Pyrazoles and Pyrazolines as Anti-Inflammatory Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Physicochemical Studies
2.2.1. Determination of Lipophilicity
2.2.2. Theoretical Calculation of Physicochemical Properties
2.3. Biological Evaluation
2.4. Computational Studies–Docking Simulation Soybean Lipoxygenase
Molecular Modeling of the Synthesized Derivatives in Soybean LOX
3. Experimental Section
3.1. Materials and Instruments
3.2. Chemistry General Procedure
3.2.1. Synthesis of Chalcones
3.2.2. Synthesis of Pyrazolines and Pyrazole Derivatives
3.3. Physicochemical Studies
Experimental Determination of Lipophilicity as RM Values
3.4. Biological Assays
3.4.1. Biological In Vitro Assays
Determination of the Reducing Activity of the Stable Radical 1,1-Diphenyl-Picrylhydrazyl (DPPH)
Inhibition of Linoleic Acid Lipid Peroxidation
ABTS+ -Decolorization Assay for Antioxidant Activity
Soybean Lipoxygenase Inhibition Study
3.4.2. Biological In Vivo Assays
Inhibition of the Carrageenin-Induced Edema
Anti-Nociception-Writhing Test
Induction of Adjuvant-Induced Disease (AID)
3.5. Computational Methods. Molecular Docking Studies on Soybean Lipoxygenase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Kiyani, H.; Albooyeh, F.; Fallahnezhad, S. Synthesis of new pyrazolyl-1,3-diazabicyclo[3.1.0]hexe-3-ene derivatives. J. Mol. Struct. 2015, 1091, 163–169. [Google Scholar] [CrossRef]
- Lv, P.-C.; Sun, J.; Luo, Y.; Yang, Y.; Zhu, H.-L. Design, synthesis, and structure–activity relationships of pyrazole derivatives as potential FabH inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4657–4660. [Google Scholar] [CrossRef]
- Alam, O.; Naim, M.J.; Nawaz, F.; Alam, J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci. 2016, 8, 2–17. [Google Scholar] [CrossRef]
- Knorr, L. Einwirkung von Acetessigester auf Phenylhydrazin. Eur. J. Inorg. Chem. 1883, 16, 2597–2599. [Google Scholar] [CrossRef] [Green Version]
- Farag, A.A.; Khalifa, E.M.; Sadik, N.A.; Abbas, S.Y.; Al-Sehemi, A.; Ammar, Y.A. Synthesis, characterization, and evaluation of some novel 4(3H)-quinazolinone derivatives as anti-inflammatory and analgesic agents. Med. Chem. Res. 2012, 22, 440–452. [Google Scholar] [CrossRef]
- Sharma, S.; Srivastava, V.K.; Kumar, A. Newer N-substituted anthranilic acid derivatives as potent anti-inflammatory agents. Eur. J. Med. Chem. 2002, 37, 689–697. [Google Scholar] [CrossRef]
- Shoman, M.E.; Abdel-Aziz, M.; Aly, O.; Farag, H.H.; Morsy, M.A. Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives. Eur. J. Med. Chem. 2009, 44, 3068–3076. [Google Scholar] [CrossRef]
- El-Hawash, S.A.; Badawey, E.-S.A.; El-Ashmawey, I.M. Nonsteroidal antiinflammatory agents—Part 2 antiinflammatory, analgesic and antipyretic activity of some substituted 3-pyrazolin-5-ones and 1,2,4,5,6,7-3H-hexahydroindazol-3-ones. Eur. J. Med. Chem. 2006, 41, 155–165. [Google Scholar] [CrossRef]
- Aggarwal, R.; Bansal, A.; Rozas, I.; Kelly, B.; Kaushik, P.; Kaushik, D. Synthesis, biological evaluation and molecular modeling study of 5-trifluoromethyl-Δ2-pyrazoline and isomeric 5/3-trifluoromethylpyrazole derivatives as anti-inflammatory agents. Eur. J. Med. Chem. 2013, 70, 350–357. [Google Scholar] [CrossRef]
- Ilango, K.; Valentina, P. Textbook of Medicinal Chemistry, 1st ed.; Keerthi Publishers: Cheenai, India, 2007. [Google Scholar]
- Mizushima, T. Molecular Mechanism for Various Pharmacological Activities of NSAIDS. Pharmaceuticals 2010, 3, 1614–1636. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 2003, 62, 501–509. [Google Scholar] [CrossRef]
- Brune, K. Safety of anti-inflammatory treatment—New ways of thinking. Rheumatology 2004, 43, i16–i20. [Google Scholar] [CrossRef] [Green Version]
- Allison, M.C.; Howatson, A.G.; Torrance, C.J.; Lee, F.D.; Russell, R.I. Gastrointestinal Damage Associated with the Use of Nonsteroidal Antiinflammatory Drugs. N. Engl. J. Med. 1992, 327, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; et al. Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3- (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J. Med. Chem. 1997, 40, 1347–1365. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.; Cirilli, R. Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. Eur. J. Med. Chem. 2010, 45, 6135–6138. [Google Scholar] [CrossRef] [PubMed]
- Riedel, R. Lonazolac-Ca = Calcium [3-(p-chlorophenyl)-1-phenylpyrazole-4[-acetate 1 Pharmacological properties of a new antiinflammatory/antirheumatic drug (author’s transl). Arzneim. Forsch. 1981, 31, 655–665. [Google Scholar]
- Isidro, M.L.; Cordido, F. Drug treatment of obesity: Established and emerging therapies. Mini-Rev. Med. Chem. 2009, 9, 664–673. [Google Scholar] [CrossRef]
- Husain, A.; Ahmad, A.; Alam, M.; Ajmal, M.; Ahuja, P. Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur. J. Med. Chem. 2009, 44, 3798–3804. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivities of chalcones. Curr. Med. Chem. 1999, 6, 1125–1149. [Google Scholar]
- Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An Update on Cytotoxic and Chemoprotective Properties. Curr. Med. Chem. 2005, 12, 483–499. [Google Scholar] [CrossRef]
- Amir, M.; Kumar, S. Synthesis and Antiinflammatory, Analgesic, Ulcerogenic and Lipid Peroxidation Activities of 3,5-Dimethyl Pyrazoles, 3-Methyl Pyrazol-5-ones and 3,5-Disubstituted Pyrazolines. Indian J. Chem. Sect. B Org. Med. Chem. 2006, 37, 2532–2537. [Google Scholar] [CrossRef]
- Zelenin, K.; Bezhan, I.; Pastushenkov, L.; Gromova, E.; Lesiovskaja, E.; Chakchir, B.; Melnikova, L. Anti-inflammatory Activity of 2-Acyl-5(3)-hydroxytetrahydro-1H-pyrazole Derivatives. Arzneimittelforschung 1999, 49, 843–848. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Ashour, H.M.A.; Guemei, A.A. Novel Pyrazole Derivatives as Potential Promising Anti-inflammatory Antimicrobial Agents. Arch. Pharm. 2005, 338, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Banerjee, M.; Mishra, S.K.; Mohanta, R.K.; Panda, P.K.; Misro, P.K. Synthesis, partition coefficients and antibacterial activity of 3′-phenyl (substituted)-6′-aryl-2′ (1H)-cis-3′,3′a-dihydrospiro [3-H-indole-3,5′-pyrazolo (3′,4′-d)-thiazolo-2-(1H)-ones]. Acta Pol. Pharm. 2007, 64, 121–126. [Google Scholar] [PubMed]
- Tanitame, A.; Oyamada, Y.; Ofuji, K.; Terauchi, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J.-I. Synthesis and antibacterial activity of a novel series of DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg. Med. Chem. Lett. 2005, 15, 4299–4303. [Google Scholar] [CrossRef]
- Goda, F.; Maarouf, A.; Elbendary, E. Synthesis and antimicrobial evaluation of new isoxazole and pyrazole derivatives. Saudi Pharm. J. 2003, 11, 111–117. [Google Scholar]
- Singh, R.; Devi, S.; Gollen, R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes Metab. Res. Rev. 2015, 31, 113–126. [Google Scholar] [CrossRef]
- Chung, W.-Y.; Jung, Y.-J.; Surh, Y.-J.; Lee, S.-S.; Park, K.-K. Antioxidative and antitumor promoting effects of [6]-paradol and its homologs. Mutat. Res. Mol. Mech. Mutagen. 2001, 496, 199–206. [Google Scholar] [CrossRef]
- Fiuza, S.; Gomes, C.; Teixeira, L.; da Cruz, M.G.; Cordeiro, M.; Milhazes, N.; Borges, F.; Marques, M. Phenolic acid derivatives with potential anticancer properties—A structure–activity relationship study. Part 1: Methyl, propyl and octyl esters of caffeic and gallic acids. Bioorg. Med. Chem. 2004, 12, 3581–3589. [Google Scholar] [CrossRef] [Green Version]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.; da Cruz, T.G.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P. Anticancer Activity of Phenolic Acids of Natural or Synthetic Origin: A Structure–Activity Study. J. Med. Chem. 2003, 46, 5395–5401. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.A.M.; Borges, F.; Ferreira, M.A. Effects of Phenolic Propyl Esters on the Oxidative Stability of Refined Sunflower Oil. J. Agric. Food Chem. 2001, 49, 3936–3941. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.; Srivastava, V.; Kumar, A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem. 2004, 39, 449–452. [Google Scholar] [CrossRef]
- Konstantinidou, M.; Gkermani, A.; Hadjipavlou-Litina, D. Synthesis and Pharmacochemistry of New Pleiotropic Pyrrolyl Derivatives. Molecules 2015, 20, 16354–16374. [Google Scholar] [CrossRef] [PubMed]
- Cremlyn, R.J.; Swinbourne, F.J.; Mookerjee, E. Some reactions of 4-chlorosulfonyl-anaphthylchalcone. Indian J. Chem. 1986, 25, 562–565. [Google Scholar]
- Bate-Smith, E.; Westall, R. Chromatographic behaviour and chemical structure I. Some naturally occuring phenolic substances. Biochim. Biophys. Acta 1950, 4, 427–440. [Google Scholar] [CrossRef]
- Available online: http://www.biobyte.com (accessed on 1 June 2021).
- Bagchi, K.; Puri, S. Free radicals and antioxidants in health and disease: A review. EMHJ 1998, 4, 350–360. [Google Scholar]
- Liu, T.; Stern, A.; Roberts, L.J.; Morrow, J.D. The isoprostanes: Novel prostaglandin-like products of the free radical-catalyzed peroxidation of arachidonic acid. J. Biomed. Sci. 1999, 6, 226–235. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Kouzi, O.; Pontiki, E.; Hadjipavlou-Litina, D. 2-Arylidene-1-indandiones as Pleiotropic Agents with Antioxidant and Inhibitory Enzymes Activities. Molecules 2019, 24, 4411. [Google Scholar] [CrossRef] [Green Version]
- Pontiki, E.; Hadjipavlou-Litina, D. Multi-Target Cinnamic Acids for Oxidative Stress and Inflammation: Design, Synthesis, Biological Evaluation and Modeling Studies. Molecules 2018, 24, 12. [Google Scholar] [CrossRef] [Green Version]
- Mavridis, E.; Bermperoglou, E.; Pontiki, E.; Hadjipavlou-Litina, D. 5-(4H)-Oxazolones and Their Benzamides as Potential Bioactive Small Molecules. Molecules 2020, 25, 3173. [Google Scholar] [CrossRef]
- Müller, K. 5-Lipoxygenase and 12-Lipoxygenase: Attractive Targets for the Development of Novel Antipsoriatic Drugs. Arch. Pharm. 1994, 327, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Minor, W.; Steczko, J.; Bolin, J.T.; Otwinowski, Z.; Axelrod, B. Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry 1993, 32, 6320–6323. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Jankun, E.; Amzel, L.M.; Kroa, B.A.; Funk, M.O., Jr. Structure of soybean lipoxygenase L3 and a comparison with its L1 isoenzyme. Proteins 1997, 29, 15–31. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Roberfroid, M.; Viehe, H.; Remacle, J. Advances in Drug Research; Academic Press: London, UK, 1987. [Google Scholar]
- Campbell, A.; Kashgarian, M.; Shlomchik, M.J. NADPH Oxidase Inhibits the Pathogenesis of Systemic Lupus Erythematosus. Sci. Transl. Med. 2012, 4, 157ra141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultqvist, M.; Bäcklund, J.; Bauer, K.; Gelderman, K.A.; Holmdahl, R. Lack of Reactive Oxygen Species Breaks T Cell Tolerance to Collagen Type II and Allows Development of Arthritis in Mice. J. Immunol. 2007, 179, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- Hiller, K.-O.; Hodd, P.; Willson, R. Antiinflammatory drugs: Protection of a bacterial virus as an in vitro biological measure of free radical activity. Chem. Interact. 1983, 47, 293–305. [Google Scholar] [CrossRef]
- Kulmacz, R.; Lands, W. Prostaglandins and Related Substances: A Practical Approach. FEBS Lett. 1987, 32, 209–227. [Google Scholar]
- And, C.A.K.; Hadjipavlou-Litina, D.J. Synthesis and Antiinflammatory Activity of Coumarin Derivatives. J. Med. Chem. 2005, 48, 6400–6408. [Google Scholar] [CrossRef]
- Cui, M.; Ono, M.; Kimura, H.; Liu, B.L.; Saji, H. Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe. Bioorg. Med. Chem. Lett. 2011, 21, 980–982. [Google Scholar] [CrossRef] [PubMed]
- Kini, S.G.; Bhat, A.R.; Bryant, B.; Williamson, J.S.; Dayan, F.E. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives. Eur. J. Med. Chem. 2009, 44, 492–500. [Google Scholar] [CrossRef]
- Gavalas, A.; Kourounakis, L.; Litina, D.; Kourounakis, P. Anti-inflammatory and immunomodulating effects of the novel agent gamma-(2-aminoethylamino)-2-butyrothienone. 1st communication: Inhibitory effects on mouse paw edema. Arzneimittelforschung 1991, 41, 423–426. [Google Scholar] [PubMed]
- Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage. Bioorg. Med. Chem. Lett. 2004, 14, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Fiser, A.; Šali, A. Modeller: Generation and Refinement of Homology-Based Protein Structure Models. Methods Enzymol. 2003, 374, 461–491. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Da Silva, A.W.S.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compd | Template | Ar1 | Ar2 |
---|---|---|---|
2a | |||
2b | |||
2c | |||
2d | |||
2e | |||
2f | |||
2g | |||
2h |
Compd. | E(HOMO) (eV) | E(LUMO) (eV) | ΔE(HOMO-LUMO) (eV) | SM2 (kcal/mol) | Surface (Ǻ2) | (Ǻ3) (MV) | Dipole (D) | LPSP | RM a (±SD) a | clog P (C-QSAR) |
---|---|---|---|---|---|---|---|---|---|---|
2a | −7.65 | 2.15 | 9.80 | −6.29 | 321.20 | 318.74 | 2.66 | 4.19 | 0.22 ± 0.2 | 4.77 |
2b | −7.67 | 2.64 | 10.31 | −11.04 | 329.46 | 320.31 | 5.84 | 3.36 | 0.23 ± 0.03 | 4.30 |
2c | −8.44 | 2.39 | 10.83 | −25.72 | 450.99 | 439.09 | 2.44 | 4.84 | 0.68 ± 0.05 | 7.40 |
2d | −7.84 | 2.86 | 10.70 | −8.24 | 419.96 | 410.67 | 1.57 | 5.63 | 0.72 ± 0.06 | 6.15 |
2e | −8.08 | 2.78 | 10.86 | −10.96 | 434.69 | 422.90 | 4.27 | 5.96 | 0.87 ± 0.07 | 6.69 |
2f | −7.73 | 2.48 | 10.21 | −12.79 | 349.38 | 340.28 | 2.32 | 2.22 | −0.07 ± 0.01 | 4.97 |
2g | −7.78 | 2.07 | 9.85 | −7.37 | 382.80 | 376.11 | 1.44 | 4.17 | −0.59 ± 0.05 | 6.89 |
2h | −8.46 | 2.23 | 10.69 | −7.27 | 412.08 | 403.67 | 2.38 | 3.64 | 0.41 ± 0.02 | 6.78 |
Compd. | RA% 50 µM 20 min | RA% 50 µM 60 min | RA% 100 µM 20 min | RA% 100 µM 60 min | RA% 200 µM 20 min | RA% 200 µM 60 min | LOX % Inhibition at 100 µM |
---|---|---|---|---|---|---|---|
2a | 15.0 | 20.0 | 22.9 | 32.0 | 37.2 | 49.3 | 35 |
2b | 19.3 | 25.0 | 26.1 | 33.6 | 34.9 | 44.4 | 17 |
2c | 17.1 | 22.4 | 41.9 | 44.0 | 49.4 | 59.2 | 42 |
2d | 6.3 | 9.5 | 19.4 | 37.4 | 9.4 | 14.9 | 13 |
2e | 9.5 | 13.0 | 14.8 | 17.8 | 25.6 | 30.1 | 16 |
2f | 21.0 | 24.7 | 34.7 | 38.8 | 50.1 | 59.5 | 3 |
2g | 9.0 | 12.7 | 11.2 | 13.6 | 22.5 | 27.7 | 60 (IC50 = 80 μM) |
2h | 6.7 | 9.5 | 7.8 | 9.6 | 17.2 | 20.9 | 26 |
NDGA | 81 | 83 | 87 | 93 | 94 | 96 | 93 (0.45 μΜ) |
Compd. | AAPH% 100 µM | ABTS+ % 100 µM | CPE a % |
---|---|---|---|
2a | 89 | no | no |
2b | 78 | no | 27.0 * |
2c | 100 | no | 38.0 * |
2d | 96 | 15 | 63.0 ** |
2e | 98 | 30 | 56.0 ** |
2f | 95 | no | 30.0 * |
2g | 100 | no | 33.0 * |
2h | 97 | no | 16.0 * |
Trolox | 93 | 91 | - |
Indomethacin | - | - | 47 ** |
LLA *-C | 2g-LOX (% Inhibition 100 µM) | NDGA-LOX (% Inhibition 100 µM) |
---|---|---|
50 µM | 89.6 | 39.3 |
100 µM | - | 36.2 |
200 µM | - | 6.6 |
Compound | Writhing Inhibition (%) a |
---|---|
2d | 54.2 * |
2e | 66.1 * |
Aspirin | 77 ** |
Examined Parameters (mean ± SD) | AID Rats Treated with 2d | AID Rats Treated with IMA | AID Rats-Controls Treated only with the Liquid Vehicle | Absolute Controls, Normal Animals Treated only with the Liquid Vehicle |
---|---|---|---|---|
Percent change in body weight (g ± SD) | 6 ± 0.3 ** | 8.3 ± 0.2 * | 3 ± 0.1 * | 14 ± 2 * |
Percent change in liver weight (g ± SD) | 7 ± 0.6 * | 6.3 ± 0.4 * | 7.8 ± 0.4 * | 8.7 ± 0.5 ** |
Zoxazolamine paralysis (minutes ± SD) | 227 ± 17 * | 217 ± 17 ** | 284 ± 19 * | 156 ± 18 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules 2021, 26, 3439. https://doi.org/10.3390/molecules26113439
Mantzanidou M, Pontiki E, Hadjipavlou-Litina D. Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules. 2021; 26(11):3439. https://doi.org/10.3390/molecules26113439
Chicago/Turabian StyleMantzanidou, Martha, Eleni Pontiki, and Dimitra Hadjipavlou-Litina. 2021. "Pyrazoles and Pyrazolines as Anti-Inflammatory Agents" Molecules 26, no. 11: 3439. https://doi.org/10.3390/molecules26113439
APA StyleMantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules, 26(11), 3439. https://doi.org/10.3390/molecules26113439