Anxiolytic Effect of Two Tobacco Essential Oils (Nicotiana tabacum Linn.) on Mice
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of YTO and ZTO
2.2. Toxicity Evaluation of YTO and ZTO
2.2.1. Acute Oral Toxicity Evaluation
2.2.2. Acute Dermal Toxicity Evaluation
2.3. The Effects of Two Administration Routes on Control Groups
2.4. The Effect of YTO and ZTO on Mice in the LDB Test
2.5. The Effect of YTO and ZTO on Mice in the EPM Test
2.6. Changes of Salivary Corticosterone in Mice after YTO and ZTO Administration
3. Discussion
4. Materials and Methods
4.1. Plant Material and Essential Oil Extraction
4.2. Animals
4.3. Chemicals and Treatments
4.4. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis of the Tobacco Essential Oil
4.5. Inhalation Apparatus
4.6. Acute Toxicity of Essential Oil
4.6.1. Acute Oral Toxicity: (OECD Guidelines-425, 2008)
4.6.2. Acute Dermal Toxicity: (OECD Guidelines-402, 2017)
4.7. Behavioral Tests
4.7.1. Light–Dark Box Test (LDB)
4.7.2. Elevated Plus Maze Test (EPM)
4.8. Collection and Examination of Salivary Corticosterone
4.9. Experimental Procedures of Anxiolytic Effect
4.10. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Compound | CAS | Retention (Kovat’s) Indices | Peak Area (%) * | |
---|---|---|---|---|---|
RIexp | RIref | ||||
1 | 1-Butanol, 3-methyl- | 000123-51-3 | 1209 | 1209 | 0.05 ± 0.00 |
2 | 5-Hepten-2-one, 6-methyl- | 000110-93-0 | 1334 | 1338 | 0.04 ± 0.00 |
3 | 3-Hexen-1-ol, (Z)- | 000928-96-1 | 1385 | 1386 | 0.07 ± 0.00 |
4 | Benzaldehyde | 000100-52-7 | 1514 | 1520 | 0.42 ± 0.01 |
5 | Linalool | 000078-70-6 | 1548 | 1547 | 0.27 ± 0.01 |
6 | 5-Methyl furfural | 000620-02-0 | 1565 | 1570 | 0.07 ± 0.01 |
7 | 4-Methoxystyrene | 000637-69-4 | 1664 | 1684 | 0.16 ± 0.01 |
8 | (±)-Solanone | 054868-48-3 | 1720 | 1738 | 9.30 ± 0.16 |
9 | Benzene, 1,4-dimethoxy- | 000150-78-7 | 1724 | 1727 | 0.51 ± 0.01 |
10 | trans-beta-Damascenone | 023726-93-4 | 1807 | 1810 | 2.32 ± 0.04 |
11 | Dihydro-beta-ionone | 017283-81-7 | 1817 | 1842 | 0.21 ± 0.01 |
12 | Nicotine | 000054-11-5 | 1845 | 1863 | 2.35 ± 0.07 |
13 | Benzyl alcohol | 000100-51-6 | 1866 | 1870 | 0.38 ± 0.01 |
14 | Phenylethyl alcohol | 000060-12-8 | 1898 | 1906 | 0.21 ± 0.00 |
15 | trans-beta-Ionone | 000079-77-6 | 1918 | 1917 | 0.18 ± 0.00 |
16 | Neophytadiene | 000504-96-1 | 1925 | 1922 | 27.42 ± 0.46 |
17 | 3,4-Dimethoxystyrene | 006380-23-0 | 2022 | 2027 | 2.73 ± 0.04 |
18 | Benzofuran, 5-methoxy-6,7-dimethyl- | 035355-35-2 | 2094 | NA | 0.38 ± 0.01 |
19 | Phytone | 000502-69-2 | 2116 | 2110 | 0.53 ± 0.01 |
20 | Megastigmatrienone | 038818-55-2 | 2169 | NA | 3.12 ± 0.06 |
21 | Methyl palmitate | 000112-39-0 | 2209 | 2208 | 0.29 ± 0.01 |
22 | Ethyl palmitate | 000628-97-7 | 2249 | 2251 | 0.22 ± 0.00 |
No. | Compound | CAS | Retention (Kovat’s) Indices | Peak Area (%) * | |
---|---|---|---|---|---|
RIexp | RIref | ||||
1 | Ethyl octanoate | 000106-32-1 | 1433 | 1435 | 0.15 ± 0.00 |
2 | Ethyl sorbate | 002396-84-1 | 1503 | 1501 | 0.23 ± 0.00 |
3 | Benzaldehyde | 000100-52-7 | 1513 | 1520 | 0.05 ± 0.00 |
4 | 2-Nonenal, (E)- | 018829-56-6 | 1529 | 1534 | 0.04 ± 0.00 |
5 | Ethyl nonanoate | 000123-29-5 | 1534 | 1531 | 0.06 ± 0.00 |
6 | Linalool | 000078-70-6 | 1548 | 1547 | 0.13 ± 0.01 |
7 | 5-Methyl furfural | 000620-02-0 | 1565 | 1570 | 0.05 ± 0.00 |
8 | 2,6-Nonadienal, (E,Z)- | 000557-48-2 | 1579 | 1584 | 0.05 ± 0.00 |
9 | Ethyl decanoate | 000110-38-3 | 1632 | 1638 | 0.12 ± 0.00 |
10 | Diethyl succinate | 000123-25-1 | 1669 | 1675 | 0.19 ± 0.00 |
11 | (±)-Solanone | 054868-48-3 | 1720 | 1738 | 7.16 ± 0.05 |
12 | Ethyl phenylacetate | 000101-97-3 | 1771 | 1783 | 0.34 ± 0.01 |
13 | beta-Damascone | 035044-68-9 | 1802 | 1824 | 0.31 ± 0.04 |
14 | trans-beta-Damascenone | 023726-93-4 | 1807 | 1810 | 0.54 ± 0.00 |
15 | Naphthalene, 2-methyl- | 000091-57-6 | 1824 | 1852 | 0.18 ± 0.00 |
16 | Geranylacetone | 003796-70-1 | 1846 | 1840 | 0.82 ± 0.00 |
17 | Benzyl alcohol | 000100-51-6 | 1866 | 1870 | 0.10 ± 0.00 |
18 | Phenylethyl alcohol | 000060-12-8 | 1898 | 1906 | 0.10 ± 0.00 |
19 | trans-beta-Ionone | 000079-77-6 | 1918 | 1917 | 0.11 ± 0.01 |
20 | Neophytadiene | 000504-96-1 | 1928 | 1922 | 59.82 ± 0.36 |
21 | Methyl myristate | 000124-10-7 | 2002 | 2005 | 0.15 ± 0.00 |
22 | Ethyl myristate | 000124-06-1 | 2044 | 2049 | 0.82 ± 0.00 |
23 | Methyl pentadecanoate | 007132-64-1 | 2106 | 2108 | 0.08 ± 0.01 |
24 | Phytone | 000502-69-2 | 2117 | 2110 | 0.23 ± 0.01 |
25 | Ethyl pentadecanoate | 041114-00-5 | 2146 | 2148 | 0.31 ± 0.00 |
26 | Cembrene | 001898-13-1 | 2149 | 2181 | 0.26 ± 0.01 |
27 | Megastigmatrienone | 038818-55-2 | 2168 | NA | 1.05 ± 0.00 |
28 | Methyl palmitate | 000112-39-0 | 2210 | 2208 | 1.88 ± 0.05 |
29 | Ethyl palmitate | 000628-97-7 | 2250 | 2251 | 8.18 ± 0.07 |
30 | Ethyl heptadecanoate | 014010-23-2 | 2352 | 2349 | 0.17 ± 0.01 |
31 | Ethyl stearate | 000111-61-5 | 2455 | 2451 | 0.33 ± 0.02 |
32 | Ethyl oleate | 000111-62-6 | 2471 | 2471 | 0.45 ± 0.05 |
33 | Ethyl linoleate | 000544-35-4 | 2518 | 2521 | 1.44 ± 0.02 |
34 | Methyl linolenate | 000301-00-8 | 2549 | 2571 | 0.44 ± 0.00 |
35 | Ethyl linolenate | 001191-41-9 | 2584 | 2591 | 2.36 ± 0.00 |
References
- Leonardo, E.; Hen, R. Anxiety as a Developmental Disorder. Neuropsychopharmacology 2007, 33, 134–140. [Google Scholar] [CrossRef]
- Thibaut, F. Anxiety disorders: A review of current literature. Dialogues Clin. Neurosci. 2017, 19, 87–88. [Google Scholar] [CrossRef]
- Sahoo, S.; Brijesh, S. Anxiolytic activity of Coriandrum sativum seeds aqueous extract on chronic restraint stressed mice and effect on brain neurotransmitters. J. Funct. Foods 2020, 68, 103884. [Google Scholar] [CrossRef]
- Hood, S.D.; Norman, A.; Hince, D.; Melichar, J.K.; Hulse, G.K. Benzodiazepine dependence and its treatment with low dose flumazenil. Br. J. Clin. Pharmacol. 2014, 77, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Slee, A.; Nazareth, I.; Bondaronek, P.; Liu, Y.; Cheng, Z.; Freemantle, N. Pharmacological treatments for generalised anxiety disorder: A systematic review and network meta-analysis. Lancet 2019, 393, 768–777. [Google Scholar] [CrossRef]
- Nuss, P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr. Dis. Treat. 2015, 11, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedotova, J.; Kubatka, P.; Büsselberg, D.; Shleikin, A.G.; Caprnda, M.; Dragasek, J.; Rodrigo, L.; Pohanka, M.; Gasparova, I.; Nosáľ, V.; et al. Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts. Biomed. Pharmacother. 2017, 95, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front. Aging Neurosci. 2017, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Chioca, L.R.; Ferro, M.M.; Baretta, I.P.; Oliveira, S.; Silva, C.R.; Ferreira, J.; Losso, E.M.; Andreatini, R. Anxiolytic-like effect of lavender essential oil inhalation in mice: Participation of serotonergic but not GABAA/benzodiazepine neurotransmission. J. Ethnopharmacol. 2013, 147, 412–418. [Google Scholar] [CrossRef] [Green Version]
- López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Front. Pharmacol. 2017, 8, 280. [Google Scholar] [CrossRef] [PubMed]
- Donelli, D.; Antonelli, M.; Bellinazzi, C.; Gensini, G.F.; Firenzuoli, F. Effects of lavender on anxiety: A systematic review and meta-analysis. Phytomedicine 2019, 65, 153099. [Google Scholar] [CrossRef] [PubMed]
- Mohebitabar, S.; Shirazi, M.; Bioos, S.; Rahimi, R.; Malekshahi, F.; Nejatbakhsh, F. Therapeutic efficacy of rose oil: A comprehensive review of clinical evidence. Avicenna J. Phytomed. 2017, 7, 206–213. [Google Scholar] [PubMed]
- Abbasijahromi, A.; Hojati, H.; Nikooei, S.; Jahromi, H.K.; Dowlatkhah, H.R.; Zarean, V.; Farzaneh, M.; Kalavani, A. Compare the effect of aromatherapy using lavender and Damask rose essential oils on the level of anxiety and severity of pain following C-section: A double-blinded randomized clinical trial. J. Complement. Integr. Med. 2020, 17. [Google Scholar] [CrossRef]
- Enavarra, M.; Mannucci, C.; Edelbò, M.; Ecalapai, G. Citrus bergamia essential oil: From basic research to clinical application. Front. Pharmacol. 2015, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Rombolà, L.; Tridico, L.; Scuteri, D.; Sakurada, T.; Sakurada, S.; Mizoguchi, H.; Avato, P.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats. Molecules 2017, 22, 614. [Google Scholar] [CrossRef]
- Rafii, F.; Ameri, F.; Haghani, H.; Ghobadi, A. The effect of aromatherapy massage with lavender and chamomile oil on anxiety and sleep quality of patients with burns. Burns 2020, 46, 164–171. [Google Scholar] [CrossRef]
- Kumar, V. Characterization of anxiolytic and neuropharmacological activities of Silexan. Wien. Med. Wochenschr. 2013, 163, 89–94. [Google Scholar] [CrossRef]
- Kasper, S. An orally administered lavandula oil preparation (Silexan) for anxiety disorder and related conditions: An evidence based review. Int. J. Psychiatry Clin. Pract. 2013, 17, 15–22. [Google Scholar] [CrossRef]
- Müller, W.E.; Sillani, G.; Schuwald, A.; Friedland, K. Pharmacological basis of the anxiolytic and antidepressant properties of Silexan®, an essential oil from the flowers of lavender. Neurochem. Int. 2021, 143, 104899. [Google Scholar] [CrossRef]
- Zhang, N.; Yao, L. Anxiolytic Effect of Essential Oils and Their Constituents: A review. J. Agric. Food Chem. 2019, 67, 13790–13808. [Google Scholar] [CrossRef]
- Nedeltcheva-Antonova, D.; Ivanova, D.; Antonov, L.; Abe, I. Insight into the aroma profile of Bulgarian tobacco absolute oil. Ind. Crop. Prod. 2016, 94, 226–232. [Google Scholar] [CrossRef]
- Jassbi, A.R.; Zare, S.; Asadollahi, M.; Schuman, M.C. Ecological Roles and Biological Activities of Specialized Metabolites from the GenusNicotiana. Chem. Rev. 2017, 117, 12227–12280. [Google Scholar] [CrossRef] [PubMed]
- Berlowitz, I.; Torres, E.G.; Walt, H.; Wolf, U.; Maake, C.; Martin-Soelch, C. “Tobacco Is the Chief Medicinal Plant in My Work”: Therapeutic Uses of Tobacco in Peruvian Amazonian Medicine Exemplified by the Work of a Maestro Tabaquero. Front. Pharmacol. 2020, 11, 594591. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, B.D.; Wilson, R.A. Tobacco constituents-Their importance in flavor and fragrance chemistry. Perfum. Flavorist 1990, 15, 27–49. [Google Scholar]
- Popova, V.; Ivanova, T.; Prokopov, T.; Nikolova, M.; Stoyanova, A.; Zheljazkov, V.D. Carotenoid-Related Volatile Compounds of Tobacco (Nicotiana tabacum L.) Essential Oils. Molecules 2019, 24, 3446. [Google Scholar] [CrossRef] [Green Version]
- Popova, V.; Gochev, V.; Girova, T.; Iliev, I.; Ivanova, T.; Stoyanova, A. Extraction Products from Tobacco—Aroma and Bioactive Compounds and Activities. Curr. Bioact. Compd. 2015, 11, 31–37. [Google Scholar] [CrossRef]
- Stojanovic, G.; Palić, R.; Alagic, S.; Zeković, Z. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of semi-oriental tobacco, Otlja. Flavour Fragr. J. 2000, 15, 335–338. [Google Scholar] [CrossRef]
- Palić, R.; Stojanovic, G.; Alagić, S.; Nikolić, M.; Lepojević, Ž. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco, Prilep. Flavour Fragr. J. 2002, 17, 323–326. [Google Scholar] [CrossRef]
- Yuan, X.-L.; Mao, X.-X.; Du, Y.-M.; Yan, P.-Z.; Hou, X.-D.; Zhang, Z.-F. Anti-Tumor Activity of Cembranoid-Type Diterpenes Isolated from Nicotiana tabacum L. Biomolecules 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Hristeva, T.; Gochev, V.; Yonchev, Y.; Nikolov, N.; Zheljazkov, V.D. Terpenoids in the Essential Oil and Concentrated Aromatic Products Obtained from Nicotiana glutinosa L. Leaves. Molecules 2019, 25, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, M.; Sali, V.K.; Mani, S.; Vasanthi, H.R. Neophytadiene from Turbinaria ornata Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley Rats. Inflammation 2020, 43, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Liu, Y.; Liu, L.; Du, Y.; Liu, X.; Zhang, H.; Zhang, Z. Bioactivities and Medicinal Value of Solanesol and Its Accumulation, Extraction Technology, and Determination Methods. Biomolecules 2019, 9, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Zhao, S.; Li, M.; Dai, Y.; Tan, L.; Liu, Y. Chemical composition, antimicrobial and antioxidant activities of essential oil from flue-cured tobacco flower bud. Biotechnol. Biotechnol. Equip. 2016, 30, 1026–1030. [Google Scholar] [CrossRef] [Green Version]
- Docheva, M.H.; Kochev, Y.G.; Kirkova, D.M.; Stoilova, A.B. Antioxidant activity and chemical composition of crude extracts from different tobaccos and tobacco blends. Bulg. Chem. Commun. 2020, 52, 149–154. [Google Scholar]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Kadir, H.A.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid. Based Complement. Altern. Med. 2015, 2015, 896314. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhang, L.; Feng, L.; Yao, L. Cananga odorata essential oil reverses the anxiety induced by 1-(3-chlorophenyl) piperazine through regulating the MAPK pathway and serotonin system in mice. J. Ethnopharmacol. 2018, 219, 23–30. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, L.; Feng, L.; Yao, L. The anxiolytic effect of essential oil of Cananga odorata exposure on mice and determination of its major active constituents. Phytomedicine 2016, 23, 1727–1734. [Google Scholar] [CrossRef]
- Sahib, N.G.; Anwar, F.; Gilani, A.-H.; Hamid, A.A.; Saari, N.; Alkharfy, K.M. Coriander (Coriandrum sativum L.): A Potential Source of High-Value Components for Functional Foods and Nutraceuticals—A Review. Phytother. Res. 2013, 27, 1439–1456. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 1–22. [Google Scholar] [CrossRef]
- Meeran, M.F.N.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J.Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; Zuloaga, D.G.; Bidiman, E.; Marzulla, T.; Weber, S.; Wahbeh, H.; Raber, J. ApoE2 Exaggerates PTSD-Related Behavioral, Cognitive, and Neuroendocrine Alterations. Neuropsychopharmacology 2015, 40, 2443–2453. [Google Scholar] [CrossRef] [Green Version]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef]
- Colaianna, M.; Schiavone, S.; Zotti, M.; Tucci, P.; Morgese, M.G.; Bäckdahl, L.; Holmdahl, R.; Krause, K.-H.; Cuomo, V.; Trabace, L. Neuroendocrine Profile in a Rat Model of Psychosocial Stress: Relation to Oxidative Stress. Antioxid. Redox Signal. 2013, 18, 1385–1399. [Google Scholar] [CrossRef] [Green Version]
- Nohara, M.; Tohei, A.; Sato, T.; Amao, H. Evaluation of response to restraint stress by salivary corticosterone levels in adult male mice. J. Vet. Med Sci. 2016, 78, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Ramos, J.R. The rise and fall of tobacco as a botanical medicine. J. Herb. Med. 2020, 22, 100374. [Google Scholar] [CrossRef]
- Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer 2003, 3, 733–744. [Google Scholar] [CrossRef]
- Kivell, B.M.; Danielson, K. Neurological Effects of Nicotine, Tobacco, and Particulate Matter. In Neuropathology of Drug Addictions and Substance Misuse; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; Chapter 11; pp. 115–122. [Google Scholar]
- Li, Y.; Pang, T.; Li, Y.; Wang, X.; Li, Q.; Lü, X.; Xu, G. Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves. J. Sep. Sci. 2011, 34, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Zeng, Y.; Liu, C.; Wang, K.; Zhe, W.; Liu, J.; Liao, T. Study on the Preparation Process Optimization and Chemical Composition Analysis of the Zimbabwe Tobacco Extract. J. Yunnan Agric. Univ. 2019, 34, 63–69. [Google Scholar]
- Garlet, Q.; Rodrigues, P.; Barbosa, L.B.; Londero, A.L.; Mello, C.F.; Heinzmann, B.M. Nectandra grandiflora essential oil and its isolated sesquiterpenoids minimize anxiety-related behaviors in mice through GABAergic mechanisms. Toxicol. Appl. Pharmacol. 2019, 375, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yao, L. The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiol. Behav. 2018, 189, 50–58. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound LCSS for CID 6437599, Megastigmatrienone A. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Megastigmatrienone-A#datasheet=LCSS (accessed on 14 April 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5366074, Damascenone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5366074 (accessed on 14 April 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 12366, Ethyl Palmitate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/12366 (accessed on 14 April 2021).
- Bourin, M.; Petit-Demoulière, B.; Nic Dhonnchadha, B.; Hascöet, M. Animal models of anxiety in mice. Fundam. Clin. Pharmacol. 2007, 21, 567–574. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, J.; Yao, L. Involvement of the dopamine D1 receptor system in the anxiolytic effect of cedrol in the elevated plus maze and light-dark box tests. J. Pharmacol. Sci. 2020, 142, 26–33. [Google Scholar] [CrossRef]
- Calatayud, F.; Belzung, C.; Aubert, A. Ethological validation and the assessment of anxiety-like behaviours: Methodological comparison of classical analyses and structural approaches. Behav. Process. 2004, 67, 195–206. [Google Scholar] [CrossRef]
- Chioca, L.R.; Antunes, V.D.; Ferro, M.M.; Losso, E.M.; Andreatini, R. Anosmia does not impair the anxiolytic-like effect of lavender essential oil inhalation in mice. Life Sci. 2013, 92, 971–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, H.; Kashiwadani, H.; Kanmura, Y.; Kuwaki, T. Linalool Odor-Induced Anxiolytic Effects in Mice. Front. Behav. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Tuohimaa, P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur. J. Pharmacol. 2005, 508, 147–153. [Google Scholar] [CrossRef]
- Moody, T.W.; Merali, Z.; Crawley, J.N. The Effects of Anxiolytics and Other Agents on Rat Grooming Behavior. Ann. N. Y. Acad. Sci. 1988, 525, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Sweeney, F.F. The age of anxiety: Role of animal models of anxiolytic action in drug discovery. Br. J. Pharmacol. 2011, 164, 1129–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlak, C.R.; Ho, Y.-J.; Schwarting, R.K. Animal models of human psychopathology based on individual differences in novelty-seeking and anxiety. Neurosci. Biobehav. Rev. 2008, 32, 1544–1568. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Standards and Technology. NIST Standard Reference Database 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
No. | Compound | Peak Area in YTO (%) | Peak Area in ZTO (%) |
---|---|---|---|
1 | Neophytadiene | 27.42 ± 0.46 | 59.82 ± 0.36 |
2 | (±)-Solanone | 9.30 ± 0.16 | 7.16 ± 0.05 |
3 | Megastigmatrienone | 3.12 ± 0.06 | 1.05 ± 0.00 |
4 | trans-beta-Damascenone | 2.32 ± 0.04 | 0.54 ± 0.00 |
5 | Phytone | 0.53 ± 0.01 | 0.23 ± 0.01 |
6 | Benzaldehyde | 0.42 ± 0.01 | 0.05 ± 0.00 |
7 | Benzyl alcohol | 0.38 ± 0.01 | 0.10 ± 0.00 |
8 | Methyl palmitate | 0.29 ± 0.01 | 1.88 ± 0.05 |
9 | Linalool | 0.27 ± 0.01 | 0.13 ± 0.01 |
10 | Ethyl palmitate | 0.22 ± 0.00 | 8.18 ± 0.07 |
11 | Phenylethyl alcohol | 0.21 ± 0.00 | 0.10 ± 0.00 |
12 | trans-beta-Ionone | 0.18 ± 0.00 | 0.11 ± 0.01 |
13 | 5-Methyl furfural | 0.07 ± 0.01 | 0.05 ± 0.00 |
Group | Food Consumed (g) | Weight Gain (g) | Weight Gain Ratio (%) | |
---|---|---|---|---|
Saline | 52.60 ± 1.31 | 4.13 ± 0.32 | 21.22 ± 1.52 | |
Control (olive oil) | 51.03 ± 0.60 | 3.63 ± 0.69 | 17.98 ± 3.95 | |
YTO | 250 mg/kg | 49.80 ± 0.56 | 2.93 ± 0.43 | 12.16 ± 0.15 |
500 mg/kg | 55.50 ± 1.53 | 3.93 ± 1.02 | 18.49 ± 5.11 | |
1000 mg/kg | 57.73 ± 1.84 | 4.90 ± 0.78 | 24.29 ± 4.03 | |
2000 mg/kg | 52.47 ± 2.78 | 3.90 ± 0.00 | 19.93 ± 1.27 | |
ZTO | 250 mg/kg | 61.57 ± 2.64 * | 4.00 ± 0.93 | 19.09 ± 4.35 |
500 mg/kg | 51.97 ± 1.94 | 3.80 ± 0.61 | 18.73 ± 2.74 | |
1000 mg/kg | 58.63 ± 0.83 | 3.73 ± 0.33 | 18.42 ± 1.73 | |
2000 mg/kg | 52.63 ± 1.72 | 4.10 ± 0.36 | 19.66 ± 1.34 |
Gender | Group | Weight Gain (g) | Weight Gain Ratio (%) | |
---|---|---|---|---|
Female | Control (olive oil) | 3.17 ± 1.20 | 15.57 ± 5.78 | |
YTO | 500 mg/kg | 2.33 ± 0.17 | 11.07 ± 1.02 | |
1000 mg/kg | 2.67 ± 1.88 | 13.06 ± 9.33 | ||
2000 mg/kg | 1.83 ± 1.48 | 8.57 ± 6.75 | ||
ZTO | 500 mg/kg | 2.50 ± 0.29 | 11.42 ± 1.53 | |
1000 mg/kg | 2.33 ± 1.20 | 10.82 ± 5.53 | ||
2000 mg/kg | 1.33 ± 0.60 | 6.12 ± 2.69 | ||
Male | Control (olive oil) | 7.17 ± 0.88 | 32.60 ± 4.79 | |
YTO | 500 mg/kg | 5.83 ± 0.44 | 25.76 ± 2.03 | |
1000 mg/kg | 6.83 ± 0.17 | 30.63 ± 1.19 | ||
2000 mg/kg | 7.00 ± 1.26 | 31.82 ± 6.19 | ||
ZTO | 500 mg/kg | 9.17 ± 1.30 | 40.54 ± 4.52 | |
1000 mg/kg | 8.67 ± 1.48 | 38.21 ± 6.34 | ||
2000 mg/kg | 5.33 ± 1.97 | 24.16 ± 9.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, D.; Yao, L.; Huang, Y.; Wu, S.; Ma, L.; Li, Y.; Wang, W. Anxiolytic Effect of Two Tobacco Essential Oils (Nicotiana tabacum Linn.) on Mice. Molecules 2021, 26, 4171. https://doi.org/10.3390/molecules26144171
Xie D, Yao L, Huang Y, Wu S, Ma L, Li Y, Wang W. Anxiolytic Effect of Two Tobacco Essential Oils (Nicotiana tabacum Linn.) on Mice. Molecules. 2021; 26(14):4171. https://doi.org/10.3390/molecules26144171
Chicago/Turabian StyleXie, Danqing, Lei Yao, Yan Huang, Shuaifan Wu, Li Ma, Yuhong Li, and Wencui Wang. 2021. "Anxiolytic Effect of Two Tobacco Essential Oils (Nicotiana tabacum Linn.) on Mice" Molecules 26, no. 14: 4171. https://doi.org/10.3390/molecules26144171