Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography–Mass Spectrometry: Current Methods and Future Perspectives
Abstract
:1. Introduction
- -
- the use of the minimum (less than 0.5 mL) volume of the CSF for one analysis;
- -
- the quantitative analysis of several target components at the trace level in one analysis.
2. The Human Cerebrospinal Fluid Metabolome
3. Metabolic Profiling of the Cerebrospinal Fluid Using Advanced GC–MS Technologies
4. Quantitative Analysis of Different Groups of the Cerebrospinal Fluid Metabolites Using GC–MS
4.1. Amino Acids
4.2. Tryptophan Metabolites
4.3. Organic Acids
4.4. Neuroactive Steroids
4.5. Arachidonic Acid Metabolites
4.6. Glucose Metabolites
4.7. Drugs and Toxic Metabolites
5. Miniaturization in Sample Preparation Techniques for the GC–MS Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APCI | atmospheric pressure chemical ionization |
BA | benzoic acid |
BBB | blood-brain barrier |
BSTFA | N, O-bis(trimethylsilyl)trifluoroacetamide |
CI | chemical ionization |
CNS | central nervous system |
CSF | cerebrospinal fluid |
CV | coefficient of variation |
DLLME | dispersive liquid–liquid microextraction |
dSPE | dispersive solid-phase extraction |
ECNI | electron-capture negative-ion chemical ionization |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
FTMS | Fourier transform mass spectrometry |
F2-IsoPs | F2-isoprostanes |
F4-NPs | F4-neuroprotanes |
GABA | gamma-aminobutyric acid |
GAMT | guanidinoacetate methyltransferase |
GC | gas chromatography |
GHB | gamma-hydroxybutyric acid |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
HIV | human immunodeficiency virus |
HLLME | homogenous liquid–liquid microextraction |
HPLC | high-performance liquid chromatography |
5-HT | 5-hydroxytryptamine |
5-HTP | 5-hydroxytryptophan |
HVA | homovanillic acid |
5-HIAA | 5-hydroxyindole-3-acetic acid |
5-HTOL | 5-hydroxyindole-3-ethanol |
ICP | inductively coupled plasma |
IS | internal standard |
3IAA | indole-3-acetic acid |
3ICA | indole-3-carboxylic acid |
3ILA | indole-3-lactic acid |
3IPA | indole-3-propionic acid |
LC | liquid chromatography |
LLE | Liquid–liquid extraction |
LLOD | lower limit of detection |
LLOQ | lower limit of quantitation |
LOD | limit of detection |
LOQ | limit of quantitation |
MALDI | matrix-assisted laser desorption/ionization |
ME | matrix effect |
MEPS | microextraction by packed sorbent |
MS | mass spectrometry |
MS/MS | tandem mass spectrometry |
MSn | multistage mass spectrometry |
MSTFA | N-methyl-N-(trimethylsilyl)trifluoroacetamide |
MTBSTFA | N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide |
NMR | nuclear magnetic resonance |
PFBBr | 2,3,4,5,6-pentafluorobenzyl bromide |
PFBCl | 2,3,4,5,6-pentafluorobenzoyl chloride |
p-HBA | 4-hydroxybenzoic acid |
PhLA | phenyllactic acid |
PhPA | phenylpropionic acid |
p-HPhAA | 4-hydroxyphenylacetic acid |
p-HphLA | 4-hydroxyphenyllactic acid |
p-HphPA | 4-hydroxyphenylpropionic acid |
PTV | programmed temperature vaporizer |
Q | single quardupole |
QuEChERS | “quick, easy, cheap, effective, rugged, and safe” |
RE | relative error |
RSD | relative standard deviation |
SID | stable isotope dilution |
SPE | solid-phase extraction |
SPME | solid-phase microextraction |
TBDMS | tert-butyldimethylsilyl |
TMCS | trimethylchlorosilane |
TOF | time-of-flight |
References
- Segal, M.B. Extracellular and cerebrospinal fluids. J. Inherit. Metab. Dis. 1993, 16, 617–638. [Google Scholar] [CrossRef]
- Noga, M.J.; Dane, A.; Shi, S.; Attali, A.; van Aken, H.; Suidgeest, E.; Tuinstra, T.; Muilwijk, B.; Coulier, L.; Luider, T.; et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics 2012, 8, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Regenold, W.T.; Phatak, P.; Makley, M.J.; Stone, R.D.; Kling, M.A. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J. Neurol. Sci. 2008, 275, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Obeid, R.; Kasoha, M.; Knapp, J.P.; Kostopoulos, P.; Becker, G.; Fassbender, K.; Herrmann, W. Folate and methylation status in relation to phosphorylated tau protein(181P) and β-amyloid(1-42) in cerebrospinal fluid. Clin. Chem. 2007, 53, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Jasperse, B.; Jakobs, C.; Eikelenboom, M.J.; Dijkstra, C.D.; Uitdehaag, B.M.J.; Barkhof, F.; Polman, C.H.; Teunissen, C.E. N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry. J. Neurol. 2007, 254, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, N.; Yaong, M.; Rosengren, L.; Blennow, K.; Månsson, J.-E.; Andersen, O.; Zetterberg, H.; Haghighi, S.; Zho, I.; Pratico, D. Elevated cerebrospinal fluid levels of prostaglandin E2 and 15-(S)-hydroxyeicosatetraenoic acid in multiple sclerosis. J. Intern. Med. 2009, 265, 459–464. [Google Scholar] [CrossRef]
- Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Lewitt, P.A.; Li, J.; Lu, M.; Guo, L.; Auinger, P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 2017, 88, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Naylor, J.C.; Hulette, C.M.; Steffens, D.C.; Shampine, L.J.; Ervin, J.F.; Payne, V.M.; Massing, M.W.; Kilts, J.D.; Strauss, J.L.; Calhoun, P.S.; et al. Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer’s disease, and related to neuropathological disease stage. J. Clin. Endocrinol. Metab. 2008, 93, 3173–3178. [Google Scholar] [CrossRef]
- Fonteh, A.N.; Cipolla, M.; Chiang, J.; Arakaki, X.; Harrington, M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS ONE 2014, 9, e100519. [Google Scholar] [CrossRef] [Green Version]
- Praticò, D.; Clark, C.M.; Liun, F.; Lee, V.Y.M.; Trojanowski, J.Q. Increase of Brain Oxidative Stress in Mild Cognitive Impairment. Arch. Neurol. 2002, 59, 972–976. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Clark, C.M.; Trojanowski, J.Q.; Lee, V.M.Y.; Praticò, D. Elevation of 12/15 lipoxygenase products in AD and mild cognitive impairment. Ann. Neurol. 2005, 58, 623–626. [Google Scholar] [CrossRef]
- Fonteh, A.N.; Cipolla, M.; Chiang, A.J.; Edminster, S.P.; Arakaki, X.; Harrington, M.G. Polyunsaturated Fatty Acid Composition of Cerebrospinal Fluid Fractions Shows Their Contribution to Cognitive Resilience of a Pre-symptomatic Alzheimer’s Disease Cohort. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef]
- Montine, T.J.; Kaye, J.A.; Montine, K.S.; McFarland, L.; Morrow, J.D.; Quinn, J.F. Cerebrospinal fluid Aβ42, tau, and F2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch. Pathol. Lab. Med. 2001, 125. [Google Scholar] [CrossRef]
- Chernevskaya, E.; Beloborodova, N.; Klimenko, N.; Pautova, A.; Shilkin, D.; Gusarov, V.; Tyakht, A.; Tyakht, A. Serum and fecal profiles of aromatic microbial metabolites reflect gut microbiota disruption in critically ill patients: A prospective observational pilot study. Crit. Care 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Chernevskaya, E.; Klimenko, N.; Pautova, A.; Buyakova, I.; Tyakht, A.; Beloborodova, N. Host-microbiome interactions mediated by phenolic metabolites in chronically critically ill patients. Metabolites 2021, 11, 122. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203. [Google Scholar]
- Kuwahara, A.; Matsuda, K.; Kuwahara, Y.; Asano, S.; Inui, T.; Marunaka, Y. Microbiota-gut-brain axis: Enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomed. Res. 2020, 41, 199–216. [Google Scholar] [CrossRef]
- Chen, M.X.; Wang, S.Y.; Kuo, C.H.; Tsai, I.L. Metabolome analysis for investigating host-gut microbiota interactions. J. Formos. Med. Assoc. 2019, 118, S10–S22. [Google Scholar] [CrossRef]
- Doherty, C.M.; Forbes, R.B. Diagnostic lumbar puncture. Ulster Med. J. 2014, 83, 93–102. [Google Scholar]
- Wang, L.P.; Schmidt, J.F. Central nervous side effects after lumbar puncture. A review of the possible pathogenesis of the syndrome of postdural puncture headache and associated symptoms. Dan. Med. Bull. 1997, 44, 79–81. [Google Scholar]
- Wishart, D.S.; Lewis, M.J.; Morrissey, J.A.; Flegel, M.D.; Jeroncic, K.; Xiong, Y.; Cheng, D.; Eisner, R.; Gautam, B.; Tzur, D.; et al. The human cerebrospinal fluid metabolome. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 164–173. [Google Scholar] [CrossRef]
- Nakamizo, S.; Sasayama, T.; Shinohara, M.; Irino, Y.; Nishiumi, S.; Nishihara, M.; Tanaka, H.; Tanaka, K.; Mizukawa, K.; Itoh, T.; et al. GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J. Neurooncol. 2013, 113, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Murgia, F.; Lorefice, L.; Poddighe, S.; Fenu, G.; Secci, M.A.; Marrosu, M.G.; Cocco, E.; Atzori, L. Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis. J. Clin. Med. 2020, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Wuolikainen, A.; Moritz, T.; Marklund, S.L.; Antti, H.; Andersen, P.M. Disease-Related Changes in the Cerebrospinal Fluid Metabolome in Amyotrophic Lateral Sclerosis Detected by GC/TOFMS. PLoS ONE 2011, 6, e17947. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Jeong, I.H.; Kong, B.S.; Lee, J.E.; Kim, K.H.; Lee, D.Y.; Kim, H.J. Disease type- and status-specific alteration of CSF metabolome coordinated with clinical parameters in inflammatory demyelinating diseases of CNS. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Gordon, S.M.; Srinivasan, L.; Taylor, D.M.; Master, S.R.; Tremoglie, M.A.; Hankeova, A.; Flannery, D.D.; Abbasi, S.; Fitzgerald, J.C.; Harris, M.C. Derivation of a metabolic signature associated with bacterial meningitis in infants. Pediatr. Res. 2020, 88, 184–191. [Google Scholar] [CrossRef]
- Kraus, V.B. Biomarkers as drug development tools: Discovery, validation, qualification and use. Nat. Rev. Rheumatol. 2018, 14, 354–362. [Google Scholar] [CrossRef]
- Koek, M.M.; Jellema, R.H.; van der Greef, J.; Tas, A.C.; Hankemeier, T. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics 2011, 7, 307–328. [Google Scholar] [CrossRef] [Green Version]
- Mandal, R.; Guo, A.C.; Chaudhary, K.K.; Liu, P.; Yallou, F.S.; Dong, E.; Aziat, F.; Wishart, D.S. Multi-platform characterization of the human cerebrospinal fluid metabolome: A comprehensive and quantitative update. Genome Med. 2012, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stoop, M.P.; Coulier, L.; Rosenling, T.; Shi, S.; Smolinska, A.M.; Buydens, L.; Ampt, K.; Stingl, C.; Dane, A.; Muilwijk, B.; et al. Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol. Cell. Proteomics 2010, 9, 2063–2075. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Hattori, K.; Andou, T.; Satomi, Y.; Gotou, M.; Kobayashi, H.; Hidese, S.; Kunugi, H. Characterization of postprandial effects on csf metabolomics: A pilot study with parallel comparison to plasma. Metabolites 2020, 10, 185. [Google Scholar] [CrossRef]
- Rosenling, T.; Slim, C.L.; Christin, C.; Coulier, L.; Shi, S.; Stoop, M.P.; Bosman, J.; Suits, F.; Horvatovich, P.L.; Stockhofe-Zurwieden, N.; et al. The Effect of Preanalytical Factors on Stability of the Proteome and Selected Metabolites in Cerebrospinal Fluid (CSF). J. Proteome Res. 2009, 8, 5511–5522. [Google Scholar] [CrossRef]
- Hartonen, M.; Mattila, I.; Ruskeepää, A.L.; Orešič, M.; Hyötyläinen, T. Characterization of cerebrospinal fluid by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A 2013, 1293, 142–149. [Google Scholar] [CrossRef]
- Carrasco-Pancorbo, A.; Nevedomskaya, E.; Arthen-Engeland, T.; Zey, T.; Zurek, G.; Baessmann, C.; Deelder, A.M.; Mayboroda, O.A. Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: Analytical validation and applicability to metabolic profiling. Anal. Chem. 2009, 81, 10071–10079. [Google Scholar] [CrossRef]
- Akiyama, T.; Saigusa, D.; Hyodo, Y.; Umeda, K.; Saijo, R.; Koshiba, S.; Kobayashi, K. Metabolic Profiling of the Cerebrospinal Fluid in Pediatric Epilepsy. Acta Med. Okayama 2020, 74, 65–72. [Google Scholar] [CrossRef]
- Li, C.; Xu, F.; Xie, D.M.; Jing, Y.; Shang, M.Y.; Liu, G.X.; Wang, X.; Cai, S.Q. Identification of absorbed constituents in the rabbit plasma and cerebrospinal fluid after intranasal administration of asari radix et rhizoma by HS-SPME-GC-MS and HPLC-APCI-IT-TOF-MSN. Molecules 2014, 19, 4857–4879. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.L.; Pan, J.X.; Zheng, P.; Xia, J.J.; Yin, B.M.; Liang, W.W.; Li, Y.F.; Wu, J.; Xu, F.; Wu, Q.Y.; et al. Metabonomics reveals peripheral and central shortchain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques. Neuropsychiatr. Dis. Treat. 2019, 15, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Coulier, L.; Muilwijk, B.; Bijlsma, S.; Noga, M.; Tienstra, M.; Attali, A.; van Aken, H.; Suidgeest, E.; Tuinstra, T.; Luider, T.M.; et al. Metabolite profiling of small cerebrospinal fluid sample volumes with gas chromatography–mass spectrometry: Application to a rat model of multiple sclerosis. Metabolomics 2013, 9, 78–87. [Google Scholar] [CrossRef]
- Koek, M.M.; Bakels, F.; Engel, W.; Van Den Maagdenberg, A.; Ferrari, M.D.; Coulier, L.; Hankemeier, T. Metabolic profiling of ultrasmall sample volumes with GC/MS: From microliter to nanoliter samples. Anal. Chem. 2010, 82, 156–162. [Google Scholar] [CrossRef]
- Lu, A.Y.; Damisah, E.C.; Winkler, E.A.; Grant, R.A.; Eid, T.; Bulsara, K.R. Cerebrospinal fluid untargeted metabolomic profiling of aneurysmal subarachnoid hemorrhage: An exploratory study. Br. J. Neurosurg. 2018, 32, 637–641. [Google Scholar] [CrossRef]
- Orefice, N.S.; Carotenuto, A.; Mangone, G.; Bues, B.; Rehm, R.; Cerillo, I.; Saccà, F.; Calignano, A.; Orefice, G. Assessment of neuroactive steroids in cerebrospinal fluid comparing acute relapse and stable disease in relapsing-remitting multiple sclerosis. J. Steroid Biochem. Mol. Biol. 2016, 159, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, M.; Pini, L.A.; Pelliccioli, G.P.; Calabresi, P.; Sarchielli, P. Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1224–1229. [Google Scholar] [CrossRef]
- Paik, M.J.; Ahn, Y.H.; Lee, P.H.; Kang, H.; Park, C.B.; Choi, S.; Lee, G. Polyamine patterns in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Clin. Chim. Acta 2010, 411, 1532–1535. [Google Scholar] [CrossRef]
- Lee, P.H.; Lee, G.; Paik, M.J. Polyunsaturated fatty acid levels in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Mov. Disord. 2008, 23, 309–310. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.; Sun, Y.; Gao, J.; Lian, K. Analysis of 5-hydroxytryptamine and its related indoles in cerebrospinal fluid of leukemic children by gas chromatography-mass spectrometry. J. Lab. Med. 2020, 44, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.; Reinecke, C.J.; Solomons, R. Cerebrospinal Fluid Amino Acid Profiling of Pediatric Cases with Tuberculous Meningitis. Front. Neurosci. 2017, 11. [Google Scholar] [CrossRef]
- Obata, T.; Nagakura, T.; Maeda, H.; Yamashita, K.; Maekawa, K. Simultaneous assay of prostaglandins and thromboxane in the cerebrospinal fluid by gas chromatography-mass spectrometry-selected ion monitoring. J. Chromatogr. B Biomed. Sci. Appl. 1999, 731, 73–81. [Google Scholar] [CrossRef]
- Kozar, M.P.; Krahmer, M.T.; Fox, A.; Gray, B.M. Failure to detect muramic acid in normal rat tissues but detection in cerebrospinal fluids from patients with pneumococcal meningitis. Infect. Immun. 2000, 68, 4688–4698. [Google Scholar] [CrossRef] [Green Version]
- Medana, I.M.; Hien, T.T.; Day, N.P.; Phu, N.H.; Mai, N.T.H.; Van Chu’ong, L.; Chau, T.T.H.; Taylor, A.; Salahifar, H.; Stocker, R.; et al. The Clinical Significance of Cerebrospinal Fluid Levels of Kynurenine Pathway Metabolites and Lactate in Severe Malaria. J. Infect. Dis. 2002, 185, 650–656. [Google Scholar] [CrossRef]
- Medana, I.M.; Day, N.P.J.; Salahifar-Sabet, H.; Stocker, R.; Smythe, G.; Bwanaisa, L.; Njobvu, A.; Kayira, K.; Turner, G.D.H.; Taylor, T.E.; et al. Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J. Infect. Dis. 2003, 188, 844–849. [Google Scholar] [CrossRef]
- Anderson, A.M.; Croteau, D.; Ellis, R.J.; Rosario, D.; Potter, M.; Guillemin, G.J.; Brew, B.J.; Woods, S.P.; Letendre, S.L. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau. J. Neuroimmunol. 2018, 319, 13–18. [Google Scholar] [CrossRef]
- Inoue, H.; Matsushige, T.; Ichiyama, T.; Okuno, A.; Takikawa, O.; Tomonaga, S.; Anlar, B.; Yüksel, D.; Otsuka, Y.; Kohno, F.; et al. Elevated quinolinic acid levels in cerebrospinal fluid in subacute sclerosing panencephalitis. J. Neuroimmunol. 2020, 339, 577088. [Google Scholar] [CrossRef]
- Regenold, W.T.; Kling, M.A.; Hauser, P. Elevated sorbitol concentration in the cerebrospinal fluid of patients with mood disorders. Psychoneuroendocrinology 2000, 25, 593–606. [Google Scholar] [CrossRef]
- Kageyama, Y.; Deguchi, Y.; Hattori, K.; Yoshida, S.; Goto, Y.; Inoue, K.; Kato, T. Nervonic acid level in cerebrospinal fluid is a candidate biomarker for depressive and manic symptoms: A pilot study. Brain Behav. 2021, 11. [Google Scholar] [CrossRef]
- Kim, B.K.; Fonda, J.R.; Hauger, R.L.; Pinna, G.; Anderson, G.M.; Valovski, I.T.; Rasmusson, A.M. Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD. Neurobiol. Stress 2020, 12, 100220. [Google Scholar] [CrossRef]
- Rasmusson, A.M.; King, M.W.; Valovski, I.; Gregor, K.; Scioli-Salter, E.; Pineles, S.L.; Hamouda, M.; Nillni, Y.I.; Anderson, G.M.; Pinna, G. Relationships between cerebrospinal fluid GABAergic neurosteroid levels and symptom severity in men with PTSD. Psychoneuroendocrinology 2019, 102, 95–104. [Google Scholar] [CrossRef]
- Jokinen, J.; Nordström, A.L.; Nordström, P. Cerebrospinal fluid monoamine metabolites and suicide. Nord. J. Psychiatry 2009, 63, 276–279. [Google Scholar] [CrossRef]
- Engström, G.; Alling, C.; Blennow, K.; Regnéll, G.; Träskman-Bendz, L. Reduced cerebrospinal HVA concentrations and HVA/5-HIAA ratios in suicide attempters: Monoamine metabolites in 120 suicide attempters and 47 controls. Eur. Neuropsychopharmacol. 1999, 9, 399–405. [Google Scholar] [CrossRef]
- Lindqvist, D.; Janelidze, S.; Hagell, P.; Erhardt, S.; Samuelsson, M.; Minthon, L.; Hansson, O.; Björkqvist, M.; Träskman-Bendz, L.; Brundin, L. Interleukin-6 Is Elevated in the Cerebrospinal Fluid of Suicide Attempters and Related to Symptom Severity. Biol. Psychiatry 2009, 66, 287–292. [Google Scholar] [CrossRef]
- Mochel, F.; DeLonlay, P.; Touati, G.; Brunengraber, H.; Kinman, R.P.; Rabier, D.; Roe, C.R.; Saudubray, J.M. Pyruvate carboxylase deficiency: Clinical and biochemical response to anaplerotic diet therapy. Mol. Genet. Metab. 2005, 84, 305–312. [Google Scholar] [CrossRef]
- Mazzuca, M.; Maubert, M.A.; Damaj, L.; Clot, F.; Cadoudal, M.; Dubourg, C.; Odent, S.; Benoit, J.F.; Bahi-Buisson, N.; Christa, L.; et al. Combined Sepiapterin Reductase and Methylmalonyl-CoA Epimerase Deficiency in a Second Patient: Cerebrospinal Fluid Polyunsaturated Fatty Acid Level and Follow-Up Under L-DOPA, 5-HTP and BH4 Trials. JIMD Rep. 2015, 22, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.S.; Verhoeven, N.M.; Roos, B.; Valongo, C.; Cardoso, M.L.; Vilarinho, L.; Salomons, G.S.; Jakobs, C. Creatine and guanidinoacetate: Diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol. Genet. Metab. 2004, 82, 214–219. [Google Scholar] [CrossRef]
- de Paiva, M.J.N.; Menezes, H.C.; Christo, P.P.; Resende, R.R.; Cardeal, Z.d.L. An alternative derivatization method for the analysis of amino acids in cerebrospinal fluid by gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 931, 97–102. [Google Scholar] [CrossRef]
- Pautova, A.; Khesina, Z.; Getsina, M.; Sobolev, P.; Revelsky, A.; Beloborodova, N. Determination of Tryptophan Metabolites in Serum and Cerebrospinal Fluid Samples Using Microextraction by Packed Sorbent, Silylation and GC-MS Detection. Molecules 2020, 85, 3258. [Google Scholar] [CrossRef]
- Smythe, G.A.; Braga, O.; Brew, B.J.; Grant, R.S.; Guillemin, G.J.; Kerr, S.J.; Walker, D.W. Concurrent Quantification of Quinolinic, Picolinic, and Nicotinic Acids Using Electron-Capture Negative-Ion Gas Chromatography–Mass Spectrometry. Anal. Biochem. 2002, 301, 21–26. [Google Scholar] [CrossRef]
- Pautova, A.K.; Khesina, Z.B.; Litvinova, T.N.; Revelsky, A.I.; Beloborodova, N.V. Metabolic profiling of aromatic compounds in cerebrospinal fluid of neurosurgical patients using microextraction by packed sorbent and liquid–liquid extraction with gas chromatography–mass spectrometry analysis. Biomed. Chromatogr. 2021, 35, 1–11. [Google Scholar] [CrossRef]
- Kietzerow, J.; Otto, B.; Wilke, N.; Rohde, H.; Iwersen-Bergmann, S.; Andresen-Streichert, H. The challenge of post-mortem GHB analysis: Storage conditions and specimen types are both important. Int. J. Legal Med. 2020, 134, 205–215. [Google Scholar] [CrossRef]
- Kok, R.M.; Howells, D.W.; Van Den Heuvel, C.C.M.; Guérand, W.S.; Thompson, G.N.; Jakobs, C. Stable Isotope Dilution Analysis of GABA in CSF Using Simple Solvent Extraction and Electron-Capture Negative-Ion Mass Fragmentography. J. Inherit. Metab. Dis. 1993, 16, 508–512. [Google Scholar] [CrossRef]
- Kok, R.M.; Kaster, L.; De Jong, A.P.; Poll-Thé, B.; Saudubray, J.-M.; Jakobs, C. Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine and amniotic fluid using electron capture negative ion mass fragmentography. Clin. Chim. Acta. 1987, 168, 143–152. [Google Scholar] [CrossRef]
- Kim, Y.S.; Zhang, H.; Kim, H.Y. Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal. Biochem. 2000, 277, 187–195. [Google Scholar] [CrossRef]
- Kancheva, R.; Hill, M.; Novák, Z.; Chrastina, J.; Velíková, M.; Kancheva, L.; Říha, I.; Stárka, L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2010, 119, 35–44. [Google Scholar] [CrossRef]
- Mannila, A.; Kumpulainen, E.; Lehtonen, M.; Heikkinen, M.; Laisalmi, M.; Salo, T.; Rautio, J.; Savolainen, J.; Kokki, H. Plasma and cerebrospinal fluid concentrations of indomethacin in children after intravenous administration. J. Clin. Pharmacol. 2007, 47, 94–100. [Google Scholar] [CrossRef]
- Liang, E.; Garzone, P.; Cedarbaum, J.M.; Koller, M.; Tran, T.; Xu, V.; Ross, B.; Jhee, S.S.; Ereshefsky, L.; Pastrak, A.; et al. Pharmacokinetic profile of orally administered scyllo-inositol (Elnd005) in plasma, cerebrospinal fluid and brain, and corresponding effect on amyloid-beta in healthy subjects. Clin. Pharmacol. Drug Dev. 2013, 2, 186–194. [Google Scholar] [CrossRef]
- Wyman, J.; Bultman, S. Postmortem Distribution of Heroin Metabolites in Femoral Blood, Liver, Cerebrospinal Fluid, and Vitreous Humor. J. Anal. Toxicol. 2004, 28, 260–263. [Google Scholar] [CrossRef]
- Perala, A.W.; Filary, M.J.; Bartels, M.J.; McMartin, K.E. Quantitation of Diethylene Glycol and Its Metabolites by Gas Chromatography Mass Spectrometry or Ion Chromatography Mass Spectrometry in Rat and Human Biological Samples. J. Anal. Toxicol. 2014, 38, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, S.L.; Burant, C.F.; Klein, S.; Meece, K.; White, A.; Kasten, T.; Lucey, B.P.; Bateman, R.J. Continuous 24-hour leptin, proopiomelanocortin, and amino acid measurements in human cerebrospinal fluid: Correlations with plasma leptin, soluble leptin receptor, and amino acid levels. J. Clin. Endocrinol. Metab. 2014, 99, 2540–2548. [Google Scholar] [CrossRef] [Green Version]
- Young, S.; Struys, E.; Wood, T. Quantification of creatine and guanidinoacetate using GC-MS and LC-MS/MS for the detection of cerebral creatine deficiency syndromes. Curr. Protoc. Hum. Genet. 2007, Chapter 17, 1–18. [Google Scholar] [CrossRef]
- Plecko, B.; Paul, K.; Paschke, E.; Stoeckler-Ipsiroglu, S.; Struys, E.; Jakobs, C.; Hartmann, H.; Luecke, T.; di Capua, M.; Korenke, C.; et al. Biochemical and Molecular Characterizationof 18 Patients With Pyridoxine-Dependent Epilepsyand Mutations of the Antiquitin (ALDH7A1) Gene. Hum. Mutat. 2007, 28, 19–26. [Google Scholar] [CrossRef]
- Wang, Y.; Karu, K.; Griffiths, W.J. Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie 2007, 89, 182–191. [Google Scholar] [CrossRef]
- Starka, L.; Hill, M.; Kancheva, R.; Novak, Z.; Chrastina, J.; Pohanka, M.; Morfin, R. 7-Hydroxylated derivatives of dehydroepiandrosterone in the human ventricular cerebrospinal fluid. Neuroendocrinol. Lett. 2009, 30, 368–372. [Google Scholar]
- Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2014. [Google Scholar] [CrossRef]
- Praticò, D.; Clark, C.M.; Lee, V.M.-Y.; Trojanowski, J.Q.; Rokach, J.; FitzGerald, G.A. Increased 8,12-iso-iPF 2-VI in Alzheimer’s Disease: Correlation of a Noninvasive Index of Lipid Peroxidation with Disease Severity. Ann. Neurol. 2000, 48, 809–812. [Google Scholar]
- Li, G.; Millard, S.P.; Peskind, E.R.; Zhang, J.; Yu, C.E.; Leverenz, J.B.; Mayer, C.; Shofer, J.S.; Raskind, M.A.; Quinn, J.F.; et al. Cross-sectional and longitudinal relationships between cerebrospinal fluid biomarkers and cognitive function in people without cognitive impairment from across the adult life span. JAMA Neurol. 2014, 71, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Finno, C.J.; Estell, K.E.; Winfield, L.; Katzman, S.; Bordbari, M.H.; Burns, E.N.; Miller, A.D.; Puschner, B.; Tran, C.K.; Xu, L. Lipid peroxidation biomarkers for evaluating oxidative stress in equine neuroaxonal dystrophy. J. Vet. Intern. Med. 2018, 32, 1740–1747. [Google Scholar] [CrossRef]
- Yen, H.C.; Wei, H.J.; Chen, T.W. Analytical variables affecting analysis of Fisoprostanes and Fneuroprostanes in human cerebrospinal fluid by gas chromatography/mass spectrometry. Biomed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Milne, G.L.; Sanchez, S.C.; Musiek, E.S.; Morrow, J.D. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat. Protoc. 2007, 2, 221–226. [Google Scholar] [CrossRef]
- Dmitrienko, S.G.; Apyari, V.V.; Gorbunova, M.V.; Tolmacheva, V.V.; Zolotov, Y.A. Homogeneous Liquid–Liquid Microextraction of Organic Compounds. J. Anal. Chem. 2020, 75, 1371–1383. [Google Scholar] [CrossRef]
- Gupta, M.; Jain, A.; Verma, K.K. Salt-assisted liquid-liquid microextraction with water-miscible organic solvents for the determination of carbonyl compounds by high-performance liquid chromatography. Talanta 2009, 80, 526–531. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Dmitrienko, S.G.; Apyari, V.V.; Tolmacheva, V.V.; Gorbunova, M.V. Dispersive Liquid–Liquid Microextraction of Organic Compounds: An Overview of Reviews. J. Anal. Chem. 2020, 75, 1237–1251. [Google Scholar] [CrossRef]
- Zuloaga, O.; Olivares, M.; Navarro, P.; Vallejo, A.; Prieto, A. Dispersive liquid-liquid microextraction: Trends in the analysis of biological samples. Bioanalysis 2015, 7, 2211–2225. [Google Scholar] [CrossRef]
- Mudiam, M.K.R.; Ratnasekhar, C. Ultra sound assisted one step rapid derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometric determination of amino acids in complex matrices. J. Chromatogr. A 2013, 1291, 10–18. [Google Scholar] [CrossRef]
- Jain, R.; Kumar, A.; Shukla, Y. Dispersive Liquid-liquid Microextraction-injector Port Silylation: A Viable Option for the Analysis of Polar Analytes using Gas Chromatography-Mass Spectrometry. Austin J. Anal. Pharm. Chem. 2015, 2, 1042. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Townsend, R.; Keulen, G.; Desbrow, C.; Godfrey, A.R. An investigation of the utility of QuEChERS for extracting acid, base, neutral and amphiphilic species from example environmental and clinical matrices. Anal. Sci. Adv. 2020, 1, 152–160. [Google Scholar] [CrossRef]
- Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Luzardo, O.P. Micro QuEChERS-based method for the simultaneous biomonitoring in whole blood of 360 toxicologically relevant pollutants for wildlife. Sci. Total Environ. 2020, 736. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. TrAC Trends Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Vuckovic, D.; De Lannoy, I.; Gien, B.; Shirey, R.E.; Sidisky, L.M.; Dutta, S.; Pawliszyn, J. In vivo solid-phase microextraction: Capturing the elusive portion of metabolome. Angew. Chemie Int. Ed. 2011, 50, 5344–5348. [Google Scholar] [CrossRef]
- Campanella, B.; Onor, M.; Lomonaco, T.; Benedetti, E.; Bramanti, E. HS-SPME-GC-MS approach for the analysis of volatile salivary metabolites and application in a case study for the indirect assessment of gut microbiota. Anal. Bioanal. Chem. 2019, 411, 7551–7562. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Cmara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904. [Google Scholar] [CrossRef] [Green Version]
- Tienpont, B.; David, F.; Desmet, K.; Sandra, P. Stir bar sorptive extraction-thermal desorption-capillary GC-MS applied to biological fluids. Anal. Bioanal. Chem. 2002, 373, 46–55. [Google Scholar] [CrossRef]
- Nazyropoulou, C.; Samanidou, V. Stir bar sorptive extraction applied to the analysis of biological fluids. Bioanalysis 2015, 7, 2241–2250. [Google Scholar] [CrossRef]
- Hasan, C.K.; Ghiasvand, A.; Lewis, T.W.; Nesterenko, P.N.; Paull, B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal. Chim. Acta 2020, 1139, 222–240. [Google Scholar] [CrossRef]
- Li, J.; Qi, H.Y.; Wang, Y.B.; Su, Q.; Wu, S.; Wu, L. Hollow fiber–stir bar sorptive extraction and microwave assisted derivatization of amino acids in biological matrices. J. Chromatogr. A 2016, 1474, 32–39. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Matin, A.A. Determination of BTEX in water samples with an SPME hollow fiber coated copper wire. Chromatographia 2008, 68, 443–446. [Google Scholar] [CrossRef]
- Abdel-Rehim, M. New trend in sample preparation: On-line microextraction in packed syringe for liquid and gas chromatography applications. J. Chromatogr. B 2004, 801, 317–321. [Google Scholar] [CrossRef]
- Pautova, A.K.; Sobolev, P.D.; Revelsky, A.I. Microextraction of aromatic microbial metabolites by packed hypercrosslinked polystyrene from blood serum. J. Pharm. Biomed. Anal. 2020, 177. [Google Scholar] [CrossRef]
- Silva, C.; Cavaco, C.; Perestrelo, R.; Pereira, J.; Câmara, J.S. Microextraction by packed Sorbent (MEPS) and solid-phase microextraction (SPME) as sample preparation procedures for the metabolomic profiling of urine. Metabolites 2014, 4, 71–97. [Google Scholar] [CrossRef]
- Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.G. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation. J. Chromatogr. A 2012, 1226, 71–76. [Google Scholar] [CrossRef]
- Bustamante, L.; Cárdenas, D.; von Baer, D.; Pastene, E.; Duran-Sandoval, D.; Vergara, C.; Mardones, C. Evaluation of microextraction by packed sorbent, liquid–liquid microextraction and derivatization pretreatment of diet-derived phenolic acids in plasma by gas chromatography with triple quadrupole mass spectrometry. J. Sep. Sci. 2017, 40, 3487–3496. [Google Scholar] [CrossRef]
- Pautova, A.K.; Sobolev, P.D.; Revelsky, A.I. Analysis of phenylcarboxylic acid-type microbial metabolites by microextraction by packed sorbent from blood serum followed by GC–MS detection. Clin. Mass Spectrom. 2019, 14, 46–53. [Google Scholar] [CrossRef]
Aim | GC–MS Method, Capillary Column | CSF Sampling | Compounds | Sample Volume | Sample Preparation | Reference |
---|---|---|---|---|---|---|
Presenting a catalog of detectable metabolites (including their concentrations and disease associations) that can be found in human CSF. This catalog was assembled using a combination of both experimental (NMR, GC–MS, LC–FTMS) and literature-based research. | GC–MS: DB-5 column | Patients screened for meningitis (n = 50). | 41 metabolites: amino acids, fatty acids, steroids, carbohydrates, et al. | 200 µL | CSF + 800 µL 8:1 HPLC-grade MeOH-deionized water + vortexing + centrifugation + 200 µL of the supernatant was evaporated to dryness + 40 µL methoxyamine hydrochloride + incubation 90 min at 30 °C + 40 µL MSTFA + 20 µL proline IS + incubation at 30 °C for 45 min. | [22] |
Update of the CSF metabolome database. Determination of metabolites using different methods, including NMR, GC–MS, LC–FTMS, direct flow injection–MS/MS and ICP–MS. | GC–MS: DB-5 column | Patients screened for meningitis (n = 7). | The same as in [22] | 200 µL | The same as in [22]. | [30] |
Analysis of protein and metabolite abundances in CSF by multiple analytical platforms. Integration of metabolomics and proteomics to present biological variations in metabolite and protein abundances and compare these with technical variations with the currently used analytical methods. | GC–MS: 30 m × 0.25 mm × 0.25 μm, HP5-MS | Subjects (n = 9), the validation sample set (n = 28), and the experimental sample sets (n = 36 for proteomics and n = 42 for metabolomics). | 93 metabolites: amino acids, organic acids, nucleosides, fatty acids, mono- and disaccharides, et al. | 60–100 μL | 60 μL CSF + 250 μL MeOH + centrifugation. 100 μL CSF samples from the validation sample set + 400 μL MeOH + drying under N2 + derivatization with MSTFA in pyridine. The final volume was 45 μL for the original sample set and 135 μL for the validation sample set. | [31] |
To conduct a global metabolomics analysis to provide an overview of the postprandial alterations in CSF and plasma metabolites and to facilitate the application of CSF for biomarker screening (using metabolomics). | GC–MS/MS: 30 m × 0.25 mm × 0.25 μm, DB-5MS-DG. | Healthy subjects (n = 9). CSF collected both preprandial and postprandial CSF. The postprandial time was set at 1.5 h (n = 3), 3 h (n = 3), and 6 h (n = 3). | 150 metabolites: amino acids, fatty acids, indoles, carbohydrates, et al. | 500 µL | CSF + 9 volumes MeOH + centrifugation + IS + drying under N2 + oximation and trimethylsilylation. | [32] |
Study on the effects of preanalytical factors on the porcine CSF proteome and metabolome using a variety of techniques comprising LC–MS, GC–MS, and MALDI-FT-ICP-MS. | GC–MS: 30 mm × 0.25 mm × 0.25 μm, HP5-MS. | Conventional pigs (n = 5). | 49 metabolites: amino acids, sugars, hydroxy acids, et al. | 100 µL | Lyophilization + derivatization with ethoxyamine hydrochloride in pyridine + derivatization with MSTFA. | [33] |
Characterization of the metabolites present in CSF and comparison of metabolite levels in patient-matched setting to those found in serum. | GC × GC–TOFMS: 10 m × 0.18 mm × 0.18 µm, Rxi-5ms; 1.5 m × 0.1 mm × 0.1 µm. BPX-50. | Healthy subjects (n = 53). | 1280 metabolites, quantitatively determined 21 compounds | 25 µL | 25 µL CSF + 10 µL IS + 400 µL MeOH + vortexing + centrifugation + 30 min at –20 °C + drying under N2 + derivatization 25 µL O-methylhydroxylamine hydrochloride + incubation 60 min, 45 °C + 25 µL MSTFA + incubation 60 min at 45 °C + hexane. | [34] |
A GC–MS-based metabolomic analysis of CSF samples from glioma patients. | GC–MS: 30 m × 0.25 mm × 1.0 μm, DB-5, 30 m × 0.25 mm × 0.25 μm, CP-SIL 8 CB low bleed/MS. | Patients with intracranial glial tumors (n = 32). | 45 metabolites, quantitatively determined 16 compounds. | 50 µL | 50 µL CSF + 250 µL MeOH–water–chloroform (2.5:1:1) + IS + vortexing + centrifugation + 250 µL of supernatant + 200 µL distilled water + vortexing + centrifugation + 250 µL of supernatant was lyophilized + 40 µL 20 mg/mL methoxyamine hydrochloride in pyridine + 20 µL MSTFA + centrifugation. | [23] |
Exploring potential biomarkers and improving understanding of biochemical features of CSF-mediated autoimmune inflammatory diseases of the CNS. | GC–TOFMS: RTX-5Sil MS. | Patients suspected to have inflammatory demyelinating diseases (n = 145), control subjects without medical or neurological illness (n = 12) | 962 metabolic signatures, quantitatively determined 85: sugars and sugar alcohols (24%), amino acids (28%), fatty acids (15%), organic acids (15%), amines (2%) et al. | 100 μL | 100 μL CSF on ice at 4 °C + 650 μL MeOH–isopropanol–water, 3:3:2, v/v/v + centrifugation + 700 μL of supernatant + drying + storage at –80 °C until derivatization + 5 μL 40 mg/mL methoxyamine hydrochloride in pyridine + incubation 90 min at 200 rpm, 30 °C + 2 μL IS + 45 μL MSTFA+1% TMCS + incubation 1 h at 200 rpm, 37 °C. | [26] |
CSF metabolome study in a group of patients with different clinical and genetic subtypes of amyotrophic lateral sclerosis using GC–TOFMS. | GC–TOFMS: 10 m × 0.18 mm × 0.18 μm DB 5-MS. | amyotrophic lateral sclerosis patients (n = 78), healthy subjects (for control) | 120 peaks, 40 identified. | 100 μL | 100 μL CSF + 900 μL IS and MeOH–water, 1:9 + 11 IS + beadmill for 1 min (90 Hz), 2 h on ice + centrifugation + 200 μL evaporized + storage at –80 °C + 30 μL (15 μg/μL) methylhydroxylamine hydrochloride 98% in pyridine + vortexing + heating 70 °C, 1 h + 16 h at room temperature + 30 μL MSTFA+1% TMCS, room temperature, 1 h + 30 μL heptane. | [25] |
A detailed analytical evaluation of GC–APCI–TOFMS. In addition to the detailed examination of the analytical performance (repeatability, reproducibility, linearity, and detection limits), the applicability of this technique for metabolic profiling of CSF was demonstrated. | GC–APCI–TOFMS 30 m × 0.25 mm × 0.25 μm HP-5-MS. | Human CSF | 300 compounds, 21 identified | 250 μL | 250 μL CSF + 600 μL MeOH + centrifugation + evaporation + 100 μL methoxyamine:pyridine mixture, 40 °C, 60 min +100 μL BSTFA or MSTFA containing 1% TMCS, 40 °C, 30 min + 2 h equilibration. | [35] |
GC–MS/MS-based metabolome analysis of the CSF in pediatric patients with and without epilepsy. | GC–MS/MS | Patients with epilepsy (n = 34), patients without epilepsy (n = 30) | 180 metabolites | 50 μL (from reference) | (From reference): 50 µL serum + 250 µL MeOH–water–chloroform (2.5:1:1) + shaking, 30 min at 37 °C + centrifugation + 225 µL supernatant + 200 µL distilled water + centrifugation + 250 µL + 40 µL 20 mg/mL methoxyamine hydrochloride in pyridine + shaking + 20 µL MSTFA + incubation 30 min, 1200 rpm at 37 °C + centrifugation. | [36] |
Testing the hypothesis that fatty acid metabolism in Alzheimer’s disease or mild cognitive impairment is altered compared to cognitively healthy study participants, and that details of the changes could be revealed by study of the brain-derived nanoparticles and supernatant fluid fractions of CSF. | GC–MS: 30 m × 0.25 mm × 0.50 μm, Phenomenex Zebron ZB-1MS. | Total participants (n = 139): cognitively healthy (n = 70), mild cognitive impairment (n = 40), Alzheimer’s disease (n = 29). | 20 fatty acids (6 saturated, 6 monounsaturated, 8 polyunsaturated fatty acids) | 1 mL | 1 mL CSF + 100 ng IS + formic acid (0.9%, 3 drops) + lipid extraction + 0.5 mL chloroform:MeOH solution (1:1, v/v), 0.5 mg/mL butylated hydroxytoluene + vortexing + storage –40 °C + PFBBr in MeCN solution (1:19 v/v, 50 μL) and diisopropyl ether in MeCN solution (1:9 v/v, 50 μL), 20 min at 45 °C + drying under N2 + 1 mL hexane. | [10] |
Investigation of CSF and plasma metabolomic profiles for prediction of Parkinson’s disease progression. | GC–MS | Participants with relatively mild Parkinsonism. Donors (n = 49) were randomly selected placebo-treated participants. | 383 biochemicals | No data | No exact information, except references to the earlier publications. Brief information describes extraction and derivatization with BSTFA. | [8] |
Investigation of the metabolomics profile of patients affected by relapsing–remitting multiple sclerosis and primary progressive multiple sclerosis, in order to find potential biomarkers to distinguish between the two forms. | GC–MS: 30 m × 0.25 mm × 0.25 μm, TG-5MS. | Patients (relapsing–remitting multiple sclerosis n = 22, primary progressive multiple sclerosis n = 12) | Different classes of compounds (data most discussed in this article were obtained from LC–MS and flow injection–MS analysis). | 200 μL | 200 μL + lyophilization + drying + 50 μL methoxyamine in pyridine (10 mg/mL), 70 °C + 100 μL MSTFA, room temperature, 1 h + 100 μL hexane. | [24] |
Comprehensive analysis of the absorbed constituents in the plasma and CSF of rabbits after intranasal administration of Asari Radix et Rhizoma by headspace solid-phase microextraction–GC–MS and HPLC–atmospheric pressure chemical ionization–ion trap-time of flight-multistage mass spectrometry (HPLC–APCI–ion-trap-TOF-MSn). | GC–MS: 30 m × 0.25 mm × 0.25 µm, Rxi-5MS. | Rabbits (n = 15) | 25 metabolites | 500 µL | 500 µL CSF in 10 mL headspace vial + 0.10 g NaCl + polydimethylsiloxane/divinylbenzene fiber was exposed to the headspace at 70 °C, 40 min + fiber was withdrawn into the needle + desorption at 250 °C for 3 min into the GC injection port. | [37] |
Investigation of CSF metabolomics in an acute experimental autoimmune encephalomyelitis rat model using targeted LC–MS and GC–MS. | GC–MS: 30 m × 0.25 mm × 0.25 μm, HP5-MS. | Rats (n = 84) | 14 amino acids and related compounds | 30 μL | 30 μL CSF + 250 μL MeOH + centrifugation + drying under N2 + derivatization with MSTFA in pyridine. The end volume was 45 μL. | [2] |
A nontargeted metabolomic analysis using GC–MS was conducted to identify differentially expressed metabolites between naturally occurring depressive and control macaques. | GC–MS: 30 m × 0.25 mm × 0.25 μm, HP-5MS. | Naturally occurring depressive female macaques (n = 10) and age- and gender-matched healthy controls (n = 12) | 663 variables, 37 metabolites | 15 μL | ~15 μL CSF + 10 μL IS + vortexing + 90 μL MeOH + centrifugation + 95 μL of supernatant + drying under N2 + 30 μL methoxamine hydrochloride (20 mg/mL pyridine) + incubation 37 °C, 90 min + 30 μL of BSTFA + 1% TMCS 70 °C, 60 min + cooling to room temperature. | [38] |
Report on an analytical method that can be used for metabolomics studies when only a limited amount of sample volume is available. | GC–MS: 30 m × 0.25 mm × 0.25 μm, HP-5MS. | Rats (n = 60, total number of CSF samples n = 90) | 93 metabolites, 73 identified: fatty acids, amino acids, tricarboxylic cycle acids, carbohydrates, polyols, purine/pyrimidine bases, et al. | 10 μL | 10 μL CSF + 40 μL MeOH + centrifugation 10 min, 11,800 rpm + drying under N2 + 10 μL ethoxyamine·HCl (c = 56 mg/mL (0.58M) in pyridine), 90 min, 40 °C + 20 μL MSTFA, 50 min, 40 °C. The final volume was 50 μL. | [39] |
Presentation of an analytical method using in-liner silylation coupled to GC–MS that is suitable for metabolic profiling in ultrasmall sample volumes of 2 μL down to 10 nL. | GC–TOFMS: 30 m × 0.25 mm × 0.25 μm HP5-MS. | Mouse and human CSF samples. | 342 peaks, 52 identified in human CSF: amino acids, organic acids, fatty acids, sugars, et al. | 2 μL | The microvials containing the dried sample were placed inside the PTV injection liner + 1 μL IS + 3 μL MSTFA. | [40] |
Application of untargeted metabolomics using GC–TOFMS to the CSF of aneurysmal subarachnoid hemorrhage patients to determine global metabolic changes and metabolite predictors of long-term outcome that are independent of vasospasm status. | GC–MS: 30 m × 0.25 mm × 0.25 μm, Rtx-5Sil MS. | Patients with aneurysmal subarachnoid hemorrhage (n = 15). | 97 metabolites | 5 µL | 5 μL of CSF + 1.0 mL MeCN, isopropanol, and water in proportion 3:3:2 + vortexing + centrifugation + drying + 450 μL degassed 50% MeCN + centrifugation + derivatization. | [41] |
Disease Classification | Diagnosis | Candidate Biomarkers | Reference |
---|---|---|---|
Inflammatory demyelinating | Multiple sclerosis | 5 amino acids, O-phosphoethanolamin | [2] |
sorbitol, fructose | [3] | ||
homocysteine | [4] | ||
N-acetylaspartic acid | [5] | ||
2 metabolites of arachidonic acid | [6] | ||
quinolinic acid, picolinic acid | [7] | ||
3 neuroactive steroids | [42] | ||
4 endocannabinoids | [43] | ||
Neuromyelitis optica spectrum disorder and idiopathic transverse myelitis data | 2 monoglycerides, salicylaldehyde, 4 organic acids, inosine, threose, butane-2,3-diol, hypoxanthine, glutamine | [26] | |
Neurodegenerative | Amyotrophic lateral sclerosis | amino acids, organic acids | [25] |
Alzheimer’s disease | 2 steroids | [9] | |
fatty acids | [10] | ||
8,12-iso-iPF2α-VI | [11] | ||
total isoprostane iPF2α-VI | [12] | ||
polyunsaturated fatty acids | [13] | ||
F2-IsoPs | [14] | ||
Multiple system atrophy | 7 polyamines | [44] | |
eicosapentaenoic acid | [45] | ||
Oncological | Glioma | citric and iso-citric acid | [23] |
Leukemia | 5-hydroxytryptamine, 5-hydroxyindole acetic acid | [46] | |
Infectious | Meningitis | 5 amino acids | [47] |
prostaglandins, thromboxane B2 | [48] | ||
muramic acid | [49] | ||
quinolinic acid, picolinic acid | [50] | ||
Malaria | |||
[51] | |||
HIV-associated impaired prospective memory | quinolinic acid | [52] | |
Subacute sclerosing panencephalitis | quinolinic acid | [53] | |
Mental | Mood disorders | sorbitol | [54] |
fatty acids, amino acids | [38] | ||
Major depressive disorder | nervonic acid | [55] | |
Post-traumatic stress disorder | allopregnanolone, pregnanolone | [56] | |
allopregnanolone, pregnanolone | [57] | ||
Diagnosis of suicidal behavior | 5-hydroxyindolacetic acid | [58] | |
homovanillic acid | [59] | ||
5-hydroxyindolacetic acid, homovanillic acid | [60] | ||
Genetic | Pyruvate carboxylase deficiency | free-gamma-aminobutyric acid, glutamine, C5 ketone bodies | [61] |
Combined sepiapterin reductase and methylmalonyl-CoA epimerase deficiency | 2 polyunsaturated fatty acids | [62] | |
Guanidinoacetate methyltransferase (GAMT) and creatine transporter deficiency | guanidinoacetate | [63] | |
Vascular | Aneurysmal subarachnoid hemorrhage | free amino acids | [41] |
Epilepsies | Epilepsy | 2-ketoglutaric acid, pyridoxamine, tyrosine, 1,5-anhydro-glucitol | [36] |
Compounds | GC–MS Method, Capillary Column | CSF Sampling | Sample Volume | Sample Preparation | Method Validation | Concentration | Reference |
---|---|---|---|---|---|---|---|
Glycine, sarcosine, l-forms: alanine, valine, leucine, isoleucine, serine, threonine, methionine, aspartic acid, proline, cysteine, glutamic acid, phenylalanine, asparagine, lysine. | GC–MS: 30 m × 0.25 mm × 0.25 µm Rtx-5MS. | Artificial CSF, patients (n = 16). | 200 µL | 200 µL CSF + 800 µL MeOH at –10 °C + vortexing + centrifugation + 200 µL supernatant + evaporation to dryness at room temperature under N2 + 15 µL methoxyamine in pyridine (20 mg/mL) + 35 µL BSTFA+TMCS (99:1 v/v) + vortexing + derivatization under microwave irradiation, 210 W, 3 min. | Recovery: 88–129%. LOD: 0.01–4.24 µM. LOQ: 0.02–7.07 µM. Intraday (RSD): 4.1–15.6%. Interday (RSD): 6.4–18.7%. Lin. 0.1–133.0 µM (R2 = 0.99 for amino acids except cysteine). | Median (n = 16), µM: 6.9/4.9/19.9/9.3/6.7/4.2/7.9/7.6/10.4/6.2/375.0/1046.7/13.0/4.8/1.1/10.4. | [64] |
5-hydroxyindole ethanol (5-HTOL), 5-hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT). | GC–MS: 30 m × 0.25 mm × 0.25 μm, DB-5. | Children with acute lymphoblastic leukemia without chemotherapy (n = 36), control group (n = 24) | 3 mL | 3 mL CSF + SPE + washing + elution 1 mL MeOH + 0.5% formic acid + drying under N2 + 70 μL BSTFA+1% TMCS + 30 μL pyridine + 2.5 μL MeOH + incubating for 1 h at 95 °C. | Matrix effect: 92.3–106.2% (no significant ME). Lin. 0.5–200.0 µg/L (5-HTOL, 5-HIAA, R2 ≥ 0.9924) and 2.0–800.0 µg/L (5-HTP, 5-HT, R2 ≥ 0.9918). LOD: 0.1–0.4 µg/L. LOQ: 0.5 (5-HTOL, 5-HIAA) and 2.0 (5-HTP, 5-HT) µg/L. Intraday recovery: 94.6–105.6% (CV 1.4–4.5%). Interday recovery: 93.0–106.9% (CV 1.8–4.5%). | Children with acute lymphoblastic leukemia without chemotherapy4.3/61.0/5.3/3. Control group: 4.5/88.9/5.8/6.5 | [46] |
Indole-3-carboxylic (3ICA), indole-3-acetic (3IAA), indole-3-propionic (3IPA), indole-3-lactic (3ILA), 5-hydroxyindole-3-acetic (5-HIAA) acids. | GC–MS: 30 m × 0.25 mm × 0.25 µm, TR-5ms. | CSF (n = 3) samples of different patients with CNS diseases. | 40 μL | 40 µL CSF + 40 µL distilled water + MEPS + elution with diethyl ether + drying + 40 μL BSTFA/MTBSTFA + incubation 30 min at 90 °С + cooling 30 min at 4 °С + 350 μL of hexane. | Recovery: 40–80% (for pooled CSF). LOD: 0.2–0.4 µM. LOQ: 0.4–0.5 µM. Precision (RSD): <20%. Accuracy (the relative error, RE): <±20% (at the LOQ concentrations). Lin.: 0.4–7 µM (R2 ≥ 0.9949). | 3IAA, µM: 0.42 ± 0.08; 0.6 ± 0.1; 0.43 ± 0.03 | [65] |
Quinolinic, picolinic, nicotinic acids. | GC–ECNI-MS: 30 m × 0.25 mm, HP–5MS (i) 0.25 μm or (ii) 1.0 μm stationary-phase film thickness. | Human CSF samples, artificial CSF | 20–50 μL | CSF + evaporation to dryness + 100 μL trifluoroacetic anhydride + 100 μL hexafluoroisopropanol + heating at 60 °C for 30 min + dissolving in 1 mL toluene + washing with 1 mL 5% NaHCO3 + 1 mL water + ~500 mg anhydrous Na2SO4. | On-column LOQ: < 1 fmol (S/N 10:1). Lin.: 0–5 pmol on column. Slope: for nicotinic acid 5.8; for picolinicacid 25.8 (R2 > 0.996). Precision (RSD): 0.5–4.3%. Accuracy: 94.0–105.5%. Interday precision: 1.0–8.9%. Interday accuracy: 96.7%–104.0%. | Nicotinic acid: 2.0 (prehidrolysis) and 56.2 (after hydrolysis) μM. | [66] |
Benzoic (BA), phenylpropionic (PhPA), phenyllactic (PhLA), 4-hydroxybenzoic (p-HBA), 4-hydroxyphenylacetic (p-HPhAA), 4-hydroxyphenylpropionic (p-HPhPA), homovanillic (HVA), 4-hydroxyphenyllactic (p-HPhLA). | GC–MS: 30 m × 0.25 mm × 0.25 µm, TR-5ms. | CSF samples (n = 138) from neurosurgical patients (n = 84), pooled CSF for validation. | 40 μL (MEPS) 200 μL (LLE). | MEPS: 40 µL CSF + 40 µL distilled water + MEPS + elution with diethyl ether + drying + 40 μL BSTFA, 30 min at 90 °С + cooling 30 min at 4 °С + 350 μL of hexane. LLE: 200 µL CSF + 800 µL distilled water + 0.3–0.5 g solid NaCl + 15 µL concentrated sulfuric acid + diethyl ether + extraction 2 × 1 mL + evaporation at 40 °С + derivatization as for MEPS. | Recovery: 40–90%. LOD: 0.1–0.3 µM. LOQ: 0.4–0.7 µM. Precision (the reproducibility, RSD): <20%. Accuracy (the relative error, RE): <±20%. Lin.: over 0.4–10 µM (R2 ≥ 0.99). | Median (BA/PhPA/PhLA/p-HBA/p-HPhAA/HVA/p-HPhLA), μM: 0.7/<LOQ/0.1/nd/<LOQ/0.3/0.7/2.5. | [67] |
Guanidinoacetate, creatine | Stable isotope dilution GC–MS: SGE BPX-70. | GAMT-deficient patients (n = 8) and SLC6A8-deficient patients (n = 8) | 100 μL | 100 μL CSF + 50 μL NaHCO3 + 50 μL hexafluoroacetylacetone + 500 μL toluene + heating 2 h to 80 °C + 300 μL toluene phase + drying under N2 + 10 μL triethylamine + 100 μL 7% PFBBr in MeCN (v/v), 15 min + 200 μL 0.5N HCl + 1 mL hexane + extraction. | Linearity: 0.5–10 nmol and 0.05–0.5 nmol LOD (S/N = 5): 0.01 and 0.0012 μM. LOQ (S/N = 10): 0.02 and 0.0024 μM. Intra-assay (n = 10): 0.25 ± 0.02 (CV 6.0%) and 57 ± 3 (CV 6.0%) μM. Interassay (n = 5): 0.25 ± 0.01(CV 4.0%) and 62 ± 3.7(CV 6.0%) μM | Control (n = 25): 0.036—0.22 μM and 24–66 μM GAMT deficient: 14–15 μM and not detected SLC6A8 deficient creatine levels: 56–62 μM. | [63] |
Gamma-hydroxybutyric acid (GHB) | GC–MS: 30 m × 0.25 mm × 0.25 µm, VF-5 ms. | From autopsy cases (n = 21) | 50 µL | 50 μL CSF + IS + 200 μL 0.1M HCl + 1 mL ethyl acetate + centrifugation + evaporation to dryness at 20 °C, 2 mbar in a vacuum centrifuge + 50 μL MeCN + 25 μL BSTFA+1% TMCS + mixing. | Inter- and intraday accuracy: ≥91%. Imprecision: ≤9%. LOD: 0.5 mg/L. LOQ: 0.6 mg/L. Cal. curve: 1.0 mg/L, 10 mg/L, 40 mg/L, 80 mg/L and 100 mg/L. | Range concentrations after immediate analysis/after storage for 14 days at 4 °C/20 °C, mg/L: 1.1–10.4/0.6–13.2/<0.5–21.6. | [68] |
Gamma-aminobutyric acid (GABA) | Isotope-dilution GC–ECNI-MS: 25 m × 0.32 mm, CPSil 88. | CSF samples of a patient before and during Vigabatrin treatment, control samples. | 50, 500 µL | Free GABA: 500 μL CSF + 800 μL 1M phosphate buffer, pH 11.5 + 50 μL methylchloroformate + 150 μL 6 M HCl + 4 mL ethyl acetate + drying under N2 at 40 °C + 100 μL 7% PFBBr in MeCN + 10 μL triethylamine + 150 μL 0.5 M HCl + 1 mL hexane + drying under N2 at 40 °C + 50 μL hexane. Total GABA: 50 μL CSF + 450 μL water + 250 μL 20% sulphosalicylic acid + hydrolysis 24 h at 110 °C. | LOD: <0.005 µM. Free GABA. Intra-assay: 0.188 ± 0.004 µM (1.9% SD). Interassay: 0.177 ± 0.013 µM (7.3% SD). Total GABA. Intra-assay: 3.00 ± 0.05 µM (1.8% SD). Interassay: 3.57 ± 0.33 µM (9.2% SD). | Free/total GABA, µM. Control: 0.029–0.127/4.72–11.8. Before therapy: 0.153/13.2. During therapy: 0.274/24.1. | [69] |
Pipecolic acid | Isotope-dilution GC–ECNI-MS: 30 m × 0.25 mm, DB-19. | Pediatric CSF samples | 500 µL | CSF/aqueous standard solution + 1.0 mL 1 M potassium phosphate–sodium carbonate buffer, pH 11.5 + 50 μL methyl chloroformate + 0.15 mL 6 M HCl, pH 2 + 4 mL ethyl acetate + drying under N2 + 5 μL PFBBr + 10 μL triethylamine in 50 μL MeCN + 1 mL hexane + washing with 0.5 mL 100 mM HCl + 50 μL hexane. | Lin. 0.05–5 nmol (R > 0.999). LOD: 1.6E-6 nmol of PA (~0.5 nM). Recovery (CV): 97.3%–101.2% (4.0%–7.2%) | Patients: 0.93–4.53 µM. Control: 0.010–0.120 µM. | [70] |
Androsterone, dihydrotestosterone, testosterone, allopregnanolone, isopregnanolone, pregnenolone. | GC–ECNI-MS: 15 m × 0.25 mm × 0.05 µm, HP 5890. | Normal volunteers, cisternal monkey. | 1–2 mL | 1–2 mL CSF + 100 mg C18 SPE + 50 μL 0.2% carboxymethoxylamine hemihydrochloride in pyridine + incubation 45 min at 60 °C + drying in N2+ 100 μL 1.25% pentafluorobenzyl bromide + 2.5% di-isopropylethylamine in MeCN + drying in N2 + 100 μL 50% BSTFA in MeCN + drying + 5 μL hexane. | Recovery: 78.2–99.5%. Reproducibility (RSD): 4.6–35.0%. Lin.: 10–1000 pg/ml (R2 > 0.996). Two-month variation <10%. | Human/monkey CSF, pg/mL: androsterone—52.8/24.7; testosterone—158.3/73.7; allopregnanolone—44.1/6.3; pregnenolone—52.8/16.7. | [71] |
Pregnenolone, dehydroepiandrosterone, progesterone, androstenedione, testosterone, allopregnanolone, isopregnanolone, androsterone, epiandrosterone, 7α-hydroxy-dehydroepiandrosterone, 7β-Hydroxy-dehydroepiandrosterone, 5-androstene-3β,7α,17β-triol, 5-androstene-3β,7β,17β-triol, 16α-hydroxy-pregnenolone, 16α-hydroxy-dehydroepiandrosterone, 16α-hydroxy-progesterone. | GC–MS: 15 m × 0.25 mm × 0.1 μm, RESTEK Rxi. | Patients that underwent an endoscopic third ventriculostomy because of obstructive hydrocephalus (n = 15). | 1 mL | 1 mL CSF + 3 mL of diethyl ether + drying at 37 °C + 1 mL MeOH-water (4:1) + 1 mL pentane + drying of the polar phase 2 h in the vacuum centrifuge at 60 °C + 50 µL methoxylamine-hydrochloride solution in pyridine (2%) + incubation 1 h at 60 °C + drying in the N2 + 50 µL Sylon B + incubating 1 h at 90 °C + drying in the N2 + 20 µL isooctane. | Lin.: 10–1000 pg Slope: 0.96–1.33. R: >0.995. CV: 1.0–5.1%. LOD: 0.04–11.3 pM. Recovery: 75–104%. | Median, nM: 0.060/0.078/0.235/0.208/0.231/0.008/0.040/0.005/0.004/0.300/0.037/0.007/0.012/0.001/0.006/0.072. | [72] |
Indomethacin | GC–NICI-MS: 30 m × 0.25 mm × 0.25 μm, HP-5MS. | Children (n = 31). | 250 μL | 250 μL CSF + acidification + C18 SPE + evaporation + 200 μL PFBBr (3.5% v/v, in MeCN) + 50 μL di-isopropylethylamine + extraction (water and toluene). | LOQ: 0.1 ng/sample. Accuracy: 98–122%. Recovery: 85–87%. Intraday (RSD, n = 3): 3–34%. Lin.: 0.1–5 ng/sample. | 0.2–5.0 ng/mL (median, 1.4 ng/mL) | [73] |
Scyllo-Inositol (Elnd005) | GC–MS | Healthy adults (n = 8). | No data | Extraction from human CSF diluted 1:1 with blank human plasma by protein precipitation/derivatization/LLE. | LLOQ: 0.4 µg/mL. Linearity 0.4–80 µg/mL. Precision for QC samples: 1.7–2.3%. Accuracy at all concentrations: 0.5% to +3.0%. | Prior to administration of ELND005 1.4–1.5 µg/mL. | [74] |
6-monoacetyl morphine, morphine, codeine | GC–MS: 30 m × 0.25 mm × 0.25 µm, HP-5. | Deceased individuals (n = 25). | 3 mL | 3 mL CSF + 18 mL 0.1M phosphate buffer, pH 6.0 + SPE + 100 μL toluene + analysis of codeine + toluene evaporation + 50 μL BSTFA + 1% TMCS 10 min at 70 °C. | Linearity: to 1.7 mg/L. LOQ: 0.002 mg/L for morphine and 0.001 mg/L for codeine and 6-monoacetyl morphine. Precision: 0.115–0.121 mg/L (CV 4.4–7.2%). | 0.001–0.406/0.01–0.38/<0.01–0.04 mg/L | [75] |
Diethylene glycol, ethylene glycol, glycolic, oxalic, diglycolic, hydroxyethoxy acetic acids. | GC–NICI-MS: 30 m × 0.25 mm ID × 0.50 μm, ZB-5 ms. | Control CSF | 250 µL | 250 µL CSF + 1.0 mL water + 100 µL 5 N NaOH + 500 µL toluene + 50 µL PFBCl | LOQ: 0.05–1.0 µg/mL. Lin.: for diethylene glycol and ethylene glycol 0.02–2 (R2 0.9984–0.9989) µg/mL; for other 0.05–51 (0.9990), 0.5–25 (0.9907), 0.5–100 (0.9985), 1–100 (0.9922) µg/mL. Accuracy: ≤15%. | No data | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pautova, A.; Burnakova, N.; Revelsky, A. Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography–Mass Spectrometry: Current Methods and Future Perspectives. Molecules 2021, 26, 3597. https://doi.org/10.3390/molecules26123597
Pautova A, Burnakova N, Revelsky A. Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography–Mass Spectrometry: Current Methods and Future Perspectives. Molecules. 2021; 26(12):3597. https://doi.org/10.3390/molecules26123597
Chicago/Turabian StylePautova, Alisa, Natalia Burnakova, and Alexander Revelsky. 2021. "Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography–Mass Spectrometry: Current Methods and Future Perspectives" Molecules 26, no. 12: 3597. https://doi.org/10.3390/molecules26123597