High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of HPP on AFB1 and AOH Reduction
2.2. Comparison of the Results Obtained after Applying HPP in the Different Juice Models Studied
2.3. Effect of Thermal Treatment on AFB1 and AOH Reduction
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Samples
3.3. HPP Procesing Treatment
3.4. Thermal Treatment
3.5. Dispersive Liquid-Liquid Microextraction Procedure (DLLME)
3.6. LC-MS/MS-IT Determination
3.7. Method Validation
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Caswell, H. The role of fruit juice in the diet: An overview. Nutr. Bull. 2009, 34, 273–288. [Google Scholar] [CrossRef]
- Koutchma, T.; Popović, V.; Polski, V.R.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 844–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-Y.; Huang, H.-W.; Hsu, C.-P.; Yang, B.B. Recent advances in food processing using high hydrostatic pressure technology. Crit. Rev. Food Sci. Nutr. 2016, 56, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Swamy, G.J.; Muthukumarappan, K.; Sangamithra, A.; Chandrasekar, V.; Sasikala, S. Nonthermal technologies for nonalcoholic beverages. In Trends in Non-Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–231. ISBN 978-0-12-816938-4. [Google Scholar]
- Stinco, C.M.; Szczepańska, J.; Marszałek, K.; Pinto, C.A.; Inácio, R.S.; Mapelli-Brahm, P.; Barba, F.J.; Lorenzo, J.M.; Saraiva, J.A.; Meléndez-Martínez, A.J. Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chem. 2019, 299, 125112. [Google Scholar] [CrossRef] [PubMed]
- Laboissière, L.H.E.S.; Deliza, R.; Barros-Marcellini, A.M.; Rosenthal, A.; Camargo, L.M.A.Q.; Junqueira, R.G. Effects of high hydrostatic pressure (HHP) on sensory characteristics of yellow passion fruit juice. Innov. Food Sci. Emerg. Technol. 2007, 8, 469–477. [Google Scholar] [CrossRef]
- Bi, X.; Liu, F.; Rao, L.; Li, J.; Liu, B.; Liao, X.; Wu, J. Effects of electric field strength and pulse rise time on physicochemical and sensory properties of apple juice by pulsed electric field. Innov. Food Sci. Emerg. Technol. 2013, 17, 85–92. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Han, Z.; Sun, D.W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef]
- Muntean, M.-V.; Marian, O.; Barbieru, V.; Cătunescu, G.M.; Ranta, O.; Drocas, I.; Terhes, S. High pressure processing in food industry—characteristics and applications. Agric. Agric. Sci. Procedia 2016, 10, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.-P.; Marchesseau, S. Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Front. Nutr. 2019, 5, 130. [Google Scholar] [CrossRef] [PubMed]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Barba, F.J.; Terefe, N.S.; Buckow, R.; Knorr, D.; Orlien, V. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods: A review. Food Res. Int. 2015, 77, 725–742. [Google Scholar] [CrossRef]
- Gavahian, M.; Pallares, N.; Al Khawli, F.; Ferrer, E.; Barba, F.J. Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends Food Sci. Technol. 2020, 106, 209–218. [Google Scholar] [CrossRef]
- Iizuka, T.; Maeda, S.; Shimizu, A. Removal of pesticide residue in cherry tomato by hydrostatic pressure. J. Food Eng. 2013, 116, 796–800. [Google Scholar] [CrossRef]
- Iizuka, T.; Shimizu, A. Removal of pesticide residue from Brussels sprouts by hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2014, 22, 70–75. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Kamasani, J.R.; Mudili, V.; Krishna, K.; Chauhan, O.P.; Sreepathi, M.H. Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Biosci. 2018, 21, 53–59. [Google Scholar] [CrossRef]
- Woldemariam, H.W.; Emire, S.A. High pressure processing of foods for microbial and mycotoxins control: Current trends and future prospects. Cogent Food Agric. 2019, 5, 1622184. [Google Scholar] [CrossRef]
- Ünüsan, N. Systematic review of mycotoxins in food and feeds in Turkey. Food Control 2019, 97, 1–14. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited “FAO estimate” of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Guo, W.; Yang, J.; Niu, X.; Tangni, E.K.; Zhao, Z.; Han, Z. A reliable and accurate UHPLC-MS/MS method for screening of Aspergillus, Penicillium and Alternaria mycotoxins in orange, grape and apple juices. Anal. Methods 2021, 13, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, N.; Carballo, D.; Ferrer, E.; Fernández-Franzón, M.; Berrada, H. Mycotoxin dietary exposure assessment through fruit juices consumption in children and adult population. Toxins 2019, 11, 684. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Sater, M.A.; Zohri, A.A.; Ismail, M.A. Natural contamination of some Egyptian fruit juices and beverages by mycoflora and mycotoxins. J. Food Sci. Technol. 2001, 38, 407–411. [Google Scholar]
- Kaymak, T.; Türker, L.; Tulay, H.; Stroka, J. Determination of aflatoxins and ochratoxin A in traditional turkish concentrated fruit juice products by multi-immunoaffinity column cleanup and LC fluorescence detection: Single-laboratory validation. J. AOAC Int. 2018, 101. [Google Scholar] [CrossRef] [PubMed]
- Avsaroglu, M.D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Press. Res. 2015, 35, 214–222. [Google Scholar] [CrossRef]
- Hao, H.; Zhou, T.; Koutchma, T.; Wu, F.; Warriner, K. High hydrostatic pressure assisted degradation of patulin in fruit and vegetable juice blends. Food Control 2016, 62, 237–242. [Google Scholar] [CrossRef]
- Pallarés, N.; Berrada, H.; Tolosa, J.; Ferrer, E. Effect of high hydrostatic pressure (HPP) and pulsed electric field (PEF) technologies on reduction of aflatoxins in fruit juices. LWT 2021, 142, 111000. [Google Scholar] [CrossRef]
- Ioi, D. Occurrence of Alternariol and Alternariol Monomethyl Ether in Apple and Tomato Products and Resistance to Food Processing; University of Guelph: Guelph, ON, Canada, 2017. [Google Scholar]
- Tokuşoǧlu, Ö.; Alpas, H.; Bozoǧlu, F. High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innov. Food Sci. Emerg. Technol. 2010, 11, 250–258. [Google Scholar] [CrossRef]
- Pallarés, N.; Barba, F.J.; Berrada, H.; Tolosa, J.; Ferrer, E. Pulsed Electric Fields (PEF) to mitigate emerging mycotoxins in juices and smoothies. Appl. Sci. 2020, 10, 6989. [Google Scholar] [CrossRef]
- Merkulow, N.; Ludwig, H. The influence of high hydrostatic pressure on the adduct formation of patulin with cysteine. In Progress in Biotechnology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 19, pp. 349–354. [Google Scholar]
- Rodríguez-Bencomo, J.J.; Sanchis, V.; Viñas, I.; Martín-Belloso, O.; Soliva-Fortuny, R. Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chem. 2020, 315, 126283.38. [Google Scholar] [CrossRef]
- Saeeduddin, M.; Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Awad, F.N.; Hu, B.; Lei, S.; Zeng, X. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT Food Sci. Technol. 2015, 64, 452–458. [Google Scholar] [CrossRef]
- Kabak, B. Mini-review The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Elhariry, H.M.; Khiralla, G.M.; Gherbawy, Y.; ElRahman, H.A. Natural occurrence of Alternaria toxins in pomegranate fruit and the influence of some technological processing on their levels in juice. Acta Aliment. 2016, 45, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Govaris, A.; Roussi, V.; Koidis, P.A.; Botsoglou, N.A. Distribution and stability of aflatoxin M 1 during production and storage of yoghurt. Food Addit. Contam. 2010, 19, 1043–1050. [Google Scholar] [CrossRef]
- Deveci, O. Changes in the concentration of aflatoxin M1 during manufacture and storage of White Pickled cheese. Food Control 2007, 18, 1103–1107. [Google Scholar] [CrossRef]
- Hajnal, E.J.; Čolović, R.; Pezo, L.; Orčić, D.; Vukmirović, D.; Mastilović, J. Possibility of Alternaria toxins reduction by extrusion processing of whole wheat flour. Food Chem. 2016, 213, 784–790. [Google Scholar] [CrossRef]
- Yazdanpanah, H.; Mohammadi, T.; Abouhossain, G.; Cheraghali, A.M. Effect of roasting on degradation of Aflatoxins in contaminated pistachio nuts. Food Chem. Toxicol. 2005, 43, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Cortés, C.; Esteve, M.J.; Frígola, A. Study of antioxidant capacity and quality parameters in an orange juice-milk beverage after high-pressure processing treatment. Food Bioproc.Tech. 2012, 5, 2222–2232. [Google Scholar] [CrossRef]
- European Commission. COMMISSION DECISION 2002/657/EC; European Communities: Brussels, Belgium, 2002; L 221/8. [Google Scholar]
Mycotoxin | Molecular Structure | Species Producers |
---|---|---|
AFLATOXINS AFs (AFB1, AFB2, AFG1, AFG2) | | Aspergillus section Flavi |
OCHRATOXIN A | | Aspergillus section Nigri Aspergillus section Circumdati Penicillium verrucosum Penicillim nordicum |
FUMONISINS (FB1, FB2, FB3) | | Fusarium section Liseola |
ZEARALENONE (ZEA) | | Fusarium graminearum (F. roseum), F. culmorum, F. equiseti, F. cerealis, F. verticillioides, F. incarnatum |
TRICHOTHECENES | | |
A: HT-2, T-2 | Fusarium acuminatum, F. poae, F. sporotrichioides, F. langsethiae | |
B: Deoxynivalenol (DON), 3DON, 15DON, Nivalenol (NIV) | Fusarium graminearum, F. culmorum, F. cerealis | |
FUSARIUM EMERGING MYCOTOXINS | | |
Enniatins (ENNs) | Fusarium avenaceum, F. tricinctum | |
Beauvericin (BEA) | Fusarium avenaceum, F. sporotrichioides, F. poae, F. langsethiae, Fusarium section Liseola | |
ALTERNARIA MYCOTOXINS | | |
Alternariol (AOH) | Alternaria alternata | |
Alternariol monomethyl ether (AME) | Alternaria alternata, A. solani | |
Tenuazonic acid (TeA) | Alternaria alternata | |
Altertoxins (ALTs) | A. tenuissima | |
Altenuene (ALT) | Alternaria alternata |
Mycotoxin | Contents (µg/L) after HPP Treatment | Contents (µg/L) after Thermal Treatment | ||||
---|---|---|---|---|---|---|
Orange Juice/Milk Beverage | Strawberry Juice/Milk Beverage | Grape Juice | Orange Juice/Milk Beverage | Strawberry Juice/Milk Beverage | Grape Juice | |
AFB1 | 76.29 ± 8 A,* | 92.92 ± 9 B | 87.40 ± 6 | 100.00 ± 4 | 100.00 ± 4 | 88.37 ± 9 |
AOH | 71.05 ± 11 * | 72.27 ± 12 * | 62.85 ± 9 * | 100.00 ± 3 | 100.00 ± 12 | 92.60 ± 12 |
Ingredients | Orange Juice/Milk Juice | Strawberry Juice/Milk Juice | Grape Juice |
---|---|---|---|
Juice | 50 mL | 30 mL | 60 mL |
Skim milk | 20 mL | 20 mL | 0 mL |
Bottled water | 30 mL | 50 mL | 40 mL |
Pectin | 0.3 g | 0.3 g | 0.3 g |
Sugar | 7.5 g | 7.5 g | 7.5 g |
Citric acid | 0.1 g | 0.1 g | 0.1 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallarés, N.; Sebastià, A.; Martínez-Lucas, V.; González-Angulo, M.; Barba, F.J.; Berrada, H.; Ferrer, E. High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages. Molecules 2021, 26, 3769. https://doi.org/10.3390/molecules26123769
Pallarés N, Sebastià A, Martínez-Lucas V, González-Angulo M, Barba FJ, Berrada H, Ferrer E. High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages. Molecules. 2021; 26(12):3769. https://doi.org/10.3390/molecules26123769
Chicago/Turabian StylePallarés, Noelia, Albert Sebastià, Vicente Martínez-Lucas, Mario González-Angulo, Francisco J. Barba, Houda Berrada, and Emilia Ferrer. 2021. "High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages" Molecules 26, no. 12: 3769. https://doi.org/10.3390/molecules26123769
APA StylePallarés, N., Sebastià, A., Martínez-Lucas, V., González-Angulo, M., Barba, F. J., Berrada, H., & Ferrer, E. (2021). High Pressure Processing Impact on Alternariol and Aflatoxins of Grape Juice and Fruit Juice-Milk Based Beverages. Molecules, 26(12), 3769. https://doi.org/10.3390/molecules26123769