]
- Yun, T.; Zhang, M.; Zhou, D.; Jing, T.; Zang, X.; Qi, D.; Chen, Y.; Li, K.; Zhao, Y.; Tang, W.; et al. Anti-Foc RT4 Activity of a Newly Isolated Streptomyces sp. 5–10 From a Medicinal Plant (Curculigo capitulata). Front. Microbiol. 2021, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Gao, G.; Zhang, L.; Shen, G.; Sun, W.; Gu, Z.; Fan, W. The protective effects of curculigoside A on adjuvant-induced arthritis by inhibiting NF-κB/NLRP3 activation in rats. Int. Immunopharmacol. 2016, 30, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Nasrin, M.S.; Reza, A.S.M.A.; Chakrabarty, N.; Hoque, A.; Islam, S.; Kabir, M.S.H.; Tareq, S.M.; Alam, A.H.M.K.; Haque, A.; et al. Curculigo recurvata W.T. Aiton exhibits anti- nociceptive and anti-diarrheal effects in Albino mice and an in silico model. Anim. Model Exp. Med. 2020, 3, 169–181. [Google Scholar] [CrossRef]
- Cao, S.; Tian, S.; Bai, M.; Liu, S.Y.; Jia, J.J.; Miao, M.S. Effects of Curculigo orchioides total glucosides in mouse perimenopause model of related organization and organs morphology. Bangladesh J. Pharmacol. 2016, 11, S72–S81. [Google Scholar]
- Miao, M.; Tian, S.; Guo, L.; Bai, M.; Fang, X.; Liu, S. The effect of curculigoside on mouse model of perimenopausal depression. Saudi J. Biol. Sci. 2017, 24, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Swaroop, A.; Preuss, H.G.; Bagchi, M.; Bagchi, D. Safety and efficacy of a novel Curculigo orchioides extract in boosting tes-tosterone levels in male rats. FASEB J. 2018, 32, 656.26. [Google Scholar] [CrossRef]
- Bagchi, D.; Swaroop, A.; Bagchi, M.; Preuss, H.G. Safety and free testosterone boosting efficacy of a novel Curculigo orchioides extract (Blamus™) in male rats. FASEB J. 2017, 31, lb313. [Google Scholar] [CrossRef]
- Chen, T.; Tu, Q.; Cheng, L.; Li, Z.; Lin, D. Effects of curculigoside A on random skin flap survival in rats. Eur. J. Pharmacol. 2018, 834, 281–287. [Google Scholar] [CrossRef] [PubMed]
Pharmacological Activity | Tested Substance | Species | In Vivo/In Vitro | Model | Administration (In Vivo) | Dose/Concentration | Toxicology | References |
---|---|---|---|---|---|---|---|---|
Anti-diabetic Activity | hydroalcoholic extract | C. orchioides | in vivo | STZ-nicotinamide induced diabetic nephropathy | oral administration | 600 mg/kg | - | [22] |
ethanol extract | C. orchioides | in vivo | STZ-nicotinamide induced diabetic nephropathy | oral administration | 600 mg/kg | - | [22] | |
supplemented diet | C. pilosa | in vitro | STZ-induced diabetic rats | oral administration | 5 and 10% CP-supplemented diet for 21 days | nephrotoxicity | [50] | |
corn steep liquor extract | C. pilosa | in vitro | STZ-induced diabetic rats | oral administration | 300 mg/kg of the extract(s) for 28 days | - | [51] | |
corn steep liquor extract | C. pilosa | in vitro | STZ-induced diabetic rats | oral administration | 300 mg/kg of the extract(s) for 28 days | LD50 = 2828 mg/kg | [52] | |
aqueous extract | C. latifolia | in vivo | HFD+STZ-induced diabetic rats | oral administration | 5 g/d | non-toxic | [53] | |
ethanol extract | C. orchioides | in vitro | 3T3-L1 | - | 10 and 100 μg/mL | - | [54] | |
Anti-osteoporosis | curculigoside | C. orchioides | in vitro | osteoblasts | - | 25–100 μg/mL | - | [16] |
curculigoside | C. orchioides | in vitro | HAFSCs | - | 1–100 mg/mL | 200 mg/mL inhibit cell growth | [23] | |
curculigoside | C. orchioides | in vitro | MC3T3-E1 | - | 10 μM | - | [24] | |
curculigoside | C. orchioides | in vivo | iron-overload mice model | oral administration | 100 mg/kg | - | [24] | |
COP90-1 | C. orchioides | in vitro | primary mouse osteoblasts | - | 21.7 μM | - | [33] | |
COP70-3 | C. orchioides | in vitro | primary rat osteoblasts | - | - | non-toxic | [34] | |
curculigine E-H | C. orchioides | in vitro | MC3T3-E1 | - | 10 μM | - | [44] | |
curculigine M, N, O | C. orchioides | in vitro | MC3T3-E1 | - | - | - | [45] | |
curculigine K, L | C. orchioides | in vitro | MC3T3-E1 | - | - | - | [46] | |
curculigoside | C. orchioides | in vivo | BMSCs | 100 μM | 1000 μM decreased cell viability | [60] | ||
curculigoside | C. orchioides | in vivo | transgenic mice | oral administration | - | - | [61] | |
Antioxidant | corn steep liquor extract, n-butanol and methanol solvent fractions | C. pilosa | in vivo | STZ diabetic rats | oral administration | 300 mg/kg | - | [51] |
ethanol extract | C. orchioides | in vitro | cisplatin-induced HEI-OC1 cell damage | - | 1–25 μg/mL | 50 μg/mL decreased cell viability | [63] | |
methanol extract | C. orchioides | in vivo | cyclophosphamide-induced oxidative stress | oral administration | 25 mg/kg | non-toxic | [64] | |
decoctions (DECs) and hydro-alcoholic extracts | C. orchioides | in vitro | CCRF-CEM and CEM/ADR5000 | - | 43.57 ± 4.21 mg/mL and 290.96 ± 2.31 mg/mL | non-toxic | [65] | |
hydro-alcoholic extract | C. orchioides | in vitro | - | oral administration | 100 mg/kg | - | [66] | |
ethylacetate fraction, aqueous ethylacetate | C. orchioides | in vivo | - | oral administration | 52 ± 0.66 μg/mL | - | [67] | |
aqueous extract | C. pilosa | in vitro | rat penile homogenate | - | 0.95 mg/mL | [68] | ||
Curculigo pilosa | C. pilosa | in vivo | received the high-fat diet | oral administration | 0.3 mL/kg | - | [69] | |
Neuroprotective effect | orcinol glucoside | C. orchioides | in vivo | CUMS-induced depressive rats | - | 1.5, 3, 6 mg/kg | - | [19] |
crassifoside H | C. orchioides | in vivo | CUMS-induced depressive rats | oral administration | 2, 4, or 8 mg/kg | - | [21] | |
curculigoside | C. orchioides | in vivo | SD rats | oral administration | 24, 48, 72 mg/kg, qd | - | [74] | |
methanol extract | C. orchioides | in vivo | Cyclophosphamide-Induced Neurotoxicity in Murine Model | i.p. | 200 mg/kg, 400 mg/kg | - | [75] | |
curculigoside | C. orchioides | in vivo | mice | oral administration | 10, 20, 40 mg/kg | - | [76] | |
curculigoside | C. orchioides | in vivo | mice | intraperitoneal injection | 5 mg/kg | - | [77] | |
curculigoside A | C. orchioides | in vitro | human brain microvascular endothelial cell line | - | 1–24 μM | - | [78] | |
curculigoside A | C. orchioides | in vivo | middle cerebral artery occluded (MCAO) model rats | tail vein injection | 10 mg/kg | - | [79] | |
curculigoside | C. orchioides | in vitro | N-methyl-D-aspartate (NMDA)-induced neuronal cell | - | 1 and 10 μM | - | [80] | |
crassifoside H | C.glabrescens | in vivo | chronic unpredictable mild stress (CUMS)-induced rats | oral administration | 2, 4, and 8 mg/kg d−1 | - | [81] | |
Antitumor | polysaccharides | C. orchioides | in vivo | mice injected with Hela cells | injected into the lower abdominal region | 20, 40 mg/kg | - | [27] |
polysaccharides | C. orchioides | in vitro | Hela cells | - | 10, 20, 40, 80 mg/mL | - | [27] | |
CoBAgNPs | C. orchioides | in vitro | human breast cancer cells and Vero cells | - | 18.86, 42.43 μg/mL | - | [82] | |
the ethyl acetate extract | C. orchioides | in vitro | MCRF-7 cells | - | 80 μg/mL | - | [83] | |
curculigoside | C. orchioides | in vivo | C57BL/6 mice | - | 5 mg/kg | non-toxic | [84] | |
orcinolglucoside nano- lipid carrier (NLC) | C. orchioides | in vitro | gastrointestinal tract (GIT), colon and hepatoma carcinoma cell lines | - | - | - | [85] | |
Antibacteria | the ethanol extract | C. orchioides | in vitro | S. pyogenes | - | 49 μg/mL | - | [87] |
Coble-AgNPs | C. orchioides | in vitro | Pseudomonas aeruginosa and Staphylococcus aureus | - | 50 μL | 6.33 μg/mL inhibit cell growth | [88] | |
the constituents of ethanol crude extract and the neutral metabolite | C. pilosa | in vitro | Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus faecalis | - | 100 mg/mL | - | [89] | |
methanol extract | C. recurvata | in vitro | Bacillus cereus, Salmonella typhi, Escherichia coli, | - | - | LD50 was found to be greater than 4000 mg/kg | [90] | |
a newly isolated streptomyces sp. 5–10 | C.capitulata | in vitro | FocTR4 | - | 250 μg/mL, 500 μg/mL | - | [91] | |
Anti-inflammation and Anti-arthritis | curculigoside | C. orchioides | in vivo | type II collagen induced rat arthritis model | oral administration | 50 mg/kg | - | [26] |
curculigoside | C. orchioides | in vitro | MH7A cells | - | 4, 8 and 16 μg/mL | - | [26] | |
curculigoside A | C. orchioides | in vivo | CFA-induced rat arthritis model | oral administration | 10, 20 mg/kg | - | [92] | |
Anti-diarrhea and anti-nociception | methanol extract | C. recurvata | in vivo | mice | oral administration | 200, 400 mg/kg | lower toxicity | [93] |
Effect on perimenopausal syndrome | total glucosides | C. orchioides | in vivo | the castrated mice | oral administration | 400 mg/kg | - | [94] |
total glucosides | C. orchioides | in vivo | Perimenopausal mdel mice | oral administration | 400, 200, 100 mg/kg | - | [95] | |
Male reproductive improvement | BlamusTM | C. orchioides | in vitro | - | - | - | [96,97] | |
Cardio-protection | curculigoside | C. orchioides | in vitro | H9c2 cells | - | 10, 15 μM | - | [18] |
curculigoside | C. orchioides | in vivo | rat | intravenous injection | 10, 15 mg/kg | - | ||
Other activities | curculigoside A | C. orchioides | in vivo | Sprague-Dawley rats | oral administration | 10 or 20 mg/kg | - | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, J.; Li, N. Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review Since 2013. Molecules 2021, 26, 3396. https://doi.org/10.3390/molecules26113396
Wang Y, Li J, Li N. Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review Since 2013. Molecules. 2021; 26(11):3396. https://doi.org/10.3390/molecules26113396
Chicago/Turabian StyleWang, Ying, Junlong Li, and Ning Li. 2021. "Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review Since 2013" Molecules 26, no. 11: 3396. https://doi.org/10.3390/molecules26113396
APA StyleWang, Y., Li, J., & Li, N. (2021). Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review Since 2013. Molecules, 26(11), 3396. https://doi.org/10.3390/molecules26113396