Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review
Abstract
:1. Introduction
2. Types of Fruits and Classification of Fruit Polyphenols
3. Extraction of Polyphenols from Fruits
3.1. Conventional Methods
3.2. Modern Extraction Techniques
4. Antibacterial Mechanism of Fruit Polyphenols
4.1. Interaction with Cell Wall and Cell Membrane
4.2. Interaction with Enzymes
4.3. Interaction with Protein
5. In Vitro Antibacterial Activity of Fruit-Polyphenols-Rich Extracts
6. In Vitro Antibacterial Activity of Polyphenol-Functionalized Nanoparticles (NPs)
7. Safety Issues and Current Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Addis, M.; Sisay, D. A review on major food borne bacterial illnesses. J. Trop. Dis. 2015, 3, 4. [Google Scholar]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Kaur, T.; Nepovimova, E.; Kuča, K.; Kumar, V.; Bhatia, S.K.; Dhanjal, D.S.; Chopra, C.; Singh, R.; et al. Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review. Foods 2020, 9, 1504. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.D.; McKay, I.; Hall, G.V.; Dalton, C.B.; Stafford, R.; Unicomb, L.; Gregory, J.; Angulo, F.J. Food Safety: Foodborne Disease in Australia: The OzFoodNet Experience. Clin. Infect. Dis. 2008, 47, 392–400. [Google Scholar] [CrossRef]
- Elias, S.D.O.; DeCol, L.T.; Tondo, E.C. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual. Saf. 2018, 2, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Glasset, B.; Herbin, S.; Guillier, L.; Cadel-Six, S.; Vignaud, M.; Grout, A.; Pairaud, S.; Michel, V.; Hennekinne, J.; Ramarao, N.; et al. Bacillus cereus-induced foodborne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterization. Eurosurveillance 2016, 21, 30413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werber, D.; Dreesman, J.; Feil, F.; Van Treeck, U.; Fell, G.; Ethelberg, S.; Hauri, A.M.; Roggentin, P.; Prager, R.; Fisher, I.S.T.; et al. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellou, K.; Kyritsi, M.; Chrysostomou, A.; Sideroglou, T.; Georgakopoulou, T.; Hadjichristodoulou, C. Clostridium perfringens Foodborne Outbreak during an Athletic Event in Northern Greece, June 2019. Int. J. Environ. Res. Public Health 2019, 16, 3967. [Google Scholar] [CrossRef] [Green Version]
- Debnath, F.; Mukhopadhyay, A.K.; Chowdhury, G.; Saha, R.N.; Dutta, S. An Outbreak of Foodborne Infection Caused by Shigella sonnei in West Bengal, India. JPN J. Infect. Dis. 2018, 71, 162–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mermin, J.H.; Griffin, P.M. Public health in crisis: Outbreaks of Escherichia coli O157:H7 infections in Japan. Am. J. Epidemiol. 1999, 150, 797–803. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.S.; Al-Sekaiti, M.H.; Al-Mazroa, M. Foodborne Salmonella outbreak in a college, Riyadh, Saudi Arabia, October 2009 (1430 H). Saudi Epidemiol. Bull. 2010, 17, 9–10. [Google Scholar]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; De-Mateo-Silleras, B.; Redondo-Del-Río, M.P. Food Safety through Natural Antimicrobials. Antibiotics 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [Green Version]
- Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdu-Queralt, A. Dietary Polyphenols in the Prevention of Stroke. Oxidative Med. Cell. Longev. 2017, 2017, 7467962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasrollahzadeh, M.; Shafiei, N.; Nezafat, Z.; Bidgoli, N.S.S.; Soleimani, F.; Varma, R.S. Valorisation of Fruits, their Juices and Residues into Valuable (Nano)materials for Applications in Chemical Catalysis and Environment. Chem. Rec. 2020, 20, 1338–1393. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019, 119, 244–267. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.-Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef]
- Purewal, S.S.; Sandhu, K.S. Nutritional Profile and Health Benefits of Kinnow: An Updated Review. Int. J. Fruit Sci. 2020, 20, S1385–S1405. [Google Scholar] [CrossRef]
- Favela-Hernández, J.M.J.; González-Santiago, O.; Ramírez-Cabrera, M.A.; Esquivel-Ferriño, P.C.; Camacho-Corona, M.D.R. Chemistry and pharmacology of Citrus sinensis. Molecules 2016, 21, 247. [Google Scholar] [CrossRef] [Green Version]
- Chhikara, N.; Kour, R.; Jaglan, S.; Gupta, P.; Gat, Y.; Panghal, A. Citrus medica: Nutritional, phytochemical composition and health benefits-areview. Food Funct. 2018, 9, 1978–1992. [Google Scholar]
- Bhattacharjya, D.; Sadat, A.; Biswas, K.; Nesa, J.; Kati, A.; Saha, S.; Mandal, A.K. Nutraceutical and Medicinal Property of Mulberry Fruits: A Review on Its Pharmacological Potential. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjc48zZ0aLuAhV4zTgGHf79BW0QFjABegQIARAC&url=https%3A%2F%2Fwww.preprints.org%2Fmanuscript%2F202004.0105%2Fv1%2Fdownload&usg=AOvVaw0Zq0wUll5BXZc9hbpkribt (accessed on 18 November 2020).
- Silvan, J.M.; Michalska-Ciechanowska, A.; Martinez-Rodriguez, A.J. Modulation of antibacterial, antioxidant, and anti-inflammatory properties by drying of Prunus domestica L. plum juice extracts. Microorganisms 2020, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Sun, X.; Xie, Q.; Liu, H.; Zhao, Y.; Pan, Y.; Hwang, C.A.; Wu, V.C.H. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts again stthe growth of Listeria monocytogenes and Salmonella Enteritidis. Food Contr. 2014, 35, 159–165. [Google Scholar] [CrossRef]
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Bhat, H.P.; Baliga, B.R.V.; Wilson, R.; Palatty, P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam.(blackplum): A review. Food Res. Int. 2011, 44, 1776–1789. [Google Scholar] [CrossRef]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punicagranatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium guajava:A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Seeram, N.P. Strawberry Phytochemicals and Human Health: Areview. Available online: https://www.researchgate.net/publication/228983423_Strawberry_phytochemicals_and_human_health_a_review (accessed on 8 August 2020).
- Sidhu, J.S.; Zafar, T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018, 2, 183–188. [Google Scholar] [CrossRef]
- Oranusi, S.U.; Braide, W.; Umeze, R.U. Antimicrobial activities and chemical compositions of Chrysophyllum cainito (starapple) fruit. Microbiol. Res. Int. 2015, 3, 41–50. [Google Scholar]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, R. Flavonoids and flower colour. In The Flavonoids. Advances in Research Since 1980; Harborne, J.B., Ed.; Springer: London, UK, 1988; pp. 525–538. [Google Scholar]
- Gorham, J.; Tori, M.; Asakawa, Y. The Biochemistry of the Stilbenoids; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Zhang, N.L.; Zhu, Y.H.; Huang, R.M.; Fu, M.Q.; Su, Z.W.; Cai, J.Z.; Hu, Y.J.; Qiu, S.X. Two new stilbenoids from Cajanus cajan. Z. Nat. B 2012, 67, 1314–1318. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Mozer, E.B.; Hrnčic, M.K.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidativeaction, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar]
- Stalikas, C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolicacids. Food Chem. 2010, 121, 140–147. [Google Scholar] [CrossRef]
- Metivier, R.P.; Francis, F.J.; Clydesdale, F.M. Solvent extraction of anthocyanins from wine pomace. J. Food Sci. 1980, 45, 1099–1100. [Google Scholar] [CrossRef]
- Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 2001, 49, 1270–1276. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Drilleau, J. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001, 49, 14–20. [Google Scholar] [CrossRef]
- Labarbe, B.; Cheynier, V.; Brossaud, F.; Souquet, J.M.; Moutounet, M. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 1999, 47, 2719–2723. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Cirillo, E.; Natella, F.; Mencarelli, D.; Comisso, A.; Scaccini, C. Detection of bound phenolicacids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002, 79, 119–124. [Google Scholar] [CrossRef]
- Solanaa, M.; Boschiero, I.; Dall’Acquab, S.; Bertucco, A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- King, M.B.; Bott, T.R. Extraction of Natural Products Using Near-Critical Solvents; Chapman & Hall: Glasgow, UK, 1993; pp. 84–100. [Google Scholar]
- McHugh, M.A.; Krukonis, V.J. Supercritical Fluid Extraction: Principles and Practice; Butterworths: Stoneham, MA, USA, 1986. [Google Scholar]
- Lack, E.; Simandy, B. High Pressure technology: Fundamentals and application. In Industrial Chemistry Library; Bertucco, A., Vetter, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 9, pp. 537–575. [Google Scholar]
- Kikic, I.; Lora, M.; Bertucco, A. A Thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (ress), particles from gas-saturated solutions (pgss), and supercritical antisolvent (SAS). Ind. Eng. Chem. Res. 1997, 36, 5507–5515. [Google Scholar] [CrossRef]
- Brunner, G. Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes; Steinkopff: Darmstadt, Germany; Springer: New York, NY, USA, 1994. [Google Scholar]
- Dai, J.; Mumper, J.R. Plant Phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.P.; Goodwin, A.R.H.; Lemmon, E.W.; Levelt-Sengers, J.M.H.; Williams, R.C. A formulation for the static permittivity of water and steam at temperatures features from 238K to 873K at pressures up to 1200MPa, Including derivatives and Debye-Hückel coefficients. J. Phys. Chem. 1997, 26, 1126–1166. [Google Scholar]
- Miller, D.J.; Hawthorne, S.B. Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 to 473K. J. Chem Eng. Data 2000, 45, 315–318. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. World Sci. J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Field, J.A.; Lettinga, G. Toxicity of tannic compounds to microorganisms. In Plant Polyphenols; Hemingway, R.W., Laks, P.E., Eds.; Springer: London, UK, 1992; pp. 673–692. [Google Scholar]
- Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015, 13, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, O.; Cai, Z.; Toda, M.; Hara, Y.; Shimamura, T. Appearance of antibacterial activity of oxacillin against methicillin resistant Staphylococcus aureus (MRSA) in the presence of catechin. Kansenshogaku Zasshi 1995, 69, 1126–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.H.; Hu, Z.Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1737–1742. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.H.; Hu, Z.Q.; Hara, Y.; Shimamura, T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2266–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoda, Y.; Hu, Z.Q.; Shimamura, T.; Zhao, W.H. Different susceptibilities of Staphylococcus and Gram-negative rods toepigallocatechin gallate. J. Infect. Chemother. 2004, 10, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.J.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berryphenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef]
- Delehanty, J.B.; Johnson, B.J.; Hickey, T.E.; Pons, T.; Ligler, F.S. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. J. Nat. Prod. 2007, 70, 1718–1724. [Google Scholar] [CrossRef]
- Johnson, B.J.; Delehanty, J.; Lin, B.; Ligler, F.S. Immobilized proanthocyanidins for the capture of bacterial lipopolysaccharides. Anal. Chem. 2008, 80, 2113–2117. [Google Scholar] [CrossRef]
- Hisano, M.; Bruschini, H.; Nicodemo, A.C.; Srougi, M. Cranberries and lower urinary tract infection prevention. Clinics 2012, 67, 661–668. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; DeMartino, L.; Coppola, R.; DeFeo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2751–2756. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Contr. 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Opoku-Temeng, C.; Sintim, H. Inhibition of cyclic diadenylate cyclase, DisA, bypolyphenols. Sci. Rep. 2016, 6, 25445. [Google Scholar] [CrossRef] [Green Version]
- Witte, C.E.; Whiteley, A.T.; Burke, T.P.; Sauer, J.D.; Portnoy, D.A.; Woodward, J.J. Cyclicdi-AMPiscritical for Listeria monocytogenes growth, cell wall homeostasis, and establish mentof infection. mBio 2013, 4, e00282-13. [Google Scholar] [CrossRef] [Green Version]
- Sureka, K.; Choi, P.H.; Precit, M.; Delince, M.; Pensinger, D.A.; Huynh, T.N.; Jurado, A.R.; Goo, Y.A.; Sadilek, M.; Iavarone, A.T.; et al. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 2014, 158, 1389–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, T.N.; Luo, S.; Pensinger, D.; Sauer, J.D.; Tong, L.; Woodward, J.J. AnHD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc. Natl. Acad. Sci. USA 2015, 112, E747–E756. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.T.; Zhu, Q.; Zhang, H.Y. Identifying antibacterial target sofflavonoids by comparative genomics and molecular modeling. Open J. Genom. 2014, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Regmi, S.C.; Kim, J.A.; Cho, M.H.; Yun, H.; Lee, C.S.; Lee, J. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 2011, 79, 4819–4827. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.F.; Akhtar, S.; Anwar, M. Nutritional value and medicinal benefits of pineapple. Int. J. Nutr. Food Sci. 2015, 4, 84–88. [Google Scholar] [CrossRef]
- Zharfan, R.S.; Purwono, P.B.; Mustika, A. Antimicrobial activity of pineapple (Ananascosmosus L. Merr) extract against multidrug-resistant of Pseudomonas aeruginosa: An in vitro study. Indones. J. Trop. Infect. Dis. 2017, 6, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Farhana, J.A.; Hossain, M.F.; Mowlah, A. Antibacterial effects of guava (Psidium guajava L.) extracts against food borne pathogens. Int. J. Nutr. Food Sci. 2017, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Almulaiky, Y.; Zeyadi, M.; Saleh, R.; Baothman, O.; Al-shawafi, W.; Al-Talhi, H. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatal. Agric. Biotechnol. 2018, 16, 90–97. [Google Scholar] [CrossRef]
- Vallejo, C.V.; Minahk, C.J.; Rollán, G.C.; Rodríguez-Vaquero, M.J. Inactivation of Listeria monocytogenes and Salmonella Typhimurium in strawberry juice enriched with strawberry polyphenols. J. Sci. Food Agric. 2021, 101, 441–448. [Google Scholar] [CrossRef]
- Tumpa, S.I.; Hossain, M.I.; Ishika, T. Antimicrobial activities of Psidium guajava, Carica papaya and Mangifera indica against some gram positive and gram negative bacteria. J. Pharm. 2015, 3, 125–129. [Google Scholar]
- Ukaegbu-Obi, K.M.; Anyaegbunam, C.P.; Enya, E. Antibacterial activity of Carica papaya seeds on some human pathogens. Ann. West. Univ. Timis. Ser. Biol. 2018, 21, 11–16. [Google Scholar]
- Nozohour, Y.; Golmohammadi, R.; Mirnejad, R.; Fartashvand, M. Antibacterial activity of pomegranate (Punicagranatum L.) seed and peel alcoholic extracts on Staphylococcus aureus and Pseudomonas aeruginosa isolated from health centers. J. Appl. Biotechnol. Rep. 2018, 5, 32–36. [Google Scholar] [CrossRef]
- Dey, D.; Debnath, S.; Hazra, S.; Ghosh, S.; Ray, R.; Hazra, B. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrumβ-lactamase(ESBL) and metallo-β-lactamase (MBL) producing Gram-negative bacilli. Food Chem. Toxicol. 2012, 50, 4302–4309. [Google Scholar] [CrossRef]
- Fawole, O.A.; Makunga, N.P.; Opara, U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012, 12, 200. [Google Scholar] [CrossRef] [Green Version]
- Dabesor, A.P.; Asowata-Ayodele, A.M.; Umoiette, P. Phytochemical compositions and antimicrobial activities of Ananascomosuspeel (M.) and Cocos nucifera kernel (L.) on selected food borne pathogens. Am. J. Plant. Biol. 2017, 2, 73–76. [Google Scholar]
- Loon, Y.K.; Satari, M.H.; Dewi, W. Antibacterial effect of pineapple (Ananascomosus) extract towards Staphylococcus aureus. Padjadjaran J. Dent. 2018, 30, 1–6. [Google Scholar] [CrossRef]
- Haque, R.; Sumiya, M.K.; Sakib, N.; Sarkar, O.S.; Siddique, T.T.I.; Hossain, S.; Islam, I.; Parvez, A.K.; Talukder, A.A.; Dey, S.K. Antimicrobial activity of jambul (Syzygiumcumini) fruit extract on enteric pathogenic bacteria. Adv. Microbiol. 2017, 7, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Kaur, A.; Singh, N.; Nim, L.; Shevkani, K.; Kaur, H.; Arora, D.S. In vitro antioxidant and antimicrobial properties of jambolan (Syzygiumcumini) fruit polyphenols. LWT Food Sci. Technol. 2016, 65, 1025–1030. [Google Scholar] [CrossRef]
- Karabıyıklı, S.; Değirmenci, H.; Karapınar, M. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes. LWT Food Sci. Technol. 2014, 55, 421–425. [Google Scholar] [CrossRef]
- Oikeh, E.I.; Oviasogie, F.E.; Omoregie, E.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin. Phytoscience 2020, 6, 46. [Google Scholar] [CrossRef]
- Dubey, D.; Balamurugan, K.; Agrawal, R.C.; Verma, R.; Jain, R. Evalution of antibacterial and antioxidant activity of methanolic and hydromethanolic extract of sweet or angepeels. Recent Res. Sci. Technol. 2011, 3, 22–25. [Google Scholar]
- Xu, C.; Yagiz, Y.; Hsu, W.Y.; Simonne, A.; Lu, J.; Marshall, M.R. Antioxidant, antibacterial and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J. Agric. Food Chem. 2014, 62, 6640–6649. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2015, 4, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.H.; Hao, L.R.; Xie, Q.C.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C.H. Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Contr. 2020, 111, 107020. [Google Scholar] [CrossRef]
- Hosainzadegan, H.; Alizadeh, M.; Karimi, F.; Pakzad, P. Study of antibacterial effects of ripped and raw fig alone and in combination. J. Med. Plant. Res. 2012, 6, 2864–2867. [Google Scholar] [CrossRef]
- Venkatesh, K.V.; Girish, K.K.; Pradeepa, K.; Santosh, K.S.R. Antibacterial activity of ethanol extract of Musa paradisiacacv. Puttabale and Musa acuminate cv. Grand Naine. Asian J. Pharm. Clin. Res. 2013, 6, 169–172. [Google Scholar]
- Jouneghani, R.S.; Castro, A.H.F.; Panda, S.K.; Swennen, R.; Luyten, W. Antimicrobial activity of selected banana cultivars against important human pathogens, including Candida biofilms. Foods 2020, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Raphaelli, C.O.; Dannenberg, G.; Dalmazo, G.O.; Pereira, E.S.; Radünz, M.; Vizzotto, M.; Fiorentini, A.M.; Gandra, E.A.; Nora, L. Antibacterial and antioxidant properties of phenolic-rich extracts from apple (Malus domesticacv.Gala). Int. Food Res. J. 2019, 26, 1133–1142. [Google Scholar]
- Timoszyk, A. A review of thebiological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018, 41, 154. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Bhardwaj, K.; Dhanjal, D.S.; Nepovimova, E.; Şen, F.; Regassa, H.; Singh, R.; Verma, R.; Kumar, V.; Kumar, D.; et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int. J. Mol. Sci. 2020, 21, 8458. [Google Scholar] [CrossRef]
- Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018, 255, 541–549. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Shiravand, S.; Mahmoudvand, H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017, 21, 866–871. [Google Scholar] [CrossRef]
- Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015, 31, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, S.; Ahmeda, A.; Salehabadi, Y.; Zangeneh, A.; Zangeneh, M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbicacid. Polyhedron 2020, 180, 114425. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Ibrahiem, A.A.; Dalloul, T.R. Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2016, 4, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Jassim, A.M.N.; Mohammed, M.T.; Farhan, S.A.; Dadoosh, R.M.; Majeed, Z.N.; Abdula, A.M. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J. Pharm. Sci. Res. 2019, 11, 1025–1034. [Google Scholar]
- Zia, M.; Gull, S.; Akhtar, J.; Haq, I.U.; Abbasi, B.H.; Hussain, A.; Naz, S.; Chaudhary, M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017, 11, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Phongtongpasuk, S.; Poadang, S.; Yongvanich, N. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia 2016, 89, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Kalia, A.; Manchanda, P.; Bhardwaj, S.; Singh, G. Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorg. Nano Met. Chem. 2020, 50, 1053–1062. [Google Scholar] [CrossRef]
- GnanaJobitha, G.; Rajeshkumar, S.; Annadurai, G.; Kannan, C. Preparation and characterization of fruit-mediated silver nanoparticles using pomegranate extract and assessment of its antimicrobial activities. J. Environ. Nanotechnol. 2013, 2, 4–10. [Google Scholar]
- Arooj, N.; Dar, N.; Samra, Z.Q. Stable silver nanoparticles synthesis by Citrus sinensis (Orange) and assessing activity against food poisoning microbes. Biomed. Environ. Sci. 2014, 27, 815–818. [Google Scholar]
- Ajmal, N.; Saraswat, K.; Sharma, V.; Zafar, M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharm. Life Sci. 2016, 5, 91–94. [Google Scholar]
- Ahmad, R.A.R.; Harun, Z.; Othman, M.H.D.; Basri, H.; Yunos, M.Z.; Ahmad, A.; Akhair, S.H.M.; Rashid, A.Q.A.; Azhar, F.H.; Alias, S.S.; et al. Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays. J. Fund. Appl. Sci. 2019, 15, 268–273. [Google Scholar] [CrossRef]
- Pavithra, N.S.; Lingaraju, K.; Raghu, G.K.; Nagaraju, G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 11–19. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Sharma, A.; Tejwan, N.; Bhardwaj, S.; Bhardwaj, P.; Nepovimova, N.; Shami, A.; Kalia, A.; Kumar, A.; Abd-Esalam, K.A.; et al. Pleurotus macrofungi-assisted nanoparticles synthesis and its potential applications: A review. J. Fungi 2020, 6, 351. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.D.; Morrissey, R.L.; Usborne, A.L.; Kapetanovic, I.; Crowell, J.A.; Muzzio, M.; McCormick, D.L. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem. Toxicol. 2011, 49, 3319–3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangeetha, M.K.; Vallabi, D.E.; Sali, V.K.; Thanka, J.; Vasanthi, H.R. Sub-acutetoxicity profile of a modified resveratrol supplement. Food Chem. Toxicol. 2013, 59, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Charradi, K.; Mahmoudi, M.; Bedhiafi, T.; Jebari, K.; ElMay, M.V.; Limam, F.; Aouani, E. Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed. Pharm. 2018, 107, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, N.O.A.; Ahmed, L.A.; Abdallah, D.M.; El-Sayeh, B.M. Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice. Sci. Rep. 2018, 8, 7880. [Google Scholar] [CrossRef]
- Mazzanti, G.; Di, S.A.; Vitalone, A. Hepatotoxicity of green tea: An update. Arch. Toxicol. 2015, 89, 1175–1191. [Google Scholar] [CrossRef]
- Crowe, K.M.; Francis, C. Position of the academy of nutrition and dietetics: Functional foods. J. Acad. Nutr. Diet 2013, 113, 1096–1103. [Google Scholar] [CrossRef]
- Williamson, G.; Holst, B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? Brit. J. Nutr. 2008, 99, S55–S58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, S.; Mussatto, S.I.; Martínez-avila, G.; Montañez-saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Country | Year | Source | Pathogen | Disease | Confirmed Cases | Ref. |
---|---|---|---|---|---|---|
Australia | 2001–2007 | Chicken | Campylobacter jejuni | Campylobacteriosis | 16,000 | [4] |
Brazil | 2013 | Cooked salads | Staphylococcus aureus | Food illness | 472 | [5] |
Canada | 2015–2019 | Frozen raw chicken products | Salmonella enterica serovar Enteritidis | Salmonellosis | 584 | [3] |
France | 2007–2014 | Starchy foods and vegetables | Bacillus cereus | Diarrhoea | 911 | [6] |
Germany | 2001–2002 | Chocolate | Salmonella (S.) Oranienburg | Salmonellosis | 439 | [7] |
Greece | 2019 | Minced beef | Clostridium perfringens | Gastroenteritis | 71 | [8] |
India | 2016 | Unrefrigerated raw sliced tomatoes | Shigella sonnei | Gastroenteritis | 34 | [9] |
Japan | 1996 | White radish sprouts | Escherichia coli O157:H7 | Diarrhoea | 7000 | [10] |
Saudi Arabia | 2009 | Local sweet | Salmonella enteric serovar Enteritidis | Salmonellosis | 200 | [11] |
United Kingdom | 2017 | Chicken liver dishes | Campylobacter spp. | Campylobacteriosis | 7 | [3] |
United States | 2013–2014 | Chicken dishes | Salmonella Heidelberg | Salmonellosis | 634 | [3] |
Zimbabwe | 2014 | Stewed chicken | Staphylococcus aureus | Food illness | 53 | [3] |
Category | Description | Example |
---|---|---|
Simple | Simple fruits are those developed into fruit from the mature ovary of the flower | |
Drupes | Also known as stone fruits, such fruits comprise hard seed within fruits | Cherry, peach, plum |
Berries | Juicy and single seed fruits, with seeds being found at the center | Banana, blueberries, grapes, pomegranate |
Pomes | Fruits that blossom in the trees | Papaya, apple |
Hesperidium and Pepos | Fruits often proclaimed to be slightly similar to berries and comprises fruits | Citrus fruits |
Aggregate | These fruits develop by merging numerous matured ovaries, which were previously a single flower | Strawberry |
Composite | These fruits are also stated as multiple fruits as they develop from complete inflorescences | |
Sorosis | Fruits developed from spadix, spikes, or catkin inflorescence | Pineapple, jackfruits, mulberry |
Syconus | Fruits developed from hypanthodium inflorescence | Fig |
Class Name, Subclass Name | Examples | Sources | References |
---|---|---|---|
Flavonoids | |||
Flavones | Luteolin, Apigenin | Fig, Grape | [17,18] |
Flavanones | Hesperidin, Naringenin | Kinnow, Grape, Orange, Citron | [18,19,20,21] |
Flavonols | Quercetin, Quercetin-3-O-galactoside, Kaempferol, Myricetin, Morin | Kinnow, Mulberry, Fig, Grape, Plum, Blueberry, Cherry, Black Plum, Apple, Pomegranate, Guava, Strawberry | [17,18,19,22,23,24,25,26,27,28,29,30] |
Flavan-3-ols | Monomers: (+)-Catechin, (−)-Epicatechin, (−)-Epigallocatechin, (−)-Epicatechin-3-gallate, (−)-Epigallocatechin-3-gallate | Banana, Kinnow, Mulberry, Fig, Grape, Pomegranate | [17,18,19,22,28,31] |
Isoflavones | Genistein, Daidzein, Dihydrodaidzein, Equol | Grape | [18] |
Anthocyanidins | Cyanidin, Pelargonidin, Peonidin, Delphinidin, Petunidin, Malvidin, Cyanidin-3-glucoside, Cyanidin-3-rutinoside, Pelargonidin-3-glucoside | Mulberry, Fig, Grape, Orange, Plum, Cherry, Black Plum, Pomegranate, Strawberry | [17,18,19,20,21,22,23,25,26,28,30] |
Dihydrochalcone | Phloridzin, Phloretin | Apple | [27] |
Stilbenoids | |||
Stilbenoids | trans-Resveratrol, trans-Piceid | Grape | [18] |
Phenolic acids | |||
Benzoic acids | Monomers: p-Hydroxybenzoic acid, Gallic acid, Protocatechuic acid(3,4), Cinnamic acid, ellagic acid | Banana, Kinnow, Fig, Grape, Blueberry, Black Plum, Apple, Pomegranate, Guava | [17,18,19,24,26,27,28,29,31] |
Hydroxycinnamic acids | Caffeic acid, p-Coumaric acid, Ferulic acid, Synaptic acid Chlorogenic acids: Chlorogenic acid | Banana, Kinnow, Mulberry, Fig, Grape, Plum, Black Plum, Apple, Pomegranate, Strawberry | [17,18,19,22,23,26,27,28,30,31] |
Quinic acids | Neochlorogenic acid, 3-feruloylquinic acid, 3-O-p-Coumaroylquinic acid | Plum | [23] |
Tannin | |||
Tannic acid | Monomers: Tannic acid | Pomegranate, Star Apple | [28,32] |
Scientific Name | Common Name | Extract | Bacteria | References |
---|---|---|---|---|
Psidium guajava L. | Guava | Aqueous; Methanol | S. aureus ATCC 25923, E. coli ATCC 25922, B. cereus BTCC 19, S. sonnei BTCC and S. typhi BTCC 197; S. aureus ATCC 29213 | [81,82] |
Fragaria x ananassa | Strawberry | Aqueous | L. monocytogenes and S. typhimurium | [83] |
Carica papaya L. | Papaya | Methanol; Ethanol | E. coli ATCC 25923, S. typhi ATCC 14028, B. cereus ATCC 11778, B. subtilis ATCC 11774; S. aureus, S. dysenteriae, S. typhi, E. coli | [84,85] |
Prunus domestica L. | Plum | Aqueous | C. jejuniNCTC11168,E. coli ATCC®25922, S. aureus ATCC®25923, L. monocytogenes CECT935, and S. enterica subsp. enterica serovar typhimurium ATCC® 14028 | [23] |
Punica granatum L. | Pomegranate | Ethanol; Methanol | S. aureus; E. Coli ATCC 11775, B. Subtilis ATCC 6051, S. aureus ATCC 12600 | [86,87,88] |
Ananas comosus L. | Pineapple | Ethanol, Aqueous; Acetone | E. coli, B. cereus, S. aureus | [89,90] |
Syzygium cumini L. | Jamun | Aqueous; Ethanol | S. typhimurium, S. flexneri, S. aureus, ETEC (Enterotoxigenic E.coli); S. aureus, E. coli | [91,92] |
Citrus x aurantium | Sour Orange | Aqueous | L. monocytogenes and S. typhimurium | [93] |
Citrus x sinensis | Sweet Orange | Ethanol; Methanol | S. aureus, E. coli, S.typhimurium; S. aureus, S. flexineri, B. subtilis, E. coli | [94,95] |
Vitis rotundifolia Michx. | - | Methanol | S. aureus strains ATCC 35548, S. typhimurium, S. sonnei ATCC 25931, E. coli O157:H7 | [96] |
Vitis vinifera L. | Grape | Acetone | L. monocytogenes ATCC 7644, S. aureus ATCC 29213 | [97] |
Vaccinium corymbosum L. | Blueberry | Ethanol | Vibrio parahaemolyticus;L. monocytogenes and S. enteritica serovar Enteritidis | [24,98] |
Ficus carica L. | Fig | Methanol | S. aureus ATCC 25923, E. Coli ATCC 25922 | [99] |
Musa paradisiaca cv. Puttabale | Banana | Ethanol: Hexane, Acetone, Ethanol, Water | B. subtilis NCIM2063, S. aureus NCIM2079, S. typhi NCIM 2501, S. paratyphi MTCC735; B. cereus DPMB 1, S. aureus ATCC 6538, Rosenbach, S. enterica subsp. enteric ATCC 13076; S. sonnei LMG 10473 | [100,101] |
Malus domestica cv. Gala | Apple | ND | S. aureus, L. monocytogenes | [102] |
Scientific Name | Common Name | Biological Extract | Types of NPs Synthesized | Reaction Temperature/Time | Morphology | Size | Bacteria | References |
---|---|---|---|---|---|---|---|---|
Ziziphus spina- christi (L.) Willd | Christ’s thorn jujube | Pulp | Copper oxide | 80 °C/NS | Sphere | 5–20 nm | E. coli and S. aureus | [105] |
Capparis spinosa | Caperberry | Whole fruit | Copper oxide | 80 °C/24 h | Sphere | 17–41 nm | E. coli, S. aureus and B. cereus | [106] |
Citrus medica Linn. | Citron | Juice | Copper oxide | 60–100 °C/NS | NS | 10–60 nm | E. coli and S. typhimurium | [107] |
Fragaria x ananassa | Strawberry | Whole fruit | Copper oxide | RT/1 h | Sphere | 10–30 nm | S. aureus, S. typhimurium, B. subtilis and E. coli O157:H7 | [108] |
Punica granatum L. | Pomegranate | Juice | Silver | 65 °C/1 min | Cubic | 23 nm | E. coli and S. aureus | [109] |
Carica papaya L. | Papaya | Juice | Silver | NS | Sphere | 75.68 nm | E. coli and S. aureus | [110] |
Vitis vinifera and Lycopersicon esculentum Mill. | Grape and Tomato | Juice | Silver | RT/NS | Cubic | 10 and 30 nm | S. aureus, B. subtilis and S. typhimurium | [111] |
Hylocereus undatus (Haworth) | Dragon fruit | Peel | Silver | RT/24 h | Sphere | 25–26 nm | E. coli and S. aureus | [112] |
Citrus limetta Risso | Sweet lime | Juice | Silver | RT/24 h | Quasi-sphere | 5–35 nm | E. coli, S. aureus and Yersinia enterocolitica subsp. enterocolitica | [113] |
Punica granatum L. | Pomegranate | Juice | Silver | RT/4h | Sphere | 30–40 nm | B. subtilis | [114] |
Citrus x sinensis | Orange | Juice | Silver | 37 °C/2 h | NS | NS | S. aureus, B. subtilis, E. coli and Shigella | [115] |
Prunus armeniaca L. | Apricot | Peel | Silver | NS | Rod | 50 nm | S. aureus, B. subtilis and E. coli | [116] |
Ananas comosus L. | Pineapple | Juice | Zinc oxide | 240 °C/5 min | NS | 30–57 nm | E. coli | [117] |
Citrus maxima Merr. | Pomelo | Juice | Zinc oxide | 400 °C/5–10 min | Agglomerated | 10–20 nm | E. coli and S. aureus | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, H.; Bhardwaj, K.; Cruz-Martins, N.; Nepovimova, E.; Oleksak, P.; Dhanjal, D.S.; Bhardwaj, S.; Singh, R.; Chopra, C.; Verma, R.; et al. Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review. Molecules 2021, 26, 3447. https://doi.org/10.3390/molecules26113447
Kumar H, Bhardwaj K, Cruz-Martins N, Nepovimova E, Oleksak P, Dhanjal DS, Bhardwaj S, Singh R, Chopra C, Verma R, et al. Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review. Molecules. 2021; 26(11):3447. https://doi.org/10.3390/molecules26113447
Chicago/Turabian StyleKumar, Harsh, Kanchan Bhardwaj, Natália Cruz-Martins, Eugenie Nepovimova, Patrik Oleksak, Daljeet Singh Dhanjal, Sonali Bhardwaj, Reena Singh, Chirag Chopra, Rachna Verma, and et al. 2021. "Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review" Molecules 26, no. 11: 3447. https://doi.org/10.3390/molecules26113447
APA StyleKumar, H., Bhardwaj, K., Cruz-Martins, N., Nepovimova, E., Oleksak, P., Dhanjal, D. S., Bhardwaj, S., Singh, R., Chopra, C., Verma, R., Chauhan, P. P., Kumar, D., & Kuča, K. (2021). Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review. Molecules, 26(11), 3447. https://doi.org/10.3390/molecules26113447