What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions?
Abstract
:1. Introduction
1.1. Interactions between Pharmaceuticals and DNA Chain
1.2. Techniques Used to Describe DNA–Molecule Interactions
2. Electrochemical Approach to DNA–Drug Interaction Description
2.1. Principles of Measurement with Electrochemical Techniques
2.2. Types of Electrodes and Research Approaches
2.3. Electrochemical Biosensors
3. Electrochemical Methods Applied
3.1. Cyclic Voltammetry (CV)
3.2. Differential Pulse Voltammetry (DPV)
3.3. Other Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hasanzadeh, M.; Shadjou, N. Pharmacogenomic Study Using Bio- and Nanobioelectrochemistry: Drug–DNA Interaction. Mater. Sci. Eng. C 2016, 61, 1002–1017. [Google Scholar] [CrossRef]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA Interactions and Their Study by UV–Visible, Fluorescence Spectroscopies and Cyclic Voltametry. J. Photochem. Photobiol. B Biol. 2013, 124, 1–19. [Google Scholar] [CrossRef]
- Rehman, S.U.; Sarwar, T.; Husain, M.A.; Ishqi, H.M.; Tabish, M. Studying Non-Covalent Drug–DNA Interactions. Arch. Biochem. Biophys. 2015, 576, 49–60. [Google Scholar] [CrossRef]
- Natile, G.; Marzilli, L.G. Non-Covalent Interactions in Adducts of Platinum Drugs with Nucleobases in Nucleotides and DNA as Revealed by Using Chiral Substrates. Coord. Chem. Rev. 2006, 250, 1315–1331. [Google Scholar] [CrossRef]
- Devi, J.; Pachwania, S. Recent Advancements in DNA Interaction Studies of Organotin(IV) Complexes. Inorg. Chem. Commun. 2018, 91, 44–62. [Google Scholar] [CrossRef]
- Foteeva, L.S.; Matczuk, M.; Timerbaev, A.R. Analytical Methodology for Determination of Interactions between Metallodrugs and DNA: A Critical Examination. TrAC Trends Anal. Chem. 2017, 90, 107–113. [Google Scholar] [CrossRef]
- Brabec, V.; Kasparkova, J. Ruthenium Coordination Compounds of Biological and Biomedical Significance. DNA Binding Agents. Coord. Chem. Rev. 2018, 376, 75–94. [Google Scholar] [CrossRef]
- Li, X.-L.; Hu, Y.-J.; Wang, H.; Yu, B.-Q.; Yue, H.-L. Molecular Spectroscopy Evidence of Berberine Binding to DNA: Comparative Binding and Thermodynamic Profile of Intercalation. Biomacromolecules 2012, 13, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, W.D.; Mukherjee, A. Molecular Mechanism of Direct Proflavine–DNA Intercalation: Evidence for Drug-Induced Minimum Base-Stacking Penalty Pathway. J. Phys. Chem. B 2012, 116, 12208–12212. [Google Scholar] [CrossRef] [PubMed]
- Jangir, D.K.; Dey, S.K.; Kundu, S.; Mehrotra, R. Assessment of Amsacrine Binding with DNA Using UV–Visible, Circular Dichroism and Raman Spectroscopic Techniques. J. Photochem. Photobiol. B Biol. 2012, 114, 38–43. [Google Scholar] [CrossRef]
- Antonini, I.; Polucci, P.; Magnano, A.; Gatto, B.; Palumbo, M.; Menta, E.; Pescalli, N.; Martelli, S. Design, Synthesis, and Biological Properties of New Bis(Acridine-4-Carboxamides) as Anticancer Agents. J. Med. Chem. 2003, 46, 3109–3115. [Google Scholar] [CrossRef]
- Fairbanks, S.D.; Robertson, C.C.; Keene, F.R.; Thomas, J.A.; Williamson, M.P. Structural Investigation into the Threading Intercalation of a Chiral Dinuclear Ruthenium(II) Polypyridyl Complex through a B-DNA Oligonucleotide. J. Am. Chem. Soc. 2019, 141, 4644–4652. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, M.; Butt, T.M.; Zubair, M.; Siddiqi, H.M.; Janjua, N.K.; Akhter, Z.; Yaqub, A.; Mahmood, S. Electrochemical Investigations of DNA-Intercalation Potency of Bisnitrophenoxy Compounds with Different Alkyl Chain Lengths. Heliyon 2020, 6, e04124. [Google Scholar] [CrossRef] [PubMed]
- Sissi, C.; Dovigo, L.; Greco, M.L.; Ciancetta, A.; Moro, S.; Trzciński, J.W.; Mancin, F.; Rossi, P.; Spalluto, G.; Tecilla, P. Conjugates between Minor Groove Binders and Zn(II)-Tach Complexes: Synthesis, Characterization, and Interaction with Plasmid DNA. Tetrahedron 2017, 73, 3014–3024. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, G.; Pan, J. Groove Binding Interaction between Daphnetin and Calf Thymus DNA. Int. J. Biol. Macromol. 2015, 74, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Bendic, C.; Enache, M.; Volanschi, E. Analysis of Actinomycin D–DNA Model Complexes Using a Quantum-Chemical Criterion: Mulliken Overlap Populations. J. Mol. Graph. Model. 2005, 24, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Searle, M.S. NMR Studies of Drug—DNA Interactions. Prog. Nucl. Magn. Reson. Spectrosc. 1993, 25, 403–480. [Google Scholar] [CrossRef]
- Powers, R. Applications of NMR to Structure-Based Drug Design in Structural Genomics. J. Struct. Func. Genom. 2002, 2, 113–123. [Google Scholar] [CrossRef]
- Ahmadi, F.; Jafari, B.; Rahimi-Nasrabadi, M.; Ghasemi, S.; Ghanbari, K. Proposed Model for in Vitro Interaction between Fenitrothion and DNA, by Using Competitive Fluorescence, 31P NMR, 1H NMR, FT-IR, CD and Molecular Modeling. Toxicol. Vitr. 2013, 27, 641–650. [Google Scholar] [CrossRef]
- Ahmadi, F.; Alizadeh, A.A.; Shahabadi, N.; Rahimi-Nasrabadi, M. Study Binding of Al–Curcumin Complex to Ds-DNA, Monitoring by Multispectroscopic and Voltammetric Techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1466–1474. [Google Scholar] [CrossRef]
- Benevides, J.M.; Overman, S.A.; Thomas, G.J. Raman, Polarized Raman and Ultraviolet Resonance Raman Spectroscopy of Nucleic Acids and Their Complexes. J. Raman Spectrosc. 2005, 36, 279–299. [Google Scholar] [CrossRef]
- Morjani, H.; Riou, J.-F.; Nabiev, I.; Lavelle, F.; Manfait, M. Molecular and Cellular Interactions between Intoplicine, DNA, and Topoisomerase II Studied by Surface-Enhanced Raman Scattering Spectroscopy. Cancer Res. 1993, 53, 4784–4790. [Google Scholar]
- Jenkins, T.C. Optical Absorbance and Fluorescence Techniques for Measuring DNA–Drug Interactions. In Drug-DNA Interaction Protocols; Fox, K.R., Ed.; Methods in Molecular Biology™; Humana Press: Totowa, NJ, USA, 1997; pp. 195–218. ISBN 978-1-59259-574-7. [Google Scholar]
- Białobrzeska, W.; Niedziałkowski, P.; Malinowska, N.; Cebula, Z.; Ossowski, T. Analysis of Interactions between Calf Thymus DNA and 1,5-Di(Piperazin-1-Yl)Anthracene-9,10-Dione Using Spectroscopic and Electrochemical Methods. J. Mol. Liq. 2019, 289, 111080. [Google Scholar] [CrossRef]
- Ataci, N.; Ozcelik, E.; Arsu, N. Spectrophotometric Study on Binding of 2-Thioxanthone Acetic Acid with Ct-DNA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 281–286. [Google Scholar] [CrossRef]
- Chylewska, A.; Biedulska, M.; Makowski, M. Multi-Analytical Studies about Physico-Chemical Properties of Ni(II)-Vitamin B6 Coordination Compounds and Their CT-DNA Interactions. J. Mol. Liq. 2017, 243, 771–780. [Google Scholar] [CrossRef]
- Jia, T.; Chen, Z.-H.; Guo, P.; Yu, J. An Insight into DNA Binding Properties of Newly Designed Cationic δ,Δ′-diazacarbazoles: Spectroscopy, AFM Imaging and Living Cells Staining Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 260–271. [Google Scholar] [CrossRef]
- Bhattacharjee, M.; Boruah, S.R.; Dutta Purkayastha, R.N.; Ganguly, R.; Maiti, D.; Franconetti, A.; Frontera, A.; Kirillov, A.M.; Chowdhury, S.; Roy, S.; et al. Synthesis, Characterization, DNA Binding Ability, in Vitro Cytotoxicity, Electrochemical Properties and Theoretical Studies of Copper(II) Carboxylate Complexes. Inorg. Chim. Acta 2021, 518, 120235. [Google Scholar] [CrossRef]
- Sen, S.; Sett, R.; Paul, B.K.; Guchhait, N. A Spectroscopic Deciphering of the Differential Interaction Behavior of Alkaloid Drugs with Native B-DNA and Protonated DNA. J. Mol. Liq. 2020, 312, 113426. [Google Scholar] [CrossRef]
- Tullio, A.D.; Reale, S.; Angelis, F.D. Molecular Recognition by Mass Spectrometry. J. Mass Spectrom. 2005, 40, 845–865. [Google Scholar] [CrossRef] [PubMed]
- Gavina, J.M.A.; Yao, C.; Feng, Y.-L. Recent Developments in DNA Adduct Analysis by Mass Spectrometry: A Tool for Exposure Biomonitoring and Identification of Hazard for Environmental Pollutants. Talanta 2014, 130, 475–494. [Google Scholar] [CrossRef] [PubMed]
- Rabbani-Chadegani, A.; Mollaei, H.; Sargolzaei, J. Investigation of the Interaction between Berberine and Nucleosomes in Solution: Spectroscopic and Equilibrium Dialysis Approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 418–424. [Google Scholar] [CrossRef]
- Lin, L.-P.; Huang, L.-S.; Lin, C.-W.; Lee, C.-K.; Chen, J.-L.; Hsu, S.-M.; Lin, S. Determination of Binding Constant of DNA-Binding Drug to Target DNA by Surface Plasmon Resonance Biosensor Technology. Curr. Drug Targets Immune Endocr. Metab. Disord. 2005, 5, 61–72. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Sun, C.; Ren, D.; Chen, J.; Li, Y. Signal Amplification Strategies for DNA-Based Surface Plasmon Resonance Biosensors. Biosens. Bioelectron. 2018, 117, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; Gooding, J.J.; Akhtar, K.; Ghauri, M.A.; Rahman, M.; Anwar, M.A.; Khalid, A.M. Electrochemical Approach of Anticancer Drugs–DNA Interaction. J. Pharm. Biomed. Anal. 2005, 37, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Tamer, Ö.; Tamer, S.A.; İdil, Ö.; Avcı, D.; Vural, H.; Atalay, Y. Antimicrobial Activities, DNA Interactions, Spectroscopic (FT-IR and UV-Vis) Characterizations, and DFT Calculations for Pyridine-2-Carboxylic Acid and Its Derivates. J. Mol. Struct. 2018, 1152, 399–408. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sasikala, W.D. Chapter One—Drug–DNA Intercalation: From Discovery to the Molecular Mechanism. In Advances in Protein Chemistry and Structural Biology; Dynamics of Proteins and Nucleic, Acids; Karabencheva-Christova, T., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 92, pp. 1–62. [Google Scholar]
- Drescher, D.G.; Drescher, M.J.; Ramakrishnan, N.A. Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Proteins in Inner-Ear Sensory Epithelia. In Auditory and Vestibular Research: Methods and Protocols; Sokolowski, B., Ed.; Methods in Molecular Biology™; Humana Press: Totowa, NJ, USA, 2009; pp. 323–343. ISBN 978-1-59745-523-7. [Google Scholar]
- Hinman, S.S.; McKeating, K.S.; Cheng, Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal. Chem. 2018, 90, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Süzen, S.; Demírcígíl, B.T.; Buyukbingol, E.; Özkan, S.A. Electroanalytical Evaluation and Determination of 5-(3′-Indolyl)-2-Thiohydantoin Derivatives by Voltammetric Studies: Possible Relevance to in Vitro Metabolism. New J. Chem. 2003, 27, 1007–1011. [Google Scholar] [CrossRef]
- Satana, H.E.; Pontinha, A.D.R.; Diculescu, V.C.; Oliveira-Brett, A.M. Nucleoside Analogue Electrochemical Behaviour and in Situ Evaluation of DNA–Clofarabine Interaction. Bioelectrochemistry 2012, 87, 3–8. [Google Scholar] [CrossRef]
- Palanimurugan, A.; Dhanalakshmi, A.; Selvapandian, P.; Kulandaisamy, A. Electrochemical Behavior, Structural, Morphological, Calf Thymus-DNA Interaction and in-Vitro Antimicrobial Studies of Synthesized Schiff Base Transition Metal Complexes. Heliyon 2019, 5, e02039. [Google Scholar] [CrossRef] [Green Version]
- Buoro, R.M.; Lopes, I.C.; Diculescu, V.C.; Serrano, S.H.P.; Lemos, L.; Oliveira-Brett, A.M. In Situ Evaluation of Gemcitabine–DNA Interaction Using a DNA-Electrochemical Biosensor. Bioelectrochemistry 2014, 99, 40–45. [Google Scholar] [CrossRef]
- Shabbir, M.; Ahmad, I.; Ismail, H.; Ahmed, S.; McKee, V.; Akhter, Z.; Mirza, B. Pharmacological, Electrochemical and Drug–DNA Interaction Aspects of Tridentate Schiff Bases and Their Triphenylphosphine Nickel(II) Complexes. Polyhedron 2017, 133, 270–278. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Oliveira-Brett, A.M. In Situ Electrochemical Evaluation of DsDNA Interaction with the Anticancer Drug Danusertib Nitrenium Radical Product Using the DNA-Electrochemical Biosensor. Bioelectrochemistry 2016, 107, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.; Hameed, S.; Ahmad, I.; Tabassum, N.; Yousaf, S. Synthesis, Characterization, Electrochemical and DNA Binding Studies of Regio-Isomeric Sulfonyl Esters of Substituted Isoxazoles. J. Mol. Struct. 2020, 1202, 127230. [Google Scholar] [CrossRef]
- Dindar, Ç.K.; Erkmen, C.; Yıldırım, S.; Bozal-Palabiyik, B.; Uslu, B. Interaction of Citalopram and Escitalopram with Calf Thymus DNA: A Spectrofluorometric, Voltammetric, and Liquid Chromatographic Approach. J. Pharm. Biomed. Anal. 2021, 195, 113891. [Google Scholar] [CrossRef] [PubMed]
- Janiszek, D.; Karpińska, M.M.; Niewiadomy, A.; Kośmider, A.; Girstun, A.; Elzanowska, H.; Kulesza, P.J. Differences in Electrochemical Response of Prospective Anticancer Drugs IPBD and Cl-IPBD, Doxorubicin and Vitamin C at Plasmid Modified Glassy Carbon. Bioelectrochemistry 2021, 137, 107682. [Google Scholar] [CrossRef] [PubMed]
- Ponkarpagam, S.; Mahalakshmi, G.; Vennila, K.N.; Elango, K.P. Multi-Spectroscopic, Voltammetric and Molecular Docking Studies on Binding of Anti-Diabetic Drug Rosigiltazone with DNA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118268. [Google Scholar] [CrossRef] [PubMed]
- Congur, G.; Eksin, E.; Erdem, A. Chitosan Modified Graphite Electrodes Developed for Electrochemical Monitoring of Interaction between Daunorubicin and DNA. Sens. Bio-Sens. Res. 2019, 22, 100255. [Google Scholar] [CrossRef]
- Eksin, E.; Senturk, H.; Zor, E.; Bingol, H.; Erdem, A. Carbon Quantum Dot Modified Electrodes Developed for Electrochemical Monitoring of Daunorubicin-DNA Interaction. J. Electroanal. Chem. 2020, 862, 114011. [Google Scholar] [CrossRef]
- Findik, M.; Bingol, H.; Erdem, A. Hybrid Nanoflowers Modified Pencil Graphite Electrodes Developed for Electrochemical Monitoring of Interaction between Mitomycin C and DNA. Talanta 2021, 222, 121647. [Google Scholar] [CrossRef] [PubMed]
- Findik, M.; Bingol, H.; Erdem, A. Electrochemical Detection of Interaction between Daunorubicin and DNA by Hybrid Nanoflowers Modified Graphite Electrodes. Sens. Actuators B Chem. 2021, 329, 129120. [Google Scholar] [CrossRef]
- Bayraktepe, D.E. A Voltammetric Study on Drug-DNA Interactions: Kinetic and Thermodynamic Aspects of the Relations between the Anticancer Agent Dasatinib and Ds-DNA Using a Pencil Lead Graphite Electrode. Microchem. J. 2020, 157, 104946. [Google Scholar] [CrossRef]
- Bolat, G. Investigation of Poly(CTAB-MWCNTs) Composite Based Electrochemical DNA Biosensor and Interaction Study with Anticancer Drug Irinotecan. Microchem. J. 2020, 159, 105426. [Google Scholar] [CrossRef]
- Congur, G.; Eksin, E.; Erdem, A. Levan Modified DNA Biosensor for Voltammetric Detection of Daunorubicin-DNA Interaction. Sens. Actuators B Chem. 2021, 326, 128818. [Google Scholar] [CrossRef]
- Bruzaca, E.E.S.; Lopes, I.C.; Silva, E.H.C.; Carvalho, P.A.V.; Tanaka, A.A. Electrochemical Oxidation of the Antitumor Antibiotic Mitomycin C and in Situ Evaluation of Its Interaction with DNA Using a DNA-Electrochemical Biosensor. Microchem. J. 2017, 133, 81–89. [Google Scholar] [CrossRef]
- Akbari Javar, H.; Garkani-Nejad, Z.; Dehghannoudeh, G.; Mahmoudi-Moghaddam, H. Development of a New Electrochemical DNA Biosensor Based on Eu3+−doped NiO for Determination of Amsacrine as an Anti-Cancer Drug: Electrochemical, Spectroscopic and Docking Studies. Anal. Chim. Acta 2020, 1133, 48–57. [Google Scholar] [CrossRef]
- Temerk, Y.; Ibrahim, H. Electrochemical Studies and Spectroscopic Investigations on the Interaction of an Anticancer Drug Flutamide with DNA and Its Analytical Applications. J. Electroanal. Chem. 2015, 736, 1–7. [Google Scholar] [CrossRef]
- Kumar, A.; Vashistha, V.K.; Tevatia, P.; Singh, R. Electrochemical Studies of DNA Interaction and Antimicrobial Activities of MnII, FeIII, CoII and NiII Schiff Base Tetraazamacrocyclic Complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 123–133. [Google Scholar] [CrossRef]
- Lima, D.; Hacke, A.C.M.; Inaba, J.; Pessôa, C.A.; Kerman, K. Electrochemical Detection of Specific Interactions between Apolipoprotein E Isoforms and DNA Sequences Related to Alzheimer’s Disease. Bioelectrochemistry 2020, 133, 107447. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, Y.; Lin, L.; Li, Y.; Chen, W.; Chen, J.; Lei, Y.; Lin, L.; Liu, A.; Lin, X.; et al. Nanoporous Gold Electrode Prepared from Two-Step Square Wave Voltammetry (SWV) and Its Application for Electrochemical DNA Biosensing of Lung Resistance Related Protein (LRP) Gene. J. Electroanal. Chem. 2019, 840, 165–173. [Google Scholar] [CrossRef]
- De Carvalho, P.A.V.; Campelo Lopes, I.; Silva, E.H.C.; Bruzaca, E.E.S.; Alves, H.J.; Lima, M.I.S.; Tanaka, A.A. Electrochemical Behaviour of Anticancer Drug Lomustine and in Situ Evaluation of Its Interaction with DNA. J. Pharm. Biomed. Anal. 2019, 176, 112786. [Google Scholar] [CrossRef]
- Oliveira-Brett, A.M.; Vivan, M.; Fernandes, I.R.; Piedade, J.A.P. Electrochemical Detection of in Situ Adriamycin Oxidative Damage to DNA. Talanta 2002, 56, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Kurbanoglu, S.; Dogan-Topal, B.; Hlavata, L.; Labuda, J.; Ozkan, S.A.; Uslu, B. Electrochemical Investigation of an Interaction of the Antidepressant Drug Aripiprazole with Original and Damaged Calf Thymus DsDNA. Electrochim. Acta 2015, 169, 233–240. [Google Scholar] [CrossRef]
- De Oliveira, S.C.B.; Diculescu, V.C.; Chiorcea Paquim, A.M.; Oliveira-Brett, A.M. Electrochemical Biosensors for DNA–Drug Interactions. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 124–139. ISBN 978-0-12-809894-3. [Google Scholar]
- Kaur, H.; Bhosale, A.; Shrivastav, S. Biosensors: Classification, Fundamental Characterization and New Trends: A Review. Int. J. Health Sci. Res. 2018, 8, 315–333. [Google Scholar]
- Zhang, J.; Zhang, X.; Wei, X.; Xue, Y.; Wan, H.; Wang, P. Recent Advances in Acoustic Wave Biosensors for the Detection of Disease-Related Biomarkers: A Review. Anal. Chim. Acta 2021, 1164, 338321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, J.; Yang, T.; Zhang, Y.; Tao, D.; Hasebe, Y.; Zhang, Z. Electrochemical Evaluation of Sulfide Mineral Modified Glassy Carbon Electrode as Novel Mediated Glucose Biosensor. J. Electroanal. Chem. 2021, 894, 115357. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification 1. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Labuda, J.; Brett, A.M.O.; Evtugyn, G.; Fojta, M.; Mascini, M.; Ozsoz, M.; Palchetti, I.; Paleček, E.; Wang, J. Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1161–1187. [Google Scholar] [CrossRef]
- Hamidi-Asl, E.; Palchetti, I.; Hasheminejad, E.; Mascini, M. A Review on the Electrochemical Biosensors for Determination of MicroRNAs. Talanta 2013, 115, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Bagni, G.; Osella, D.; Sturchio, E.; Mascini, M. Deoxyribonucleic Acid (DNA) Biosensors for Environmental Risk Assessment and Drug Studies. Anal. Chim. Acta 2006, 573–574, 81–89. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Wang, K.; Zhang, W.; Li, Y.; Sun, Y.; Sun, X.; Li, C.; Dong, B.; Wang, L.; et al. Smart Biosensors and Intelligent Devices for Salivary Biomarker Detection. TrAC Trends Anal. Chem. 2021, 140, 116281. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Lu, X.; Xu, H.; Yang, Q.; Tan, J.; Zhang, W. Reduced Graphene Oxide Nanocomposite Based Electrochemical Biosensors for Monitoring Foodborne Pathogenic Bacteria: A Review. Food Control 2021, 127, 108117. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, B.; Zhang, Y.; Zhao, G.; Zhao, B. A Multi-Residue Electrochemical Biosensor Based on Graphene/Chitosan/Parathion for Sensitive Organophosphorus Pesticides Detection. Chem. Phys. Lett. 2021, 767, 138355. [Google Scholar] [CrossRef]
- Nur, Y.; Gaffar, S.; Hartati, Y.W.; Subroto, T. Applications of Electrochemical Biosensor of Aptamers-Based (APTASENSOR) for the Detection of Leukemia Biomarker. Sens. Bio-Sens. Res. 2021, 32, 100416. [Google Scholar] [CrossRef]
- Zhou, X.; Pu, Q.; Yu, H.; Peng, Y.; Li, J.; Yang, Y.; Chen, H.; Weng, Y.; Xie, G. An Electrochemical Biosensor Based on Hemin/G-Quadruplex DNAzyme and PdRu/Pt Heterostructures as Signal Amplifier for Circulating Tumor Cells Detection. J. Colloid Interface Sci. 2021, 599, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Asadi, Z.; Mandegani, Z.; Asadi, M.; Pakiari, A.H.; Salarhaji, M.; Manassir, M.; Karbalaei-Heidari, H.R.; Rastegari, B.; Sedaghat, M. Substituted Effect on Some Water-Soluble Mn(II) Salen Complexes: DNA Binding, Cytotoxicity, Molecular Docking, DFT Studies and Theoretical IR & UV Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 278–294. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mondal, S.; Singh, B. Spectroscopic, Electrochemical and Molecular Docking Study of the Binding Interaction of a Small Molecule 5H-Naptho[2,1-f][1,2] Oxathieaphine 2,2-Dioxide with Calf Thymus DNA. Int. J. Biol. Macromol. 2017, 101, 527–535. [Google Scholar] [CrossRef]
- Janjua, N.K.; Akhter, Z.; Jabeen, F.; Iftikhar, B. Cyclic Voltammetric Investigation of Interactions between Bisnitroaromatic Compounds and Ds.DNA. J. Korean Chem. Soc. 2014, 58, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, E.; Janjua, N.K.; Ahmed, S.; Tahiri, I.; Kashif, M.; Javed, A. DNA Binding Interaction Studies of Flavonoid Complexes of Cu(II) and Fe(II) and Determination of Their Chemotherapeutic Potential. Inorg. Chim. Acta 2019, 496, 119048. [Google Scholar] [CrossRef]
- Chevion, S.; Roberts, M.A.; Chevion, M. The Use of Cyclic Voltammetry for the Evaluation of Antioxidant Capacity. Free Radic. Biol. Med. 2000, 28, 860–870. [Google Scholar] [CrossRef]
- Hussam, A. Voltammetry: Dynamic electrochemical techniques. In Comprehensive Analytical Chemistry; Ahuja, S., Jespersen, N., Eds.; Modern Instrumental Analysis; Elsevier: Amsterdam, The Netherlands, 2006; Volume 47, pp. 661–689. [Google Scholar]
- Chylewska, A.; Dąbrowska, A.; Ramotowska, S.; Maciejewska, N.; Olszewski, M.; Bagiński, M.; Makowski, M. Photosensitive and PH-Dependent Activity of Pyrazine-Functionalized Carbazole Derivative as Promising Antifungal and Imaging Agent. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Ramotowska, S.; Zarzeczańska, D.; Dąbkowska, I.; Wcisło, A.; Niedziałkowski, P.; Czaczyk, E.; Grobelna, B.; Ossowski, T. Hydrogen Bonding and Protonation Effects in Amino Acids’ Anthraquinone Derivatives—Spectroscopic and Electrochemical Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117226. [Google Scholar] [CrossRef] [PubMed]
- Chylewska, A.; Biedulska, M.; Głębocka, A.; Raczyńska, E.D.; Makowski, M. Drug-like Properties and Complete Physicochemical Profile of Pyrazine-2-amidoxime: A Combined Multi-Experimental and Computational Studies. J. Mol. Liq. 2019, 276, 453–470. [Google Scholar] [CrossRef]
- Ramotowska, S.; Wysocka, M.; Brzeski, J.; Chylewska, A.; Makowski, M. A Comprehensive Approach to the Analysis of Antibiotic-Metal Complexes. TrAC Trends Anal. Chem. 2020, 123, 115771. [Google Scholar] [CrossRef]
- Qin, D.-A.; Cai, X.-Q.; Miao, Q.; Wang, Z.-H.; Hu, M.-L. Cyclic Voltammetry and Molecular Docking Study of the Interactions of Two Derivatives of 5-Fluorouracil with DNA. Int. J. Electrochem. Sci. 2014, 9, 1608–1620. [Google Scholar]
- Tajik, S.; Taher, M.A.; Beitollahi, H.; Torkzadeh-Mahani, M. Electrochemical Determination of the Anticancer Drug Taxol at a Ds-DNA Modified Pencil-Graphite Electrode and Its Application as a Label-Free Electrochemical Biosensor. Talanta 2015, 134, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.H.; Jabeen, E.; Qureshi, R.; Ansari, F.L.; Shaukat, A.; Nasir, U.; Ahmed, A. Investigation of Redox Mechanism and DNA Binding of Novel 2-(x-Nitrophenyl)-5-Nitrobenzimidazole (x = 2, 3 and 4). Biophys. Chem. 2020, 258, 106316. [Google Scholar] [CrossRef] [PubMed]
- Aslanoglu, M. Electrochemical and Spectroscopic Studies of the Interaction of Proflavine with DNA. Anal. Sci. 2006, 22, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ma, Y.; Yang, C.; Guo, L.; Yang, X. Interaction of Anticancer Drug Mitoxantrone with DNA Analyzed by Electrochemical and Spectroscopic Methods. Biophys. Chem. 2005, 116, 199–205. [Google Scholar] [CrossRef]
- Hajian, R.; Hossaini, P.; Mehrayin, Z.; Woi, P.M.; Shams, N. DNA-Binding Studies of Valrubicin as a Chemotherapy Drug Using Spectroscopy and Electrochemical Techniques. J. Pharm. Anal. 2017, 7, 176–180. [Google Scholar] [CrossRef]
- Pešić, M.; Bugarinović, J.; Minić, A.; Novaković, S.B.; Bogdanović, G.A.; Todosijević, A.; Stevanović, D.; Damljanović, I. Electrochemical Characterization and Estimation of DNA-Binding Capacity of a Series of Novel Ferrocene Derivatives. Bioelectrochemistry 2020, 132, 107412. [Google Scholar] [CrossRef]
- Langer, A.; Schräml, M.; Strasser, R.; Daub, H.; Myers, T.; Heindl, D.; Rant, U. Polymerase/DNA Interactions and Enzymatic Activity: Multi-Parameter Analysis with Electro-Switchable Biosurfaces. Sci. Rep. 2015, 5, 12066. [Google Scholar] [CrossRef] [Green Version]
- Cléry, A.; Sohier, T.J.M.; Welte, T.; Langer, A.; Allain, F.H.T. SwitchSENSE: A New Technology to Study Protein-RNA Interactions. Methods 2017, 118–119, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aman, K.; Padroni, G.; Parkinson, J.A.; Welte, T.; Burley, G.A. Structural and Kinetic Profiling of Allosteric Modulation of Duplex DNA Induced by DNA-Binding Polyamide Analogues. Chem. A Eur. J. 2019, 25, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Staffler, R.; Pasternack, R.; Hils, M.; Kaiser, W.; Möller, F.M. Nucleotide Binding Kinetics and Conformational Change Analysis of Tissue Transglutaminase with SwitchSENSE. Anal. Biochem. 2020, 605, 113719. [Google Scholar] [CrossRef]
- Wenskowsky, L.; Wagner, M.; Reusch, J.; Schreuder, H.; Matter, H.; Opatz, T.; Petry, S.M. Resolving Binding Events on the Multifunctional Human Serum Albumin. ChemMedChem 2020, 15, 738–743. [Google Scholar] [CrossRef] [PubMed]
Author [Ref.] | Compound/Drug | Drug Group | Method | Electrode | Medium | LOD/LOQ | Binding Constant | Interaction Mechanism |
---|---|---|---|---|---|---|---|---|
Satana et al. [41] | Clofarabine (CLF) | Anticancer | CV, DPV, SWV | GCE | pH 4.5 ABS | 0.08 μM | NS | NS |
Białobrzeska et al. [24] | 1,5-di(piperazin-1-yl)anthracene-9,10-dione | Anticancer | CV | GCE | pH 7.4 PBS | NS | 1.94 × 105 M−1 | Intercalation |
Qin et al. [89] | ortho-5-fluorouracil meta-5-fluorouracil | Anticancer | CV | ctDNA/Au | pH 7.2 TBS | NS | 2.33 × 103 M−1 1.45 × 103 M−1 | Groove |
Bayraktepe [54] | Dasatinib (DSB) | Anticancer | CV, DPV | PGE | pH 4.8 ABS | NS | 2.51 × 104 M−1 | Intercalation |
Jabeen et al. [82] | morin (mor) quercetin (quer) primuletin (prim) | Potentially anticancer (Flavonoids) | CV | GCE | pH 7.4 PBS | NS | 9.01 × 103 M−1 4.82 × 103 M−1 0.88 × 103 M−1 | Intercalation Groove Electrostatic |
Cu–morin (Cu–mor) Fe–morin (Fe–mor) Cu–quercetin (Cu–quer) Fe–quercetin (Fe–quer) Cu–primuletin (Cu–prim) Fe–primuletin (Fe–prim) | (Flavonoids complexes) | CV | GCE | pH 7.4 PBS | NS | 12.0 × 103 M−1 0.53 × 103 M−1 0.92 × 103 M−1 0.89 × 103 M−1 18.02 × 103 M−1 9.89 × 103 M−1 | Intercalation Electrostatic Electrostatic Electrostatic Intercalation Intercalation | |
Buoro et al. [43] | Gemcitabine (GEM) | Anticancer | DPV | GCE, | pH 4.5 ABS | NS | NS | NS |
dsDNA/GCE | ||||||||
Diculescu et al. [45] | Danusertib | Anticancer | DPV | GCE, dsDNA/GCE | pH 4.5 ABS | NS | NS | Electrostatic and forms a complex |
Dindar et al. [47] | Citalopram (CIT) S-enantiomer—escitalopram (ESC) | Antidepressant | DPV | GCE | pH 4.7 ABS | NS | 5.6 × 104 M−1 8.5 × 104 M−1 | Groove or electrostatic |
Ponkarpagam et al. [49] | Rosiglitazone (RG) | Antidiabetic | CV, DPV | GCE | pH 7.3 TBS | NS | 3.4 × 103 M−1 | Groove |
Eksin et al. [51] | Daunorubicin (DNR) | Anticancer | EIS, DPV | cQD-PGE | pH 4.8 ABS | 0.02 μg/mL | NS | NS |
Findik et al. [53] | Daunorubicin (DNR) | Anticancer | DPV | NFs-PGE | pH 4.8 ABS | 2.93 µM | NS | NS |
Findik et al. [52] | Mitomycin C (MC) | Anticancer | DPV | NFs-PGE | pH 4.8 ABS | 12.55 μg/mL | NS | NS |
Bolat [55] | Irinotecan (CPT-11) | Anticancer | DPV | poly(CTAB-MWCNTs)/PGE | pH 4.8 ABS | 1.03 μg/mL | 6.84 × 104 M−1 | Groove |
Janiszek et al. [48] | IPBD Cl-IPBD | Anticancer | DPV, ACV | scpUC19/GCE | pH 4.7 ABS | NS | NS | NS |
Congur et al. [56] | Daunorubicin (DNR) | Anticancer | DPV | LVN-PGE | pH 4.8 ABS | 510 nM | NS | Intercalation |
Javar et al. [58] | Amsacrine | Anticancer | DPV | Eu3+-doped NiO/CPEs | pH 7.0 PBS | 0.05 μM | NS | Intercalation |
Kumar et al. [60] | [MnC42H32N4Cl2] [FeC42H32N4Cl2] Cl[CoC42H32N4Cl2] [NiC42H32N4Cl2] | Antibacterial | CV, DPV | Pt | pH 7.2 TBS | NS | 3.19 × 102 M−1 NS 4.23 × 102 M−1 3.69 × 102 M−1 | Intercalation |
Temerk et al. [59] | Flutamide (Flu) | Anticancer | CV, SWV | HMDE | pH 7.4 PBS | NS | 1.70 × 105 M−1 | Intercalation |
Tajik et al. [90] | Taxol | Anticancer | DPV | dsDNA/PGE | pH 4.8 ABS | 8.0 × 10−8 M | NS | Intercalation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramotowska, S.; Ciesielska, A.; Makowski, M. What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules 2021, 26, 3478. https://doi.org/10.3390/molecules26113478
Ramotowska S, Ciesielska A, Makowski M. What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules. 2021; 26(11):3478. https://doi.org/10.3390/molecules26113478
Chicago/Turabian StyleRamotowska, Sandra, Aleksandra Ciesielska, and Mariusz Makowski. 2021. "What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions?" Molecules 26, no. 11: 3478. https://doi.org/10.3390/molecules26113478
APA StyleRamotowska, S., Ciesielska, A., & Makowski, M. (2021). What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules, 26(11), 3478. https://doi.org/10.3390/molecules26113478