Synthesis of Hafnium(IV) Polyaminoacetates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.1.1. Na[HfDTPA]·3H2O (1)
2.1.2. [HfCDTA(H2O)2]
2.1.3. Na2[Hf(NTA)2]·3H2O, Na2[Hf2(dpta)2], Hf-HEDTA
2.2. Isolation and Purification
2.3. Physicochemical Properties
2.3.1. IR Spectroscopy
2.3.2. NMR Spectroscopy
2.3.3. X-ray Diffraction
3. Biological Activity
4. Experimental Section
4.1. General Information
4.2. Synthesis
4.2.1. Na2[Hf(NTA)2]·3H2O (1)
4.2.2. Na[HfDTPA]·3H2O (2)
4.2.3. [HfCDTA(H2O)2] (3)
4.2.4. Na2[Hf2(dpta)2] 7.5H2O 0.5EtOH (4)
4.2.5. HfHEDTA (5)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Xiao, Y.-D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.-S.; Zhou, S.-K. MRI contrast agents: Classification and application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Lu, Z.-R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, D.H.; Brown, J.; Bydder, G.M.; Steiner, R.E.; Weinmann, H.J.; Speck, U.; Hall, A.S.; Young, I.R. Gadolinium-DTPA as a contrast agent in MRI: Initial clinical experience in 20 patients. Am. J. Roentgenol. 1984, 143, 215–224. [Google Scholar] [CrossRef]
- Ranga, A.; Agarwal, Y.; Garg, K.J. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function. Indian J. Radiol. Imaging 2017, 27, 141–147. [Google Scholar] [PubMed]
- Kazlauskienė, N.; Marčiulionienė, D. The biological effect of heavy metals and their complexonates with dtpa on fish. Acta Zool. Litu. 1999, 9, 71–75. [Google Scholar] [CrossRef]
- Flora, S.J.S.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health 2010, 7, 2745–2788. [Google Scholar] [CrossRef] [Green Version]
- Boone, J.M.; Hernandez, A.M. The effect of iodine-based Contrast material on Radiation dose at CT: It’s Complicated. Radiology 2017, 283, 624–627. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Daftary, A. Iodinated contrast media and their adverse reactions. J. Nucl. Med. Technol. 2008, 36, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Lusic, H.; Grinstaff, M.W. X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113, 1641–1666. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Ikeda, M.; Satoh, Y.; Fujii, K.; Kawaura, C.; Nishimotob, T.; Mori, M. Contrast enhancement efficacy of iodinated contrast media: Effect of molecular structure on contrast enhancement. Eur. J. Radiol. Open 2018, 5, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Bauser, M.; Frenzel, T.; Hilger, C.S.; Jost, G.; Lauria, S.; Morgenstern, B.; Neis, C.; Pietsch, H.; Sülzle, D.; et al. Hafnium-Based Contrast Agents for X-ray Computed Tomography. Inorg. Chem. 2017, 56, 5757–5761. [Google Scholar] [CrossRef]
- Langer, H.G. Solid complexes with tetravalent metal ions and EDTA dehydraiion. J. Inorg. Nucl. Chem. 1964, 26, 59–72. [Google Scholar] [CrossRef]
- Zhong, W.; Parkinson, J.A.; Parsons, S.; Oswald, I.D.H.; Coxall, R.A.; Sadler, P.J. Structure and dynamics of dinuclear zirconium(IV) complexes. Inorg. Chem. 2004, 43, 3561–3572. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.F.; Griffiths, G.W.; O’Mahoney, C.; Williams, D.J.; Wong, C.Y.; Woollins, J.D. Anomalous Solution Behaviour of lsomorphous Complexes of Zirconium- and Hafnium-(iv). J. Chem. Soc. Dalton Trans. 1992, 1, 2475–2479. [Google Scholar] [CrossRef]
- Davidovich, R.L.; Logvinova, V.B. Diethylenetriaminepentaacetic hafnium and zirconium complexes. Coord. Chem. 1992, 18, 580. [Google Scholar]
- Ilyukhin, A.V.; Sergienko, V.S.; Davidovich, R.L. Synthesis and structure of acidic diethylenetriaminepentaacetates. Coord. Chem. 1997, 1474. [Google Scholar]
- Johnson, J.S.; Kurt, A.K. Hydrolytic Behavior of Metal Ions. VI, Ultracentrifugation of Zirconium(1V) and Hafnium(IV); Effect of Acidity. J. Am. Chem. Soc. 1963, 78, 3937–3943. [Google Scholar] [CrossRef]
- Chatterjee, R.K.; Das, S.K.; Saha, S.K. Paper chromatography of hafnium complexes. J. Radioanal. Nucl. Chem. 2002, 251, 171–173. [Google Scholar] [CrossRef]
- Ivanov, P.; Bojikov, G.; Priemyshev, A.; Bontchev, G.; Maslov, O.; Milanov, M.; Dmitriev, S. Behavior of zirconium and hafnium ions in ultramicroconcentrations investigated by horizontal zone electrophoresis in free electrolyte. J. Radioanal. Nucl. Chem. 2003, 258, 639–643. [Google Scholar] [CrossRef]
- Ilyukhin, A.B.; Davidovich, R.L.; Samsonova, I.N.; Teplukhina, L.V. Eightfold-Coordinated Diethylenetriaminepentaacetates: Crystal Structures of K[M(Dtpa)] 3H2O (M = Zr or Hf). Crystallogr. Rep. 2000, 45, 45–49. [Google Scholar] [CrossRef]
- Marques-Netto, A.; Abbe, J.C. Szilard-Chalmers effects in hafnium chelates-I Radiochemical analysis. J. Inorg. Nucl. Chem. 1975, 37, 2235–2238. [Google Scholar] [CrossRef]
- Das, S.K.; Chatterjee, R.K.; Saha, S.K. Characterization of the Hf-NTA complex. J. Radioanal. Nucl. Chem. 2002, 251, 145–147. [Google Scholar] [CrossRef]
- Ivory, N.E.; Williams, D.R. Hafnium(IV)-Nitrilotriacetate and hafnium(IV)-Fluoride complexes investigated using an ion-selecrive electrode. Polyhedron 1985, 4, 1883–1886. [Google Scholar] [CrossRef]
- Hagfeldt, C.; Kesslera, V.; Persson, I. Structure of the hydrated, hydrolysed and solvated zirconium(iv) and hafnium(iv) ions in water and aprotic oxygen donor solvents. Dalton Trans. 2004, 2142–2152. [Google Scholar] [CrossRef]
- Bilinski, H. The Rate of Hydrolysis of Hafnium in 1M NaCl. Adv. Chem. ACS 1971, 9. [Google Scholar] [CrossRef]
- Noren, B. The hydrolysis of Zr4+ and Hf4+. Acta Chem. Scand. 1973, 27, 1369–1384. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.T. Formation, hydrolysis and olation of hafnium(iv) chelates. J. Inorg. Nucl. Chem. 1978, 40, 1673–1675. [Google Scholar]
- Copley, D.B.; Tyree, S.Y., Jr. Time and Temperature Variations in the Hydrolytic Behavior of Hafnium(IV) in Aqueous Chloride Media. Inorg. Chem. 1968, 7, 1472–1474. [Google Scholar] [CrossRef]
- Dyatlova, N.M.; Temkina, V.Y. Complexones and Complexonates; Chimiya: Moscow, Russia, 1988; p. 544. [Google Scholar]
- Sudmeier, J.L. Nuclear Magnetic Resonance Studies of Protonation of some PoIyaminocarboxy1ate Compounds Containing Asymmetric Carbon Atoms. Anal. Chem. 1964, 36, 1707. [Google Scholar] [CrossRef]
- Day, R.J.; Reilley, C.N. Nuclear Magnetic Resonance Studies of Metal Aminopolycarboxylate Complexes: Lability of Individual Metal Ligand Bonds in (Ethylenedinitrilo)tetraacetate Complexes. Anal. Chem. 1964, 36, 1073–1076. [Google Scholar] [CrossRef]
- Held, P.; Listl, B.; Tillmanns, E.; Ahrweiler, S.; Hellwig, H.; Bohaty, L. Crystal growth, crystal structure and linear optical properties of the non-centrosymmetric ammonium bis(nitrilotriacetato)zirconate and hafnate, (NH4)2[Zr{N(CH2COO)3}2] and (NH4)2[Hf{N(CH2COO)3}2]. Zeitschrift fur Krist 2000, 215, 65. [Google Scholar]
- Michael, D.; Mingos, P.; Zhenyang, L. Hybridization schemes for co-ordination and organometallic compounds. Bioinorg. Chem. 2006, 73–111. [Google Scholar]
- Structural Database, 103, Version 5.31, November 2019. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 30 May 2021).
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, M.A.S.D. CrystalExplorer17.5. Perth; University of Western Australia: Crawley, Australia, 2017. [Google Scholar]
Compound | ν(O-H), cm−1 | ν(C=O) cm−1 | ν(COO-), cm−1 | Compound | ν(O-H), cm−1 | ν(C=O) cm−1 |
---|---|---|---|---|---|---|
Na2[Hf(NTA)2]·3H2O | 3600, 3496, 3182, | 1651, 1673, 1626 (vs) | 1267, 1340 (vs) | NTA | 3440 | 1731 |
Na[HfDTPA]·3H2O | 3471, 3358 (vs) | 1653 (vs) | 1402, 1374, 1343, 1319 (vs) | DTPA | 3084, 3020 | 1701, 1633 |
[HfCDTA(H2O)2] | 3429, 3234 | 1653 | 1402, 1374, 1343, 1319 | CDTA·H2O | 3509, 3361, 3285 | 1661, 1709 |
Na2[Hf2(dpta)2] | 3444 | 1670, 1648 | 1381 | dpta | 3441, 3155, 3031, 3011, 2975, 2731 | 1722 |
Hf-HEDTA | 3454 | 1652, 1627, 1569 | 1386 | HEDTA | 3502 | 1731 |
Bond | Compound | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 4 | |
Hf–Hf | – | – | – | 3.5694(3) | |
Hf–N1 | 2.421(5) | 2.459(3) | 2.248(7) | 2.435(4) | 2.424(4) |
Hf–N2 | 2.457(5) | 2.373(3) | 2.382(17) | 2.457(4) | 2.451(4) |
Hf–N3 | – | 2.451(3) | – | – | – |
Hf–O1 | 2.129(3) | 2.097(3) | 2.102(14) | 2.128(3) | 2.149(3) |
Hf–O2 | 2.165(2) | 2.105(3) | 2.248(7) | 2.114(3) | 2.111(3) |
Hf–O3 | 2.165(2) | 2.137(3) | 2.105(10) | 2.125(3) | 2.152(3) |
Hf–O4 | 2.118(3) | 2.119(3) | 2.117(11) | 2.16(2) 2.215(19) | 2.134(3) |
Hf–O5 | 2.137(5) | 2.162(3) | 2.243(14) * | 2.155(3) ** | 2.131(3) ** |
Hf–O6 | 2.111(4) | – | 2.195(15) * | 2.138(3) ** | 2.174(3) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shulyak, A.T.; Bortnikov, E.O.; Kubasov, A.S.; Selivanov, N.A.; Lipengolts, A.A.; Zhdanov, A.P.; Bykov, A.Y.; Zhizhin, K.Y.; Kuznetsov, N.T. Synthesis of Hafnium(IV) Polyaminoacetates. Molecules 2021, 26, 3725. https://doi.org/10.3390/molecules26123725
Shulyak AT, Bortnikov EO, Kubasov AS, Selivanov NA, Lipengolts AA, Zhdanov AP, Bykov AY, Zhizhin KY, Kuznetsov NT. Synthesis of Hafnium(IV) Polyaminoacetates. Molecules. 2021; 26(12):3725. https://doi.org/10.3390/molecules26123725
Chicago/Turabian StyleShulyak, Alexandra T., Evgeniy O. Bortnikov, Alexey S. Kubasov, Nikita A. Selivanov, Alexey A. Lipengolts, Andrey P. Zhdanov, Alexander Yu. Bykov, Konstantin Yu. Zhizhin, and Nikolai T. Kuznetsov. 2021. "Synthesis of Hafnium(IV) Polyaminoacetates" Molecules 26, no. 12: 3725. https://doi.org/10.3390/molecules26123725
APA StyleShulyak, A. T., Bortnikov, E. O., Kubasov, A. S., Selivanov, N. A., Lipengolts, A. A., Zhdanov, A. P., Bykov, A. Y., Zhizhin, K. Y., & Kuznetsov, N. T. (2021). Synthesis of Hafnium(IV) Polyaminoacetates. Molecules, 26(12), 3725. https://doi.org/10.3390/molecules26123725