Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities
Abstract
:1. Introduction
Pharmacologic and Biophysical Properties of Model Ruthenium Complexes
2. Ruthenium Flavonoid Complexes with Cytotoxic Activity In Vitro
2.1. Complexes Obtained from [Ru(DMSO)4Cl2]
2.2. Ruthenium Acqua Complexes
2.3. Ruthenium Polypyridyl Complexes
2.4. Ruthenium Trithiacyclononane Complexes
2.5. Ruthenium p-cymene Complexes
3. Antimicrobial Ruthenium Flavonoid Complexes
3.1. Ruthenium Polypyrydil Complexes for Antimicrobial Action in Human Medicine
3.2. Ruthenium Polypyrydil Complexes against Crop-Damaging Bacteria
4. Ruthenium Flavonoids Complexes in the Prevention and Treatment of Cardiovascular Diseases
4.1. A Ruthenium p-cymene Quercetin Complex for Cholesterol Regulation
4.2. Ruthenium p-cymene Complexes with Chrysin and Thiochrysin as Antithrombotic Agents
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gürler, S.B.; Kiraz, Y.; Baranala, Y. Flavonoids in cancer therapy: Current and future trends. In Biodiversity and Biomedicine, 1st ed.; Munir Ozturk, M., Egamberdieva, D., Pešić, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; Chapter 21; pp. 403–440. [Google Scholar] [CrossRef]
- Amawi, H.; Ashby, C.R., Jr.; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin. J. Cancer 2017, 36, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.; Barros, L.; Ferreira, I.C.F.R. Chemical characterization of Ginkgo biloba L. and antioxidant properties of its extracts and dietary supplements. Ind. Crops Prod. 2013, 51, 244–248. [Google Scholar] [CrossRef]
- Christie, S.; Walker, A.F.; Hicks, S.M.; Abeyasekera, S. Flavonoid supplement improves leg health and reduces fluid retention in pre-menopausal women in a double-blind, placebo-controlled study. Phytomedicine 2004, 11, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Maher, P. Preventing and treating neurological disorders with the flavonol fisetin. Brain Plast. 2020, 6, 155–166. [Google Scholar] [CrossRef]
- Kaempferol Powder Extract 50%. Available online: https://purebulk.com/products/kaempferol (accessed on 19 April 2021).
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep. 2009, 8, 206–213. [Google Scholar] [CrossRef]
- Vida, R.G.; Fittler, A.; Somogyi-Végh, A.; Poór, M. Dietary quercetin supplements: Assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother. Res. 2019, 33, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- GRAS Notice Inventory-Agency Response Letter GRAS Notice No. GRN 000341. Available online: https://wayback.archive-it.org/7993/20171031012354/https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm235935.htm (accessed on 19 April 2021).
- Ueno, I.; Nakano, N.; Hirono, I. Metabolic fate of [14C] quercetin in the ACI rat. Jpn. J. Exp. Med. 1983, 53, 41–50. [Google Scholar]
- Kim, K.A.; Park, P.W.; Park, J.Y. Short-term effect of quercetin on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein, in healthy volunteers. Eur. J. Clin. Pharmacol. 2009, 65, 609–614. [Google Scholar] [CrossRef]
- Wu, L.-X.; Guo, C.-X.; Chen, W.-Q.; Yu, J.; Qu, Q.; Chen, Y.; Tan, Z.-R.; Wang, G.; Fan, L.; Li, Q.; et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: An in vitro and in vivo assessment. Br. J. Clin. Pharmacol. 2012, 73, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, F.P.; Gyarfas, E.C.; Rogers, W.P.; Koch, J.H. Biological activity of complex ions. Nature 1952, 170, 190–191. [Google Scholar] [CrossRef]
- Shulman, A.; Dwyer, F.P. Metal Chelates in Biological Systems. In Chelating Agents and Metal Chelates, 1st ed.; Dwyer, F.P., Mellor, D.P., Eds.; Academic Press: New York, NY, USA; London, UK, 1963; Chapter 9; pp. 383–439. [Google Scholar]
- Dwyer, F.P.; Humpoletz, J.E.; Nyholm, R.S. The chemistry of ruthenium. Part I. The redox potential of the tris-orthophenanthroline ruthenous ion. J. Proc. R. Soc. NSW 1946, 80, 212–216. [Google Scholar]
- Dwyer, F.P.; Reid, I.K.; Shulman, A.; Laycock, G.M.; Dixson, S. The biological actions of 1,10-phenanthroline and 2,2′-bipyridine hydrochlorides, quaternary salts and metal chelates and related compounds. 1. Bacteriostatic action on selected Gram-positive, Gram-negative and acid-fast bacteria. Aust. J. Exp. Biol. Med. Sci. 1969, 47, 203–218. [Google Scholar] [CrossRef]
- Howe-Grant, M.; Lippard, S.J. Binding of platinum(II) intercalation reagents to deoxyribonucleic acid. Dependence on base-pair composition, nature of the intercalator, and ionic strength. Biochemistry 1979, 18, 5762–5769. [Google Scholar] [CrossRef]
- Li, F.; Feterl, M.; Warner, J.M.; Keene, F.R.; Collins, J.G. Dinuclear polypyridylruthenium(II) complexes: Flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane. J. Antimic. Chemother. 2013, 68, 2825–2833. [Google Scholar] [CrossRef] [Green Version]
- Koch, J.H.; Rogers, W.P.; Dwyer, F.P.; Gyarfas, E.C. The metabolic fate of tris-1,10-phenanthroline 106ruthenium(II) perchlorate, a compound with anticholinesterase and curare-like activity. Aust. J. Biol. Sci. 1957, 10, 342–350. [Google Scholar]
- Murray, B.S.; Babak, M.V.; Hartinger, C.G.; Dyson, P.J. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016, 306, 86–114. [Google Scholar] [CrossRef]
- Pujante-Galián, M.A.; Pérez, S.A.; Montalbán, M.G.; Carissimi, G.; Fuster, M.G.; Víllora, G.; García, G. p-Cymene complexes of ruthenium(II) as antitumor agents. Molecules 2020, 25, 5063. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Carreon, T.; Iniguez, E.; Anzellotti, A.; Sánchez, A.; Tyan, M.; Sattler, A.; Herrera, L.; Maldonado, R.A.; Sánchez-Delgado, R.A. Searching for new chemotherapies for tropical diseases: Ruthenium–clotrimazole complexes display high in vitro activity against Leishmania major and Trypanosoma cruzi and low toxicity toward normal mammalian cells. J. Med. Chem. 2012, 55, 3867–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glans, L.; Ehnbom, A.; de Kock, C.; Martínez, A.; Estrada, J.; Smith, P.J.; Haukka, M.; Sánchez-Delgado, R.A.; Nordlander, E. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: Synthesis, characterization and in vitro antimalarial activity. Dalton Trans. 2012, 41, 2764–2773. [Google Scholar] [CrossRef] [Green Version]
- Dyson, P.J. Systematic design of a targeted organometallic antitumour drug in pre-clinical development. CHIMIA 2007, 61, 698–703. [Google Scholar] [CrossRef]
- Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T.J.; Sava, G.; Dyson, P.J. In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J. Med. Chem. 2005, 48, 4161–4171. [Google Scholar] [CrossRef]
- Thangavel, P.; Viswanath, B.; Kim, S. Synthesis and characterization of kaempferol-based ruthenium(II) complex: A facile approach for superior anticancer application. Mat. Sci. Eng. C 2018, 89, 87–94. [Google Scholar] [CrossRef]
- Prajapati, R.; Dubey, S.K.; Gaur, R.; Koiri, R.K.; Maurya, B.K.; Trigun, S.K.; Mishra, L. Structural characterization and cytotoxicity studies of ruthenium(II)–dmso–chloro complexes of chalcone and flavone derivatives. Polyhedron 2010, 29, 1055–1061. [Google Scholar] [CrossRef]
- Singh, A.K.; Saxena, G.; Sahabjada; Arshad, M. Synthesis, characterization and biological evaluation of ruthenium flavanol complexes against breast cancer. Spectrochim. Acta A 2017, 180, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Das, R.; Ghosh, B.; Chakraborty, T. Deciphering the biochemical and molecular mechanism underlying the in-vitro and in-vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol. Carcinog. 2018, 57, 700–721. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhao, Z.; Chakraborty, T.; Mandal, A.; Roy, A.; Roy, S.; Guo, Z. Decrypting the molecular mechanistic pathways delineating the chemotherapeutic potential of ruthenium-phloretin complex in colon carcinoma correlated with the oxidative status and increased apoptotic events. Oxid. Med. Cell. Longev. 2020, 7690845. [Google Scholar] [CrossRef]
- Zahirović, A.; Kahrović, E.; Cindrić, M.; Pavelić, S.K.; Hukić, M.; Harej, A.; Turkušić, E. Heteroleptic ruthenium bioflavonoid complexes: From synthesis to in vitro biological activity. J. Coord. Chem. 2017, 70, 4030–4053. [Google Scholar] [CrossRef]
- Munteanu, A.C.; Notaro, A.; Jakubaszek, M.; Cowell, J.; Tharaud, M.; Goud, B.; Uivarosi, V.; Gasser, G. Synthesis, characterization, cytotoxic activity, and metabolic studies of ruthenium(II) polypyridyl complexes containing flavonoid ligands. Inorg. Chem. 2020, 59, 4424–4434. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.; Silva, A.M.S.; Marques, M.P.M.; Braga, S.S. Ruthenium(II) trithiacyclononane complexes of 7,3′,4′-trihydroxyflavone, chrysin and tectochrysin: Synthesis, characterisation, and cytotoxic evaluation. Inorg. Chim. Acta 2019, 488, 71–79. [Google Scholar] [CrossRef]
- Kurzwernhart, A.; Kandioller, W.; Bartel, C.; Bächler, S.; Trondl, R.; Mühlgassner, G.; Jakupec, M.A.; Arion, V.B.; Marko, D.; Keppler, B.K.; et al. Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. Chem. Commun. 2012, 48, 4839–4841. [Google Scholar] [CrossRef]
- Kurzwernhart, A.; Kandioller, W.; Bächler, S.; Bartel, C.; Martic, S.; Buczkowska, M.; Mühlgassner, G.; Jakupec, M.A.; Kraatz, H.-B.; Bednarski, P.J.; et al. Structure−activity relationships of targeted RuII(η6-p-cymene) anticancer complexes with flavonol-derived ligands. J. Med. Chem. 2012, 55, 10512–10522. [Google Scholar] [CrossRef]
- Kubanik, M.; Tu, J.K.Y.; Hejl, M.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K.; Hartinger, C.G. Expanding on the structural diversity of flavone-derived rutheniumII(ƞ6-arene) anticancer agents. Metallodrugs 2015, 1, 24–35. [Google Scholar] [CrossRef]
- Pastuszko, A.; Niewinna, K.; Czyz, M.; Jóźwiak, A.; Ma1ecka, M.; Budzisz, E. Synthesis, X-ray structure, electrochemical properties and cytotoxic effects of new arene ruthenium(II) complexes. J. Organomet. Chem. 2013, 745–746, 64–70. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef] [Green Version]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.I.; Braga, T.M.; Braga, S.S. Ru(II)-based antimicrobials: Looking beyond organic drugs. Mini-Rev. Med. Chem. 2012, 12, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Braga, S.S.; Lysenko, K.; Santos, N.E. Ruthenophenanthroline complexes active against tripanosomids. In A Closer Look at Phenanthroline, 1st ed.; Amies, W., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2020; Chapter 3; pp. 101–123. ISBN 978-1-53617-953-8. [Google Scholar]
- Singh, A.K.; Saxena, G.; Kumar, A.; Sharma, R. Antimycobacterial activities of ruthenium(II) complexes of hydroxyl flavone hydrazones. Lett. Appl. NanoBioScience 2020, 10, 1760–1791. [Google Scholar] [CrossRef]
- da Silva, D.F.; Amaral, J.C.; Carlos, R.M.; Ferreira, A.G.; Forim, M.R.; Fernandes, J.B.; da Silva, M.F.G.F.; della Colleta Filho, H.; de Souza, A.A. Octahedral ruthenium and magnesium naringenin 5-alkoxide complexes: NMR analysis of diastereoisomers and in-vivo antibacterial activity against Xylella fastidiosa. Talanta 2021, 225, 122040. [Google Scholar] [CrossRef]
- Kahrović, E.; Zahirović, A.; Pavelić, S.K.; Turkušić, E.; Harej, A. In vitro anticancer activity of binuclear Ru(II) complexes with Schiff bases derived from 5-substituted salicylaldehyde and 2-aminopyridine with notably low IC50 values. J. Coord. Chem. 2017, 70, 1683–1697. [Google Scholar] [CrossRef]
- Kahrović, E.; Zahirović, A.; Turkušic, E.; Bektaš, S. A dinuclear ruthenium(II) schiff base complex with dissimilar coordination: Synthesis, characterization, and biological Activity. Z. Anorg. Allg. Chem. 2016, 642, 480–485. [Google Scholar] [CrossRef]
- Schneider, K.; van der Werf, W.; Cendoya, M.; Mourits, M.; Navas-Cortés, J.A.; Vicent, A.; Lansink, A.O. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. USA 2020, 117, 9250–9259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuccioloni, M.; Bonfili, L.; Mozzicafreddo, M.; Cecarini, V.; Pettinari, R.; Condello, F.; Pettinari, C.; Marchetti, F.; Angeletti, M.; Eleuteri, A.M. A ruthenium derivative of quercetin with enhanced cholesterol-lowering activity. RSC Adv. 2016, 6, 39636. [Google Scholar] [CrossRef]
- Ravishankar, D.; Salamah, M.; Attina, A.; Pothi, R.; Vallance, T.M.; Javed, M.; Williams, H.F.; Alzahrani, E.M.S.; Kabova, E.; Vaiyapuri, R.; et al. Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy. Sci. Rep. 2017, 7, 5738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Devel. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef] [PubMed]
- Intravesical Photodynamic Therapy (PDT) in BCG Refractory High-Risk Non-Muscle Invasive Bladder Cancer (NMIBC) Patients. Phase 1. Clinical Trial Identifier NCT03053635. Available online: https://clinicaltrials.gov/ct2/show/NCT03053635?term=TLD1433&draw=2&rank=1 (accessed on 24 June 2021).
Compound | IC50 Expressed as Mean ± s.d. (μM) | |||
---|---|---|---|---|
SW620 | HepG2 | MCF-7 | HeLa | |
3-hydroxyflavone | 50.73 ± 22.29 | 8.88 ± 17.68 | 42.06 ± 21.08 | 5.44 ± 31.22 |
[Ru(bpy)2(3OHflav)][CF3SO3] | 0.75 ± 0.15 | 2.5 ± 0.67 | 0.52 ± 0.38 | 0.78 ± 0.20 |
[Ru(phen)2(3OHflav)][CF3SO3] | 8.2 ± 46.4 | 11.4 ± 66.0 | 8.32 ± 0.86 | 19.3 ± 65.9 |
[Ru(bpy)2Cl2] | - | >100 | - | >100 |
[Ru(phen)2Cl2] | >100 | >100 | 92.38 ± 44.00 | >100 |
Compound | IC50 Expressed as Mean ± s.d. (μM) | |||||
---|---|---|---|---|---|---|
MCF-7 | FaDU | MDA-MB-435S | U87 | RPE-1 | HEK293 | |
5-hydroxyflavone | >100 | >100 | >100 | >100 | >100 | >100 |
[Ru(bphen)2(5OHFlv)][PF6] | >50 | 38.2 ± 5.2 | 24.5 ± 1.9 | 30.7 ± 1.5 | 19.7 ± 8.2 | 26.5 ± 3.2 |
genistein | >100 | >100 | >100 | >100 | >100 | 75.9 ± 0.8 |
[Ru(bphen)2(gen)][PF6] | 16.7 ± 3.9 | 5.2 ± 0.7 | 2.6 ± 0.4 | 5.2 ± 1.7 | 2.4 ± 0.8 | 0.7 ± 0.1 |
chrysin | 62.6 ± 3.2 | 95.1 ± 11.6 | 79.4 ± 8.1 | 91.1 ± 13.8 | >100 | 26.8 ± 2.8 |
[Ru(bphen)2(chr)][CF3SO3] | >50 | >50 | 27.73 ± 5.33 | 25.59 ± 0.29 | 23.21 ± 8.08 | 33.0 ± 3.3 |
morin | >100 | >100 | >100 | >100 | >100 | >100 |
[Ru(bphen)2(mor)][CF3SO3] | >50 | >50 | >50 | >50 | >50 | >50 |
[Ru(bphen)2Cl2] | >50 | >50 | 27.7 ± 5.3 | 25.6 ± 0.3 | 3.1 ± 0.3 | 12.1 ± 1.30 |
cisplatin | 19.7 ± 1.6 | 5.2 ± 0.2 | 17.6 ± 0.5 | 6.9 ± 0.5 | 39.9 ± 9.1 | 2.3 ± 0.7 |
doxorubicin | 9.4 ± 1.4 | 1.6 ± 0.2 | 5.6 ± 1.4 | 0.6 ± 0.03 | 14.9 ± 1.3 | 0.2 ± 0.03 |
Compound 1 | Topoisom | CH1 | SW480 | A549 | 5637 | LCLC-103H | DAN-G | Ref |
---|---|---|---|---|---|---|---|---|
flavonol | + | 1.9 ± 0.2 | 11 ± 3 | 25 ± 10 | n.d. | n.d. | n.d. | [34] |
[Ru(p-cym)(flavonol)Cl] | ++ | 2.1 ± 0.2 | 9.6 ± 1.5 | 20 ± 2 | 11 ± 5 | 13 ± 6 | 12 ± 2 | [34,35] |
4′-methylflavonol | + | 1.1 ± 0.1 | 6.3 ± 1.1 | 81 ± 9 | n.d. | n.d. | n.d. | [34] |
[Ru(p-cym)(4′MeFlv)Cl] | ++ | 1.8 ± 0.2 | 7.2 ± 0.5 | 17 ± 2 | 5.7 ± 3.2 | 5.2 ± 0.8 | 6.6 ± 2.5 | [34,35] |
3′,4′-dimethoxyflavonol | n.d. | 2.1 ± 0.2 | > 25 | > 25 | n.d. | n.d. | n.d. | [36] |
[Ru(p-cym)(3′,4′dMFlv)Cl] | n.d. | 2.2 ± 0.5 | 8.7 ± 0.8 | 18 ± 2 | n.d. | n.d. | n.d. | [36] |
3′,5′-dimethoxyflavonol | n.d. | 1.4 ± 0.2 | > 25 | > 25 | n.d. | n.d. | n.d. | [36] |
[Ru(p-cym)(3′,5′dMFlv)Cl] | n.d. | 1.5 ± 0.2 | 4.5 ± 0.2 | 9.0 ± 0.5 | n.d. | n.d. | n.d. | [36] |
3′,4′,5′-trimethoxyflavonol | n.d. | 2.0 ± 0.2 | 8.6 ± 1.5 | > 25 | n.d. | n.d. | n.d. | [36] |
[Ru(p-cym)(3′,4′,5′tMFlv)Cl] | n.d. | 2.5 ± 0.3 | 9.7 ± 1.9 | 23 ± 5 | n.d. | n.d. | n.d. | [36] |
4′-fluoroflavonol | + | 1.56 ± 0.04 | 7.0 ± 0.9 | 37 ± 10 | n.d. | n.d. | n.d. | [34] |
[Ru(p-cym)(4′FFlv)Cl] | ++ | 1.7 ± 0.4 | 7.9 ± 2.1 | 18 ± 1 | 33 ± 5 | 5.5 ± 5.2 | 12 ± 2 | [34,35] |
[Ru(p-cym)(3′FFlv)Cl] | n.d. | 1.5 ± 0.1 | 7.0 ± 1.0 | 15 ± 1 | 4.3 ± 2.5 | 4.3 ± 1.1 | 5.3 ± 1.6 | [35] |
[Ru(p-cym)(2′FFlv)Cl] | n.d. | 4.0 ± 0.8 | 24 ± 3 | 30 ± 1 | n.d. | n.d. | n.d. | [35] |
2′,6′-difluoroflavonol | n.d. | 18 ± 1 | > 25 | > 25 | n.d. | n.d. | n.d. | [36] |
[Ru(p-cym)(2′,6′dFFlv)Cl] | n.d. | 5.1 ± 0.8 | 20 ± 4 | 55 ± 15 | n.d. | n.d. | n.d. | [36] |
4′-chloroflavonol | ++ | 0.60 ± 0.10 | 3.7 ± 0.4 | 7.9 ± 1.2 | n.d. | n.d. | n.d. | [34] |
[Ru(p-cym)(4′ClFlv)Cl] | +++ | 0.86 ± 0.06 | 3.8 ± 0.5 | 9.5 ± 0.5 | 3.3 ± 1.1 | 13 ± 1 | 19 ± 7 | [34,35] |
[Ru(p-cym)(3′ClFlv)Cl] | n.d. | 1.0 ± 0.1 | 7.0 ± 0.7 | 12 ± 2 | 30 ± 2 | 5.0 ± 3.5 | 19 ± 5 | [35] |
[Ru(p-cym)(2′ClFlv)Cl] | n.d. | 7.9 ± 0.6 | 26 ± 1 | 51 ± 5 | n.d. | n.d. | n.d. | [35] |
cisplatin | - | 0.14± 0.03 | 3.3 ± 0.4 | 1.3 ± 0.4 | n.d. | n.d. | n.d. | [34] |
Compound | Staphylococcus aureus ATCC 25923 | Enterococcus faecalis ATCC 19433 | Streptococcus β-hemolytic group A | Methicillin-resistant Staphylococcus aureus | Klebsiella pneumoniae ATCC 1705 | Acinetobacter baumannii ATCC-BAA 747 | Pseudomonas aeruginosa | Escherichia coli | Candida albicans |
---|---|---|---|---|---|---|---|---|---|
Diameter of Inhibition Zone/mm | |||||||||
quercetin | 17 | 15 | – | 21 | – | 18 | – | – | – |
[Ru(bpy)2(quercetin)][CF3SO3] | – | – | – | – | – | – | – | – | 15 |
[Ru(phen)2(quercetin)][CF3SO3] | – | – | – | – | – | 16 | – | – | – |
morin | – | – | – | – | – | 16 | – | – | – |
[Ru(bpy)2(morin)][CF3SO3] | – | – | – | – | – | 14 | – | – | – |
[Ru(phen)2(morin)][CF3SO3] | – | – | – | – | – | 14 | – | – | 12.5 |
chrysin | – | – | – | – | – | 14 | – | – | 14 |
[Ru(bpy)2(chrysin)][CF3SO3] | 15 | – | 15 | 16 | – | 13 | – | – | 17 |
[Ru(phen)2(chrysin)][CF3SO3] | – | – | – | – | – | 17 | – | – | – |
flavonol | – | – | – | 12 | – | 16.5 | – | – | 18.5 |
[Ru(bpy)2(flavonol)][CF3SO3] | 25 | 20 | 20 | 26 | – | 16 | 13 | – | 28 |
[Ru(phen)2(flavonol)][CF3SO3] | – | – | – | 14 | – | 14 | – | – | – |
cis-[Ru(bpy)2Cl2] | – | – | – | – | – | 15 | – | – | 14 |
DMSO | – | – | – | – | – | – | – | – | – |
vancomycin | 27 | 26 | 35 | – | – | – | – | – | – |
gentamicin | – | – | – | 20 | 25 | 35 | 36 | 21 | – |
nystatin | – | – | – | – | – | – | – | – | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, N.E.; Braga, S.S. Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules 2021, 26, 4544. https://doi.org/10.3390/molecules26154544
Santos NE, Braga SS. Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules. 2021; 26(15):4544. https://doi.org/10.3390/molecules26154544
Chicago/Turabian StyleSantos, Nádia E., and Susana Santos Braga. 2021. "Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities" Molecules 26, no. 15: 4544. https://doi.org/10.3390/molecules26154544
APA StyleSantos, N. E., & Braga, S. S. (2021). Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules, 26(15), 4544. https://doi.org/10.3390/molecules26154544