A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of the FeS@f-OMC Composite
2.2. Electrochemical Properties in the Presence of Na/Na+ during Charge/Discharge
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of FeS@f-OMC Composite
3.3. Material Characterization
3.4. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. 2015, 54, 3431–3448. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. High-capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271. [Google Scholar] [CrossRef]
- Shaji, N.; Ho, C.W.; Nanthagopal, M.; Santhoshkumar, P.; Sim, G.S.; Lee, C.W. Biowaste-derived heteroatoms-doped carbon for sustainable sodium-ion storage. J. Alloy. Compd. 2021, 872, 159670. [Google Scholar] [CrossRef]
- Yu, Y.X. Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 2016, 120, 5288–5296. [Google Scholar] [CrossRef]
- Mukherjee, S.; Turnley, J.; Mansfield, E.; Holm, J.; Soares, D.; David, L.; Singh, G. Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications. R. Soc. Open Sci. 2019, 6, 190437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.N.; Kang, Y.C. Co9S8-carbon composite as anode materials with improved Na-storage performance. Carbon 2015, 94, 85–90. [Google Scholar] [CrossRef]
- Kim, N.R.; Choi, J.; Yoon, H.J.; Lee, M.E.; Son, S.U.; Jin, H.J.; Yun, Y.S. Conversion reaction of copper sulfide based nanohybrids for sodium-ion batteries. ACS Sustain. Chem. Eng. 2017, 5, 9802–9808. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Zhao, L.; Zheng, F.; Guo, Y.; Li, Y.; Pan, Q.; Liu, Y.; Hu, J.; Yang, C. In situ fabrication of carbon-encapsulated Fe7X8 (X = S, Se) for enhanced sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 19040–19047. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Park, M.S.; Choi, J.Y.; Lee, Y.S.; Kim, S.J.; Kim, D.W. Rational combination of an alabandite MnS laminated pyrrhotite Fe1−xS nanocomposite as a superior anode material for high performance sodium-ion battery. ACS Sustain. Chem. Eng. 2019, 7, 5921–5930. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Zuo, W.; Huang, L.; Luo, W.; An, Q.; Pelenovich, V.O.; Mai, L.; Zhang, Q. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Sun, H.; Shangguan, H.; Cao, X.; Xiao, X.; Shen, F.; Molhave, K.; Ci, L.; Si, P.; Zhang, J. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 2018, 10, 7851–7859. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Kang, Y.C. Sodium-ion storage properties of FeS-reduced graphene oxide composite powder with a crumpled structure. Chemistry 2016, 22, 2769–2774. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Hwang, J.Y.; Belharouak, I.; Sun, Y.K. Na Storage capability investigation of a carbon nanotube-encapsulated Fe1−xS composite. ACS Energy Lett. 2017, 2, 364–372. [Google Scholar] [CrossRef]
- He, Q.; Rui, K.; Yang, J.; Wen, Z. Fe7S8 nanoparticles anchored on nitrogen-doped graphene nanosheets as anode materials for high-performance sodium-Ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 29476–29485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Yang, J.; Chou, S.L.; Liu, H.K.; Zhang, W.X.; Zhao, D.; Dou, S.X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Chen, W.; Zhang, X.; Mi, L.; Liu, C.; Chen, L.; Guan, X.; Cao, Y.; Shen, C. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 19709–19718. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.; Han, S.A.; Kim, J.; Malgras, V.; Heo, Y.U.; Kim, H.; Lee, S.M.; Liu, H.K.; Dou, S.X.; et al. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano 2019, 13, 9607–9619. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.A.; Lee, S.M.; Park, M.S.; Kim, J.H. Electrochemical properties of nonstoichiometric silicon suboxide anode materials with controlled oxygen concentration. Compos. Part. B Eng. 2019, 174, 107024. [Google Scholar] [CrossRef]
- Jun, S.; Joo, S.H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H. Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Stud. Surf. Sci. Catal. 2004, 148, 241–260. [Google Scholar]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulfur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Li, W.; Zeng, L.; Pan, F.; Wang, M.; Wei, X.; Hu, G.; Gu, L.; Yu, Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1402104. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, B.; Tang, H.; Yue, Z.; Li, X.; Yin, C.; Zhou, L. Heteroatomic TexS1−x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium-chalcogen batteries. J. Mater. Chem. A 2018, 6, 10104–10110. [Google Scholar] [CrossRef]
- Qiao, H.; Xia, Z.; Liu, Y.; Cui, R.; Fei, Y.; Cai, Y.; Wei, Q.; Yao, Q.; Qiao, Q. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposies. Appl. Surf. Sci. 2017, 400, 492–497. [Google Scholar] [CrossRef]
- Qiao, H.; Li, J.; Fu, J.; Kumar, D.; Wei, Q.; Cai, Y.; Huang, F. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties. ACS Appl. Mater. Interfaces 2011, 3, 3704–3708. [Google Scholar] [CrossRef]
- Pang, Q.; Gao, Y.; Zhao, Y.; Ju, Y.; Qiu, H.; Wei, Y.; Liu, B.; Zou, B.; Du, F.; Chen, G. Improved lithium-ion and sodium-ion storage properties from few-layered WS2 nanosheets embedded in a mesoporous CMK-3 Matrix. Chemistry 2017, 23, 7074–7080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Qiu, H.; Zhang, M.; Fang, Z.; Zhao, X.; Wang, L.; Chen, G.; Wei, Y.; Yue, H.; Wang, C.; et al. A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon 2017, 123, 717–725. [Google Scholar] [CrossRef]
- Li, B.; Zhang, N.; Sun, K. Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for li-ion batteries. Small 2014, 10, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kim, D.S.; Manuel, J.; Cho, K.K.; Kim, K.W.; Ahn, H.J.; Ahn, J.H. Recovery from self-assembly: A composite material for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 7265. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Chauhan, G.S.; Ahn, J.H. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries. Appl. Surf. Sci. 2016, 380, 151–158. [Google Scholar] [CrossRef]
- Haridas, A.K.; Heo, J.; Liu, Y.; Ahn, H.J.; Zhao, X.; Deng, Z.; Agostini, M.; Matic, A.; Cho, K.K.; Ahn, J.H. Boosting high energy density lithium ion storage via the rational design of an FeS-incorporated sulfurized polyacrylonitrile fiber hybrid cathode. ACS Appl. Mater. Interfaces 2019, 11, 29924–29933. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.H.; Wang, Y.Y.; Guo, J.Z.; Ning, Q.L.; Xi, X.T.; Pang, W.L.; Cao, A.M.; Wang, X.; Zhang, J.P.; Wu, X.L. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 2018, 10, 9218–9225. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; Zhao, Z.; Yuan, C.; Lou, X.W.D. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052. [Google Scholar] [CrossRef]
- Haridas, A.K.; Heo, J.; Li, X.; Ahn, H.J.; Zhao, X.; Deng, Z.; Agostini, M.; Matic, A.; Ahn, J.H. A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. Chem. Eng. J. 2020, 385, 123453. [Google Scholar] [CrossRef]
- Biemolt, J.; Denekamp, I.M.; Slot, T.K.; Rothenberg, G.; Eisenberg, D. Boosting the supercapacitance of nitrogen-doped carbon by tuning surface functionalities. ChemSusChem 2017, 10, 4018–4024. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, R.R.; Jiang, E.; Amiralian, N.; Annamalai, P.K.; Martin, D.J.; Kumar, N.A.; Zhao, X.S. Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. Sustain. Energy Fuels 2017, 1, 1090–1097. [Google Scholar] [CrossRef]
- Wang, K.; Jin, Y.; Sun, S.; Huang, Y.; Peng, J.; Luo, J.; Zhang, Q.; Qiu, Y.; Fang, C.; Han, J. Low-cost and high-performance hard carbon anode materials for sodium-ion batteries. ACS Omega 2017, 2, 1687–1695. [Google Scholar] [CrossRef]
- Xie, X.; Kretschmer, K.; Anasori, B.; Sun, B.; Wang, G.; Gogotsi, Y. Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life. ACS Appl. Nano Mater. 2018, 1, 505–511. [Google Scholar] [CrossRef]
- Natu, V.; Clites, M.; Pomerantseva, E.; Barsoum, M.W. Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater. Res. Lett. 2018, 6, 230–235. [Google Scholar] [CrossRef] [Green Version]
Sample | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) |
---|---|---|
f-OMC | 1505 | 1.92 |
FeS@f-OMC | 360 | 0.44 |
Pristine FeS | 3.3 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haridas, A.K.; Angulakshmi, N.; Stephan, A.M.; Lee, Y.; Ahn, J.-H. A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage. Molecules 2021, 26, 4349. https://doi.org/10.3390/molecules26144349
Haridas AK, Angulakshmi N, Stephan AM, Lee Y, Ahn J-H. A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage. Molecules. 2021; 26(14):4349. https://doi.org/10.3390/molecules26144349
Chicago/Turabian StyleHaridas, Anupriya K., Natarajan Angulakshmi, Arul Manuel Stephan, Younki Lee, and Jou-Hyeon Ahn. 2021. "A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage" Molecules 26, no. 14: 4349. https://doi.org/10.3390/molecules26144349
APA StyleHaridas, A. K., Angulakshmi, N., Stephan, A. M., Lee, Y., & Ahn, J.-H. (2021). A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage. Molecules, 26(14), 4349. https://doi.org/10.3390/molecules26144349