Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo-S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.1.1. Structure Description of [Co(MorphBPT)Cl2] (1)
2.1.2. Structure Description of [Co(PipBPT)Cl2] (2)
2.2. Hirshfeld Topology Analyses
2.3. FTIR Spectra
2.4. Electronic Spectra
2.5. Antimicrobial Activity
2.6. Antioxidant Activity
3. Materials and Methods
3.1. Syntheses of [Co(MorphBPT)(Cl)2]; (1) and [Co(PipBPT)(Cl)2]; (2)
3.2. Crystal Structure Determination
3.3. Antimicrobial Studies
3.4. Antioxidant Activity
3.5. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Updegraff, I.H.; Moore, S.T.; Herbes, W.F.; Roth, P.B. Amino Resins and Plastics. In Kirk-Othmer’s Encyclopedia of Chemical Technology, 3rd ed.; Grayson, M., Eckroth, D., Eds.; Wiley: New York, NY, USA, 1978; Volume 2, pp. 440–469. [Google Scholar]
- Brown, A.W.A. Ecology of Pesticides; Wiley: New York, NY, USA, 1978; pp. 10–11; 329–339; 369–373. [Google Scholar]
- Shah, D.R.; Modh, R.P.; Chikhalia, K.H. Privileged s-triazines: Structure and pharmacological applications. Fut. Med. Chem. 2014, 6, 463–477. [Google Scholar] [CrossRef]
- Hatfield, S.E. Applications of Triazine Chemistry: Education, Remediation, and Drug Delivery. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2007. [Google Scholar]
- Tobe, A.; Kobayashi, T. Pharmacological studies on triazine derivatives V. Sedative and neuroleptic actions of 2-amino-4-(4-(2hydroxyethyl)-piperazin-1-yl)-6-trifluoromethyl-s-triazine (TR10). Jpn. J. Aerosp. Med. Psychol. 1976, 26, 559–570. [Google Scholar]
- Patel, R.V.; Kumari, P.; Rajani, D.P.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s-triazine-based heterocycles. Fut. Med. Chem. 2012, 4, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, A.V.; Aksenov, I.V. Use of the ring opening reactions of 1,3,5-triazines in organic synthesis. Chem. Heterocyc. Comp. 2009, 45, 130–150. [Google Scholar] [CrossRef]
- Pandey, V.K.; Tusi, S.; Tusi, Z.; Joshi, M.; Bajpai, S. Synthesis and biological activity of substituted 2,4,6-s-triazines. Acta Pharm. 2014, 54, 1–12. [Google Scholar]
- Agrawal, A.; Shrivastav, K.; Puri, S.K.; Chauhan, M.S. Syntheses of 2,4,6-trisubstituted triazines as antimalarial agents. Bioorg. Med. Chem. Lett. 2005, 15, 531–533. [Google Scholar] [CrossRef]
- Bartholomew, D. 1,3,5-Triazines, In Comprehensive Heterocyclic Chemistry II; Boulton, A.J., Ed.; Pergamon: Oxford, UK, 1996. [Google Scholar]
- Giacomelli, G.; Porcheddu, A.; Luca, L.D. [1,3,5]-Triazine: A Versatile heterocycle in current applications of organic chemistry. Curr. Org. Chem. 2004, 15, 1497–1519. [Google Scholar] [CrossRef]
- Blotny, G. Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron 2006, 62, 9507–9522. [Google Scholar] [CrossRef]
- Kumar, A.; Menon, S.K. Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur. J. Med. Chem. 2009, 44, 2178–2183. [Google Scholar] [CrossRef] [PubMed]
- Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Via, L.D. In Vitro Cytotoxic Activities of 2-Alkyl-4,6-diheteroalkyl-1,3,5-triazines: New molecules in anticancer research. J. Med. Chem. 2004, 47, 4649–4652. [Google Scholar] [CrossRef]
- Henke, B.R.; Consler, T.G.; Go, N.; Hale, R.L.; Hohman, D.R.; Jones, S.A.; Lu, A.T.; Moore, L.B.; Moore, J.T.; Orband-Miller, L.A.; et al. A New series of estrogen receptor modulators that display selectivity for estrogen receptor β. J. Med. Chem. 2002, 45, 5492–5505. [Google Scholar] [CrossRef]
- Jensen, N.P.; Ager, A.L.; Bliss, R.A.; Canfield, C.J.; Kotecka, B.M.; Rieckmann, K.H.; Terpinski, J.; Jacobus, D.P. Phenoxypropoxybiguanides, prodrugs of DHFR−inhibiting diaminotriazine antimalarials. J. Med. Chem. 2001, 44, 3925–3931. [Google Scholar] [CrossRef] [PubMed]
- kala, R.S.; Tharmaraj, P.; Sheela, C.D.; Anitha, C. Synthesis and studies on s-Triazine-based ligand and its metal complexes. Int. J. Inorg. Chem. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Ghaib, A.; Ménager, S.; Vérité, P.; Lafont, O. Synthesis of variously 9,9-dialkylated octahydropyrimido [3,4-a]-s-triazines with potential antifungal activity. Farmaco 2002, 57, 109–116. [Google Scholar] [CrossRef]
- Lübbers, T.; Angehrn, P.; Gmünder, H.; Herzig, S.; Kulhanek, J. Design, synthesis, and structure-activity relationship studies of ATP analogues as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 821–826. [Google Scholar] [CrossRef]
- Vathanaruba, M.; Tharmaraj, P.; Sheela, C.D. Studies on A Novel s-triazine based ONO donor heterocyclic ligand and its transition Metal(II) complexes. Int. J. Adv. Res. Chem. Sci. 2014, 1, 21–27. [Google Scholar]
- Marandi, F.; Moeini, K.; Arkak, A.; Mardani, Z.; Krautscheid, H. Docking studies to evaluate the biological activities of the Co(II) and Ni(II) complexes containing the triazine unit: Supported by structural, spectral, and theoretical studies. J. Coord. Chem. 2018, 71, 3893–3911. [Google Scholar] [CrossRef]
- Katugampala, S.; Perera, I.C.; Nanayakkara, C.; Perera, T. Synthesis, characterization, and antimicrobial activity of novel sulfonated copper-triazine complexes. Bioinorg. Chem. Appl. 2018, 2018, 2530851. [Google Scholar] [CrossRef] [Green Version]
- kala, R.S.; Tharmaraja, P.; Sheela, C.D. Synthesis, spectral studies, NLO, and biological studies on metal(II) complexes of s-triazine-based ligand. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2014, 44, 1487–1496. [Google Scholar] [CrossRef]
- Singh, K.; Thakur, R.; Kumar, V. Co(II), Ni(II), Cu(II), and Zn(II) complexes derived from 4-[{3-(4-bromophenyl)-1-phenyl-1H-pyrazol-4-ylmethylene}-amino]-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. Beni-Suef Univ. J. Basic App. Sci. 2016, 5, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Baldaniya, B.B.; Patel, P.K. Synthesis, antibacterial and antifungal activities of s-triazine derivatives. Egypt. J. Chem. 2009, 6, 673–680. [Google Scholar]
- Jain, S.; Sharma, A.M.; Agrawal, M.; Sharma, S.; Dwivedi, J.; Kishore, D. Synthesis and antimicrobial evaluation of some novel trisubstituted s-triazine derivatives based on isatinimino, sulphonamido, and azacarbazole. J. Chem. 2012, 2013, 1–9. [Google Scholar] [CrossRef]
- Osman, A.H. Synthesis and characterization of cobalt(II) and nickel(II) complexes of some Schiff bases derived from 3-hydrazino-6-methyl[1,2,4] triazin-5(4H)one. Transit. Met. Chem. 2006, 31, 35–41. [Google Scholar] [CrossRef]
- Shao, D.; Shi, L.; Wei, H.Y.; Wang, X.Y. Field-induced single-ion magnet behavior in two new cobalt(II) coordination polymers with 2,4,6-tris(4-pyridyl)-1,3,5-triazine. Inorganics 2017, 5, 90. [Google Scholar] [CrossRef] [Green Version]
- Asgharpour, Z.; Farzaneh, F.; Abbasi, A. Synthesis, characterization and immobilization of a new cobalt(ii) complex on modified magnetic nanoparticles as catalyst for epoxidation of alkenes and oxidation of activated alkanes. RSC Adv. 2016, 6, 95729–95739. [Google Scholar] [CrossRef]
- Tilly, D.; Dayaker, G.; Bachu, P. Cobalt mediated C–H bond functionalization: Emerging tools for organic synthesis. Catal. Sci. Technol. 2014, 4, 2756–2777. [Google Scholar] [CrossRef]
- Yoshino, T.; Matsunaga, S. Cobalt-catalyzed C(sp3)−H functionalization reactions. Asian J. Org. Chem. 2018, 7, 1193–1205. [Google Scholar] [CrossRef]
- Pototschnig, G.; Maulide, N.; Schnürch, M. Direct functionalization of C−H bonds by iron, nickel, and cobalt catalysis. Chem. Eur. J. 2017, 23, 9206–9232. [Google Scholar] [CrossRef]
- Tordin, E.; List, M.; Monkowius, U.; Schindler, S.; Knör, G. Synthesis and characterization of cobalt, nickel and copper complexes with tripodal 4N ligands as novel catalysts for the homogeneous partial oxidation of alkanes. Inorg. Chim. Acta 2013, 402, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Aktaş, A.; Saka, E.T.; Bıyıklıoğlu, Z.; Acar, İ.; Kantekin, H. Investigation of catalytic activity of new Co(II) phthalocyanine complexes in cyclohexene oxidation using different type of oxidants. J. Organomet. Chem. 2013, 745, 18–24. [Google Scholar] [CrossRef]
- Junge, K.; Papa, V.; Beller, M. Cobalt–pincer complexes in catalysis. Chem. Eur. J. 2019, 25, 122–143. [Google Scholar] [CrossRef]
- Judy-Azar, A.R.; Mohebbi, S.J. A novel magnetic hybrid nanomaterial as a highly efficient and selective catalyst for alcohol oxidation based on new Schiff base complexes of transition metal ions. Mol. Catal. A Chem. 2015, 397, 158–165. [Google Scholar] [CrossRef]
- Menati, S.; Rudbari, H.A.; Askari, B.; Farsani, M.R.; Jalilian, F.; Dini, G. Synthesis and characterization of insoluble cobalt(II), nickel(II), zinc(II) and palladium(II) Schiff base complexes: Heterogeneous catalysts for oxidation of sulfides with hydrogen peroxide. Compets Rendus Chim. 2016, 19, 347–356. [Google Scholar] [CrossRef]
- Cahiez, G.R.; Moyeux, A. Cobalt-catalyzed cross-coupling reactions. Chem. Rev. 2010, 110, 1435–1462. [Google Scholar] [CrossRef]
- Hebrard, F.; Kalck, P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chem. Rev. 2009, 109, 4272–4282. [Google Scholar] [CrossRef]
- Omae, I. Three characteristic reactions of organocobalt compounds in organic synthesis. Appl. Organomet. Chem. 2007, 21, 318–344. [Google Scholar] [CrossRef]
- Sarkheil, M.; Lashanizadegan, M. Schiff base ligand derived from (±)trans-1,2-cyclohexane-diamine and its Cu(II), Co(II), Zn(II) and Mn(II) Complexes: Synthesis, characterization, styrene oxidation and a hydrolysis study of the imine bond in the Cu(II) Schiff base complex. J. Serb. Chem. Soc. 2016, 81, 369–382. [Google Scholar] [CrossRef]
- Soliman, S.M.; El-Faham, A. One pot synthesis of two Mn(II) perchlorate complexes with s-triazine NNN-pincer ligand; molecular structure, Hirshfeld analysis and DFT studies. J. Mol. Struct. 2018, 1164, 344–353. [Google Scholar] [CrossRef]
- Soliman, S.M.; El-Faham, A. Synthesis, characterization, and structural studies of two heteroleptic Mn(II) complexes with tridentate N,N,N-pincer type ligand. J. Coord. Chem. 2018, 71, 2373–2388. [Google Scholar] [CrossRef]
- Soliman, S.M.; Almarhoon, Z.; Sholkamy, E.N.; El-Faham, A. Bis-pyrazolyl-s-triazine Ni(II) pincer complexes as selective Gram-positive antibacterial agents; synthesis, structural and antimicrobial studies. J. Mol. Struct. 2019, 1195, 315–322. [Google Scholar] [CrossRef]
- Soliman, S.M.; Almarhoon, Z.; El-Faham, A. Synthesis, molecular and supramolecular structures of new Cd(II) pincer-type complexes with s-triazine core ligand. Crystals 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Soliman, S.M.; El-Faham, A. Synthesis, X-ray structure, and DFT studies of five- and eight-coordinated Cd(II) complexes with s-triazine N-pincer chelate. J. Coord. Chem. 2019, 72, 1621–1636. [Google Scholar] [CrossRef]
- Soliman, S.M.; Elsilk, S.E.; El-Faham, A. Synthesis, structure and biological activity of zinc(II) pincer complexes with 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine. Inorg. Chim. Acta 2020, 508, 119627. [Google Scholar] [CrossRef]
- Soliman, S.M.; Elsilk, S.E.; El-Faham, A. Syntheses, structure, Hirshfeld analysis and antimicrobial activity of four new Co(II) complexes with s-triazine-based pincer ligand. Inorg. Chim. Acta 2020, 510, 119753. [Google Scholar]
- Soliman, S.M.; El-Faham, A.; El Silk, S.E. Novel one-dimensional polymeric Cu(II) complexes via Cu(II)-assisted hydrolysis of the 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine pincer ligand: Synthesis, structure, and antimicrobial activities. Appl. Organomet. Chem. 2020, 510, e5941. [Google Scholar]
- Lasri, J.; Haukka, M.; Al-Rasheed, H.H.; Abutaha, N.; El-Faham, A.; Soliman, S.M. Synthesis, structure and in vitro anticancer activity of Pd(II) complex of pyrazolyl-s-triazine ligand; A new example of metal-mediated hydrolysis of s-triazine pincer ligand. Crystals 2021, 11, 119. [Google Scholar] [CrossRef]
- Kala, R.S.; Tharmaraj, P.; Sheela, C.D. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties. J. Mol. Struct. 2014, 1076, 606–613. [Google Scholar]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; Rijn, J.V.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Sharma, A.; Ghabbour, H.; Khan, S.T.; de la Torre, B.G.; Albericio, F.; El-Faham, A. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity. J. Mol. Struct. 2017, 1145, 244–253. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. D 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 17; University of Western Australia: Perth, Australia, 2017. Available online: http://hirshfeldsurface.net (accessed on 12 June 2017).
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim.Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Jayatilaka, Hirshfeld surface analysis. Cryst. Eng. Commun. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Commun. 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in hydrogen bonding: Functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D. Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species . J. Agric. Food. Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents. Molecules 2020, 25, 4566. [Google Scholar] [CrossRef] [PubMed]
- Nogheu, L.N.; Ghogomu, J.N.; Mama, D.B.; Nkungli, N.K.; Younang, E.; Gadre, S.R. Structural, spectral (IR and UV/Visible) and thermodynamic properties of some 3d transition metal(II) chloride complexes of glyoxime and Its derivatives: A DFT and TD-DFT study. Comput. Chem. 2016, 4, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09. Revision A02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Casida, M.E. Recent Advances in Density Functional Methods, Part I; World Scientific: Singapore, 1995. [Google Scholar]
- Gross, E.K.U.; Dobson, J.F.; Petersilka, M. Introduction in Density Functional Theory II; Springer: Heidelberg, Germany, 1996. [Google Scholar]
Compound | [Co(MorphBPT)Cl2] (1) | [Co(pipBPT)Cl2] (2) |
---|---|---|
Empirical formula | C17 H22 Cl2 Co N8 O | C18 H24 Cl2 Co N8 |
Formula weight | 484.25 g/mol | 482.28 g/mol |
Temperature | 121(2) K | 121(2) K |
Wavelength | 0.71073 Å | 0.71073 Å |
Crystal system | Monoclinic | Triclinic |
Space group | C2/c | P-1 |
Unit cell dimensions | a = 17.241(5) Å | a = 11.094(3) Å |
b = 12.832(3) Å | b = 12.785(3) Å | |
c = 20.165(7) Å | c = 16.527(4) Å | |
α = 90° | α = 97.125(6)° | |
β = 109.687(9)° | β = 103.496(6)° | |
γ = 90° | γ = 102.933(6)° | |
Volume | 4200.(2) Å3 | 2182.8(10) Å3 |
Z | 8 | 4 |
Density (calculated) | 1.531 g/cm3 | 1.468 g/cm3 |
Absorption coefficient | 1.098 mm−1 | 1.053 mm−1 |
F(000) | 1992 | 996 |
Crystal size | 0.14 × 0.21 × 0.25 mm3 | 0.20 × 0.27 × 0.32 mm3 |
Theta range for data collection | 2.51 to 25.34° | 2.21 to 25.32° |
Index ranges | −20 ≤ h ≤ 20 | −13 ≤ h ≤ 13 |
−15 ≤ k ≤ 13 | −15 ≤ k ≤ 15 | |
−24 ≤ l ≤ 24 | −19 ≤ l ≤ 19 | |
Reflections collected | 14,323 | 35,520 |
Independent reflections | 3834 [R(int) = 0.0293] | 7949 [R(int) = 0.0373] |
Completeness to theta | 99.60% | 99.70% |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 3834/0/267 | 7949/0/532 |
Goodness-of-fit on F2 | 1.033 | 1.041 |
Final R indices (I > 2sigma(I)) | R1 = 0.0250, wR2 = 0.0581 | R1 = 0.0246, wR2 = 0.0548 |
R indices (all data) | R1 = 0.0310, wR2 = 0.0616 | R1 = 0.0324, wR2 = 0.0584 |
Extinction coefficient | 0.00125(12) | 0.0036(3) |
Largest difference peak and hole | 0.342 and −0.353 | 0.315 and −0.272 |
CCDC | 20805833 | 20805834 |
[Co(MorphBPT)Cl2] (1) | [Co(PipBPT)Cl2] (2) | ||||
---|---|---|---|---|---|
Co1-N1 | 2.0387(15) | Co1-N1 | 2.0291(15) | Co1A-N1A | 2.0325(15) |
Co1-N4 | 2.2008(15) | Co1-N4 | 2.1829(15) | Co1A-N4A | 2.2023(15) |
Co1-N6 | 2.2304(16) | Co1-N6 | 2.1935(15) | Co1A-N6A | 2.2184(15) |
Co1-Cl2 | 2.2718(7) | Co1-Cl2 | 2.2766(7) | Co1A-Cl2A | 2.2667(6) |
Co1-Cl1 | 2.2968(7) | Cl1-Co1 | 2.2822(7) | Co1A-Cl1A | 2.2686(8) |
N1-Co1-N4 | 74.01(6) | N1-Co1-N4 | 73.73(6) | N1A-Co1A-N4A | 73.83(6) |
N1-Co1-N6 | 73.07(5) | N1-Co1-N6 | 74.23(6) | N1A-Co1A-N6A | 73.72(6) |
N4-Co1-N6 | 146.87(5) | N4-Co1-N6 | 147.94(5) | N4A-Co1A-N6A | 147.43(5) |
N1-Co1-Cl2 | 138.89(4) | N1-Co1-Cl2 | 119.81(4) | N1A-Co1A-Cl2A | 115.61(5) |
N4-Co1-Cl2 | 102.34(4) | N4-Co1-Cl2 | 97.95(4) | N4A-Co1A-Cl2A | 100.41(4) |
N6-Co1-Cl2 | 99.89(4) | N6-Co1-Cl2 | 98.88(4) | N6A-Co1A-Cl2A | 95.97(4) |
N1-Co1-Cl1 | 109.63(5) | N1-Co1-Cl1 | 122.66(4) | N1A-Co1A-Cl1A | 124.96(4) |
N4-Co1-Cl1 | 97.96(4) | N4-Co1-Cl1 | 100.29(4) | N4A-Co1A-Cl1A | 95.76(4) |
N6-Co1-Cl1 | 96.42(4) | N6-Co1-Cl1 | 95.81(4) | N6A-Co1A-Cl1A | 100.40(4) |
Cl2-Co1-Cl1 | 111.40(3) | Cl2-Co1-Cl1 | 117.51(2) | Cl2A-Co1A-Cl1A | 119.43(2) |
1 | ||||
C6-H6…Cl1 i | 0.95 | 2.65 | 3.550(2) | 158 |
C11-H11…O1 ii | 0.95 | 2.58 | 3.503(3) | 165 |
i 1/2-x,-1/2+y,3/2-z; ii 1/2+x,3/2-y,1/2+z | ||||
2 | ||||
C6A-H6A…Cl2 i | 0.95 | 2.74 | 3.524(2) | 140 |
C8-H8A…Cl2 ii | 0.98 | 2.82 | 3.768(2) | 162 |
C13-H13A…Cl2 iii | 0.98 | 2.76 | 3.611(2) | 146 |
1 | 2 | ||
---|---|---|---|
Contact | Distance | Contact | Distance |
C6…H14B | 2.745 | C5A…H16D | 2.727 |
C7…H14B | 2.642 | C10A…H17A | 2.722 |
C8…H14B | 2.718 | Cl2A…C3 | 3.407 |
C3…H4A | 2.751 | Cl2A…C2 | 3.412 |
Cl2…C1 | 3.297 | Cl2…H6A | 2.642 |
Cl1…H6 | 2.527 | Cl1A…H4C | 2.780 |
O1…H11 | 2.447 | Cl2A…H4A | 2.797 |
H4C…H15A | 2.223 | Cl2…H13A | 2.670 |
C6…C2 | 3.495 | Cl2…H8A | 2.724 |
C6…N7 | 3.390 | Cl1...H18B | 2.816 |
H9A…H13B | 2.294 | ||
C11…N4A | 3.347 | ||
C11…N5A | 3.341 | ||
N2…H8B | 2.578 |
Micorbe | MorphBPT | 1 | PipBPT | 2 | Control |
---|---|---|---|---|---|
A. fumigatus | - | - | - | - | 17 a |
C. albicans | - | - | - | - | 20 a |
S. aureus | - | 20 | - | 18 | 25 b |
B. subtilis | - | 24 | 13 | 26 | 27 b |
E. coli | - | 16 | - | 15 | 30 b |
P. vulgaris | - | - | - | 30 | 27 b |
Micorbe | MorphBPT | 1 | PipBPT | 2 |
---|---|---|---|---|
A. fumigatus | - | - | - | - |
C. albicans | - | - | - | - |
S. aureus | - | 156 | - | 20 |
B. subtilis | - | 312 | 78 | 39 |
E. coli | - | 625 | - | 1250 |
P. vulgaris | - | - | - | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, S.M.; Massoud, R.A.; Al-Rasheed, H.H.; El-Faham, A. Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo-S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2021, 26, 3633. https://doi.org/10.3390/molecules26123633
Soliman SM, Massoud RA, Al-Rasheed HH, El-Faham A. Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo-S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules. 2021; 26(12):3633. https://doi.org/10.3390/molecules26123633
Chicago/Turabian StyleSoliman, Saied M., Raghdaa A. Massoud, Hessa H. Al-Rasheed, and Ayman El-Faham. 2021. "Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo-S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities" Molecules 26, no. 12: 3633. https://doi.org/10.3390/molecules26123633
APA StyleSoliman, S. M., Massoud, R. A., Al-Rasheed, H. H., & El-Faham, A. (2021). Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo-S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules, 26(12), 3633. https://doi.org/10.3390/molecules26123633