Polysaccharide Structures and Their Hypocholesterolemic Potential
Abstract
:1. Introduction
2. Polysaccharides Viscosity and Its Influence on Cholesterol Bioaccessibility
3. Bile Salts Sequestration and Its Dependence on the Structural Diversity of Polysaccharides
4. Microbiota Bio-Transformations of Polysaccharides and Bile Salts: Hypocholesterolemic Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theuwissen, E.; Mensink, R.P. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 2008, 94, 285–292. [Google Scholar] [CrossRef]
- Beltowski, J.; Wojcicka, G.; Jamroz-Wisniewska, A. Adverse Effects of Statins-Mechanisms and Consequences. Curr. Drug Saf. 2009, 4, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Alla, V.M.; Agrawal, V.; Denazareth, A.; Mohiuddin, S.; Ravilla, S.; Rendell, M. A reappraisal of the risks and benefits of treating to target with cholesterol lowering drugs. Drugs 2013, 10, 1025–1054. [Google Scholar] [CrossRef] [PubMed]
- Knodel, L.C.; Talbert, R.L. Adverse Effects of Hypolipidaemic Drugs. Med. Toxicol. Advers. Drug Exp. 1987, 1, 10–32. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2470. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.Y.; Howles, P.N. Molecular mechanisms of cholesterol absorption and transport in the intestine. Semin. Cell Dev. Biol. 2005, 16, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef]
- Vahouny, G.V.; Tombes, R.; Cassidy, M.M.; Kritchevsky, D.; Gallo, L.L. Dietary fibers: V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers. Lipids 1980, 15, 1012–1018. [Google Scholar] [CrossRef]
- Marasca, E.; Boulos, S.; Nyström, L. Bile acid-retention by native and modified oat and barley β-glucan. Carbohydr. Polym. 2020, 236, 116034. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. Comparison Study on Polysaccharide Fractions from Laminaria japonica: Structural Characterization and Bile Acid Binding Capacity. J. Agric. Food Chem. 2017, 65, 9790–9798. [Google Scholar] [CrossRef]
- Xu, W.; Mohan, A.; Pitts, N.L.; Udenigwe, C.; Mason, B. Bile acid-binding capacity of lobster shell-derived chitin, chitosan and chitooligosaccharides. Food Biosci. 2020, 33, 100476. [Google Scholar] [CrossRef]
- Huang, K.; Du, B.; Xu, B. Alterations in physicochemical properties and bile acid binding capacities of dietary fibers upon ultrafine grinding. Powder Technol. 2018, 326, 146–150. [Google Scholar] [CrossRef]
- Tungland, B.C.; Meyer, D. Nondigestible oligo-and polysaccharides (dietary fiber): Their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 2002, 1, 90–109. [Google Scholar] [CrossRef]
- Naumann, S.; Schweiggert-Weisz, U.; Eglmeier, J.; Haller, D.; Eisner, P. In vitro interactions of dietary fibre enriched food ingredients with primary and secondary bile acids. Nutrients 2019, 11, 1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pengzhan, Y.; Ning, L.; Xiguang, L.; Gefei, Z.; Quanbin, Z.; Pengcheng, L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol. Res. 2003, 48, 543–549. [Google Scholar] [CrossRef]
- Garcia-Diez, F.; Garcia-Mediavilla, V.; Bayon, J.E.; Gonzalez-Gallego, J. Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. J. Nutr. 1996, 126, 1766–1771. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coreta-Gomes, F.M.; Vaz, W.L.C.C.; Wasielewski, E.; Geraldes, C.F.G.G.; Moreno, M.J. Quantification of Cholesterol Solubilized in Dietary Micelles: Dependence on Human Bile Salt Variability and the Presence of Dietary Food Ingredients. Langmuir 2016, 32, 4564–4574. [Google Scholar] [CrossRef] [PubMed]
- Boulos, S.; Nyström, L. Complementary Sample Preparation Strategies for Analysis of Cereal β-Glucan Oxidation Products by UPLC-MS/MS. Front. Chem. 2017, 5, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazaridou, A.; Biliaderis, C.G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 2007, 2, 101–118. [Google Scholar] [CrossRef]
- Chutkan, R.; Fahey, G.; Wright, W.L.; Mcrorie, J. Viscous versus nonviscous soluble fiber supplements: Mechanisms and evidence for fiber-specific health benefits. J. Am. Acad. Nurse Pract. 2012, 24, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gani, A.; Masoodi, F.A.; Amin, F.; Wani, I.A.; Khanday, F.A.; Gani, A. Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker’s yeast (Saccharomyces cereviseae)—Effect of γ-irradiation. Carbohydr. Polym. 2016, 140, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gani, A.; Shah, A.; Masoodi, F.A.; Hussain, P.R.; Wani, I.A.; Khanday, F.A. Effect of γ-irradiation on structural, functional and antioxidant properties of β-glucan extracted from button mushroom (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2015, 31, 123–130. [Google Scholar] [CrossRef]
- Dhewantara, F.X. Cholesterol-lowering effect of beta glucan extracted from saccharomyces cerevisiae in rats. Sci. Pharm. 2016, 1, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Graiff, A.; Ruth, W.; Kragl, U.; Karsten, U. Chemical characterization and quantification of the brown algal storage compound laminarin—A new methodological approach. J. Appl. Phycol. 2016, 1, 533–543. [Google Scholar] [CrossRef]
- Yan, J.K.; Cai, W.D.; Wang, C.; Yu, Y.B.; Zhang, H.N.; Yang, Y.; Wang, W.H. Macromolecular behavior, structural characteristics and rheological properties of alkali-neutralization curdlan at different concentrations. Food Hydrocoll. 2020, 105, 105785. [Google Scholar] [CrossRef]
- Shimizu, J.; Wada, M.; Takita, T.; Innami, S. Curdlan and gellan gum, bacterial gel-forming polysaccharides, exhibit different effects on lipid metabolism, cecal fermentation and fecal bile acid excretion in rats. J. Nutr. Sci. Vitaminol. 1999, 45, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Garcia Vidal, C.A.; Pawlik, M. Molecular weight effects in interactions of guar gum with talc. Int. J. Miner. Process. 2015, 138, 38–43. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Hui, P.S. A comparative study on viscosity behavior of water-soluble chemically modified guar gum derivatives with different functional lateral groups. J. Sci. Food Agric. 2005, 85, 2638–2644. [Google Scholar] [CrossRef]
- Bobboi, A.; Stephens, A.G. The effects of electrolyte and hydrogen ion concentrations on guar gum and glucose tolerance following intraduodenal administration. Nutr. Res. 1996, 16, 1403–1409. [Google Scholar] [CrossRef]
- Elfak, A.M.; Pass, G.; Phillips, G.O. The effect of shear rate on the viscosity of solutions of guar gum and locust bean gum. J. Sci. Food Agric. 1979, 30, 439–444. [Google Scholar] [CrossRef]
- Rideout, T.C.; Harding, S.V.; Jones, P.J.H.; Fan, M.Z. Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: Current understandings and future research priorities. Vasc. Health Risk Manag. 2008, 4, 1023–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendis, M.; Simsek, S. Arabinoxylans and human health. Food Hydrocoll. 2014, 42, 239–243. [Google Scholar] [CrossRef]
- Franco, E.A.N.; Sanches-Silva, A.; Ribeiro-Santos, R.; de Melo, N.R. Psyllium (Plantago ovata Forsk): From evidence of health benefits to its food application. Trends Food Sci. Technol. 2020, 96, 166–175. [Google Scholar] [CrossRef]
- Pal, S.; Ho, S.; Gahler, R.J.; Wood, S. Effect on insulin, glucose and lipids in overweight/obese australian adults of 12 months consumption of two different fibre supplements in a randomised trial. Nutrients 2017, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Van Craeyveld, V.; Delcour, J.A.; Courtin, C.M. Ball milling improves extractability and affects molecular properties of psyllium (Plantago ovata Forsk) seed husk arabinoxylan. J. Agric. Food Chem. 2008, 56, 11306–11311. [Google Scholar] [CrossRef] [PubMed]
- Van Craeyveld, V.; Delcour, J.A.; Courtin, C.M. Extractability and chemical and enzymic degradation of psyllium (Plantago ovata Forsk) seed husk arabinoxylans. Food Chem. 2009, 112, 812–819. [Google Scholar] [CrossRef]
- Dikeman, C.L.; Murphy, M.R.; Fahey, G.C. Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J. Nutr. 2006, 136, 913–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Yakubov, G.E.; Zeng, W.; Xing, X.; Stenson, J.; Bulone, V.; Stokes, J.R. Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains. Carbohydr. Polym. 2017, 165, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Izydorczyk, M.S.I.; Biliaderis, C.G. Cereal arabinoxylans: Advances in structure and physicochemical properties. Carbohydr. Polym. 1995, 28, 33–48. [Google Scholar] [CrossRef]
- Pitkänen, L.; Virkki, L.; Tenkanen, M.; Tuomainen, P. Comprehensive multidetector HPSEC study on solution properties of cereal arabinoxylans in aqueous and DMSO solutions. Biomacromolecules 2009, 10, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Zhao, X.; Tian, M.; Zhou, Y.; Yang, R.; Gu, Z.; Wang, P. Impact of water extractable arabinoxylan with different molecular weight on the gelatinization and retrogradation behavior of wheat starch. Food Chem. 2020, 318, 126477. [Google Scholar] [CrossRef]
- Buksa, K.; Praznik, W.; Loeppert, R.; Nowotna, A. Characterization of water and alkali extractable arabinoxylan from wheat and rye under standardized conditions. J. Food Sci. Technol. 2016, 53, 1389–1398. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef]
- Deng, J.; Zhong, J.; Long, J.; Zou, X.; Wang, D.; Song, Y.; Zhou, K.; Liang, Y.; Huang, R.; Wei, X.; et al. Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 165, 2231–2243. [Google Scholar] [CrossRef]
- Chen, H.L.; Chen, Y.C.; Liaw, Y.P.; Sheu, W.H.H.; Tai, T.S. Konjac Supplement Alleviated Hypercholesterolemia and Hyperglycemia in Type 2 Diabetic Subjects—A Randomized Double-Blind Trial. J. Am. Coll. Nutr. 2003, 22, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Correa-Murrieta, M.A.; Sánchez-Duarte, R.G.; Cruz-Flores, P.; la Mora-López, G.S. Chitosan. In Nonvitamin and Nonmineral Nutritional Supplements; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Dutta, P.K.; Duta, J.; Tripathi, V.S. Chitin and Chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Xia, W. Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chem. 2008, 107, 419–425. [Google Scholar] [CrossRef]
- Maezaki, Y.; Tsuji, K.; Nakagawa, Y.; Kawai, Y.; Akimoto, M.; Tsugita, T.; Takekawa, W.; Terada, A.; Hara, H.; Mitsuoka, T. Hypocholesterolemic effect of chitosan in adult males. Biosci. Biotechnol. Biochem. 1993, 57, 1439–1444. [Google Scholar] [CrossRef]
- Pan, H.; Yang, Q.; Huang, G.; Ding, C.; Cao, P.; Huang, L.; Xiao, T.; Guo, J.; Su, Z. Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet. Food Nutr. Res. 2016, 60, 31137. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.R.; Kim, E.K.; Kim, Y.S.; Je, J.Y.; An, S.H.; Lee, J.D.; Wang, J.H.; Ki, S.S.; Jeon, B.T.; Moon, S.H.; et al. Chitooligosaccharides decreases plasma lipid levels in healthy men. Int. J. Food Sci. Nutr. 2012, 63, 103–106. [Google Scholar] [CrossRef]
- Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. [Google Scholar] [CrossRef]
- Teresa Pacheco, M.; Villamiel, M.; Moreno, R.; Moreno, F.J. Structural and rheological properties of pectins extracted from industrial sugar beet by-products. Molecules 2019, 24, 392. [Google Scholar] [CrossRef] [Green Version]
- Ebihara, K.; Kiriyama, S.; Manabe, M. Cholesterol-lowering activity of various natural pectins and synthetic pectin-derivatives with different physico-chemical properties. Nutr. Rep. Int. 1979, 20, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Judd, P.A.; Truswell, A.S. The hypocholesterolaemic effects of pectins in rats. Br. J. Nutr. 1985, 53, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Judd, P.A.; Truswell, A.S. Comparison of the effects of high- and low-methoxyl pectins on blood and faecal lipids in man. Br. J. Nutr. 1982, 48, 451–458. [Google Scholar] [CrossRef]
- Paulionis, L.; Walters, B.; Li, K. Authorised EU health claims on pectins. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims: Volume 2; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to beta glucans and maintenance of normal blood cholesterol concentrations (ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823) pursuant. EFSA J. 2009, 7, 1–18. [Google Scholar] [CrossRef]
- Cuomo, F.; Cofelice, M.; Lopez, F. Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 2019, 11, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paxman, J.R.; Richardson, J.C.; Dettmar, P.W.; Corfe, B.M. Alginate reduces the increased uptake of cholesterol and glucose in overweight male subjects: A pilot study. Nutr. Res. 2008, 28, 501–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; White, P.J. In vitro Bile-Acid Binding and Fermentation of High, Medium, and Low Molecular weight β-Glucan. J. Agric. Food Chem. 2010, 58, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limberger-Bayer, V.M.; De Francisco, A.; Chan, A.; Oro, T.; Ogliari, P.J.; Barreto, P.L.M. Barley β-glucans extraction and partial characterization. Food Chem. 2014, 154, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Xia, W.; Zhang, C.; Yu, L.L. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties. LWT Food Sci. Technol. 2006, 39, 1087–1092. [Google Scholar] [CrossRef]
- Martín-Alfonso, J.E.; Cuadri, A.A.; Berta, M.; Stading, M. Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions. Carbohydr. Polym. 2018, 181, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wang, Y.; Ren, Y.; Ai, T.; Zhou, P.; Hu, L.; Wang, L.; Li, J.; Li, B. In vitro gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation. Food Funct. 2020, 11, 7596–7610. [Google Scholar] [CrossRef] [PubMed]
- Pochanavanich, P.; Suntornsuk, W. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 2002, 35, 17–21. [Google Scholar] [CrossRef]
- Liu, S.; Chan, W.L.; Li, L. Rheological Properties and Scaling Laws of κ-Carrageenan in Aqueous Solution. Macromolecules 2015, 48, 7649–7657. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Zhang, R.; Yuan, S.; Lu, Q.; Yu, Y. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification. Carbohydr. Polym. 2018, 181, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Carey, M.C.; Small, D.M. Micelle Formation by Bile Salts: Physical-Chemical and Thermodynamic Considerations. Arch. Intern. Med. 1972, 130, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Hernell, O.; Staggers, J.E.; Carey, M.C. Physical-Chemical Behavior of Dietary and Biliary Lipids during Intestinal Digestion and Absorption. 2. Phase Analysis and Aggregation States of Luminal Lipids during Duodenal Fat Digestion in Healthy Adult Human Beings. Biochemistry 1990, 29, 2041–2056. [Google Scholar] [CrossRef]
- Coreta-Gomes, F.M.; Vaz, W.L.C.; Wasielewski, E.; Geraldes, C.F.G.; Moreno, M.J. Quantification of cholesterol solubilized in bile salt micellar aqueous solutions using 13C nuclear magnetic resonance. Anal. Biochem. 2012, 427, 41–48. [Google Scholar] [CrossRef]
- Donovan, J.M.; Timofeyeva, N.; Carey, M.C. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile. J. Lipid Res. 1991, 32, 1501–1512. [Google Scholar] [CrossRef]
- Salvioli, G.; Igimi, H.; Carey, M.C. Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: Dissimilar phase equilibria and dissolution mechanisms. J. Lipid Res. 1983, 24, 701–720. [Google Scholar] [CrossRef]
- Staggers, J.E.; Hernell, O.; Stafford, R.J.; Carey, M.C. Physical-Chemical Behavior of Dietary and Biliary Lipids during Intestinal Digestion and Absorption. 1. Phase Behavior and Aggregation States of Model Lipid Systems Patterned after Aqueous Duodenal Contents of Healthy Adult Human Beings. Biochemistry 1990, 29, 2028–2040. [Google Scholar] [CrossRef]
- Coreta-Gomes, F.M.; Martins, P.A.T.; Velazquez-Campoy, A.; Vaz, W.L.C.; Geraldes, C.F.G.; Moreno, M.J. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry. Langmuir 2015, 31, 9097–9104. [Google Scholar] [CrossRef]
- Hofmann, A.F.; Hagey, L.R. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci. 2008, 65, 2461–2483. [Google Scholar] [CrossRef]
- Ghotra, B.S.; Vasanthan, T.; Wettasinghe, M.; Goel, V.; Temelli, F.; Basu, T. A rapid method to determine quantitatively the in vitro adsorption of taurocholate to soluble fiber. Cereal Foods World 2006, 51, 118–121. [Google Scholar] [CrossRef]
- Dongowski, G. Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chem. 2007, 104, 390–397. [Google Scholar] [CrossRef]
- Thandapilly, S.J.; Ndou, S.P.; Wang, Y.; Nyachoti, C.M.; Ames, N.P. Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food Funct. 2018, 9, 3092–3096. [Google Scholar] [CrossRef] [PubMed]
- Gunness, P.; Flanagan, B.M.; Gidley, M.J. Molecular interactions between cereal soluble dietary fibre polymers and a model bile salt deduced from 13C NMR titration. J. Cereal Sci. 2010, 52, 444–449. [Google Scholar] [CrossRef]
- Zacherl, C.; Eisner, P.; Engel, K.H. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem. 2011, 126, 423–428. [Google Scholar] [CrossRef]
- Shelat, K.J.; Vilaplana, F.; Nicholson, T.M.; Wong, K.H.; Gidley, M.J.; Gilbert, R.G. Diffusion and viscosity in arabinoxylan solutions: Implications for nutrition. Carbohydr. Polym. 2010, 82, 46–53. [Google Scholar] [CrossRef]
- Mumtaz Hamdani, A.; Ahmed Wani, I. Guar and Locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterisation. Bioact. Carbohydr. Diet. Fibre 2017, 11, 53–59. [Google Scholar] [CrossRef]
- Story, J.A.; Lord, S.L. Bile salts: In vitro studies with fibre components. Scand. J. Gastroenterol. 1987, 22, 174–180. [Google Scholar] [CrossRef]
- Coreta-Gomes, F.M.; Lopes, G.R.; Passos, C.P.; Vaz, I.M.; Machado, F.; Geraldes, C.F.G.C.; Moreno, M.J.; Nyström, L.; Coimbra, M.A. In Vitro Hypocholesterolemic Effect of Coffee Compounds. Nutrients 2020, 12, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugano, M.; Fujikawa, T.; Hiratsuji, Y. Hypocholesterolemic effects of chitosan in cholesterol-fed rats. Nutr. Rep. Int. 1978, 18, 5531–5537. [Google Scholar]
- Thongngam, M.; McClements, D.J. Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate). Food Hydrocoll. 2005, 19, 813–819. [Google Scholar] [CrossRef]
- Dongowski, G. Influence of pectin structure on the interaction with bile acids under in vitro conditions. Z. Lebensm. Unters. Forsch. 1995, 201, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, in vitro bile acid and glucose binding. Food Hydrocoll. 2015, 43, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Pena, C.; Arroyo-Maya, I.J.; McClements, D.J. Interaction of a bile salt (sodium taurocholate) with cationic (ε-polylysine) and anionic (pectin) biopolymers under simulated gastrointestinal conditions. Food Hydrocoll. 2019, 87, 352–359. [Google Scholar] [CrossRef]
- Nunes, C.; Coimbra, M.A. The potential of fucose-containing sulfated polysaccharides as scaffolds for biomedical applications. Curr. Med. Chem. 2018, 26, 6399–6411. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, G.; Wang, Y.; Yin, J.; Wang, J.; Xia, B.; Li, T.; Yang, X.; Hou, P.; Hu, S.; et al. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2019, 67, 5782–5791. [Google Scholar] [CrossRef]
- Huang, L.; Wen, K.; Gao, X.; Liu, Y. Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. Pharm. Biol. 2010, 48, 422–426. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Wang, Q.; Luo, X.; He, Y.; Song, Y. Hypolipidemic effects of sulfated fucoidan from Kjellmaniella crassifolia through modulating the cholesterol and aliphatic metabolic pathways. J. Funct. Foods 2018, 51, 8–15. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Kravchenko, A.O.; Sergeeva, N.V.; Davydova, V.N.; Bogdanovich, L.N.; Yermak, I.M. Effect of carrageenans on some lipid metabolism components in vitro. Carbohydr. Polym. 2020, 230, 115629. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gani, A.; Masoodi, F.A.; Khanday, F.A. Antioxidant, Antiproliferative, Immunomodulatory, Antimicrobial and Functional Properties of wild Mushroom (Coprinus atramentarius) β-glucan Extract as affected by γ-irradiation Treatment. Can. J. Clin. Nutr. 2020, 8, 107–134. [Google Scholar] [CrossRef]
- Niu, Y.; Xie, Z.; Zhang, H.; Sheng, Y.; Yu, L. Effects of structural modifications on physicochemical and bile acid-binding properties of psyllium. J. Agric. Food Chem. 2013, 61, 596–601. [Google Scholar] [CrossRef]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, I.; Hamaguchi, K.; Fujii, S.; Iino, H. In vitro digestibility and fermentation of mannooligosaccharides from coffee mannan. Food Sci. Technol. Res. 2003, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.S.; Kamili, A.; Wat, E.; Chung, R.W.S.; Tandy, S. Reduction in intestinal cholesterol absorption by various food components: Mechanisms and implications. Atheroscler. Suppl. 2010, 11, 45–48. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; de la Cueva, S.P.; Peinado, M.J.; Rufián-Henares, J.Á.; Navarro, M.P.; Rubio, L.A. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products. Food Res. Int. 2017, 100, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, M.; Rochat, I.; Moulin, J.; Cavin, C.; Bibiloni, R. Impact of coffee consumption on the gut microbiota: A human volunteer study. Int. J. Food Microbiol. 2009, 130, 117–121. [Google Scholar] [CrossRef]
- Chung, W.S.F.; Walker, A.W.; Vermeiren, J.; Sheridan, P.O.; Bosscher, D.; Garcia-Campayo, V.; Parkhill, J.; Flint, H.J.; Duncan, S.H. Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiol. Ecol. 2018, 95. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.M.W.; De Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Cockburn, D.W.; Koropatkin, N.M. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease; Elsevier, B.V.: Amsterdam, The Netherlands, 2016; Volume 428, pp. 3230–3252. [Google Scholar] [CrossRef]
- Li, S.; Sun, Y.; Hu, X.; Qin, W.; Li, C.; Liu, Y.; Liu, A.; Zhao, Y.; Wu, D.; Lin, D.; et al. Effect of arabinoxylan on colonic bacterial metabolites and mucosal barrier in high-fat diet-induced rats. Food Sci. Nutr. 2019, 7, 3052–3061. [Google Scholar] [CrossRef] [Green Version]
- Jakobsdottir, G.; Xu, J.; Molin, G.; Ahrné, S.; Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE 2013, 8, e80476. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 2018, 7, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Huazano-Garcia, A.; López, G.M. Metabolism of Short Chain Fatty Acids in the Colon and Faeces of Mice after a Supplementation of Diets with Agave Fructans. In Lipid Metabolism; Rodrigo, V.B., Ed.; InTech: Rijeka, Croatia, 2013; pp. 163–182. Available online: https://www.intechopen.com/chapters/42107 (accessed on 25 May 2021). [CrossRef] [Green Version]
- Granado-Serrano, A.B.; Martín-Garí, M.; Sánchez, V.; Riart Solans, M.; Berdún, R.; Ludwig, I.A.; Rubió, L.; Vilaprinyó, E.; Portero-Otín, M.; Serrano, J.C.E. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Henningsson, Å.; Björck, I.; Nyman, M. Short-chain fatty acid formation at fermentation of indigestible carbohydrates. Näringsforskning 2001, 45, 165–168. [Google Scholar] [CrossRef]
- Reichardt, N.; Gniechwitz, D.; Steinhart, H.; Bunzel, M.; Blaut, M. Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Mol. Nutr. Food Res. 2009, 53, 287–299. [Google Scholar] [CrossRef]
- Hughes, S.A.; Shewry, P.R.; Li, L.; Gibson, G.R.; Sanz, M.L.; Rastall, R.A. In vitro fermentation by human fecal microflora of wheat arabinoxylans. J. Agric. Food Chem. 2007, 55, 4589–4595. [Google Scholar] [CrossRef]
- Hughes, S.A.; Shewry, P.R.; Gibson, G.R.; McCleary, B.V.; Rastall, R.A. In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 2008, 64, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gniechwitz, D.; Reichardt, N.; Blaut, M.; Steinhart, H.; Bunzel, M. Dietary fiber from coffee beverage: Degradation by human fecal microbiota. J. Agric. Food Chem. 2007, 55, 6989–6996. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Hao, W.; Zhu, H.; Liang, N.; He, Z.; Ma, K.Y.; Chen, Z.Y. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. J. Agric. Food Chem. 2017, 65, 10984–10992. [Google Scholar] [CrossRef] [PubMed]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Kappo, K.A.; Petzke, K.J.; Kipp, A.P.; Blaut, M.; Klaus, S. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol. Nutr. Food Res. 2016, 60, 2611–2621. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M.S.; Spadafora, P.; Eshuis, H. Interaction between colonic acetate and propionate in humans. Am. J. Clin. Nutr. 1991, 53, 681–687. [Google Scholar] [CrossRef]
- Macdonald, I.A.; Singh, G.; Mahony, D.E.; Meier, C.E. Effect of pH on bile salt degradation by mixed fecal cultures. Steroids 1978, 32, 245–256. [Google Scholar] [CrossRef]
- Iaccarino, N.; Khakimov, B.; Skau Mikkelsen, M.; Nielsen, T.S.; Jensen, M.G.; Randazzo, A.; Engelsen, S.B. Structurally different mixed linkage β-glucan supplements differentially increase secondary bile acid excretion in hypercholesterolaemic rat faeces. Food Funct. 2019, 11, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Fern, L.A.; Rashidah Pg Hj Ismail, D.S.N.; Chaiyasut, C. The influence of probiotics on bile acids in diseases and aging. Biomed. Pharmacother. 2020, 128, 110310. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.B.; Lew, L.C.; Yeo, S.K.; Parvathy, S.N.; Liong, M.T. Probiotics and the BSH-related cholesterol lowering mechanism: A Jekyll and Hyde scenario. Crit. Rev. Biotechnol. 2015, 35, 392–401. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Shi, B. Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell Biosci. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Charge | Name | W/V (%) | MW (kDa) | Shear-Rate (s−1) | Viscosity (mPas−1) | Food Origin | Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|---|
Non charged | β-glucans | 0.5 | 1003 | 100 | 9.8 | Barley | Room | [62] |
1.0 | 98 | |||||||
2.0 | 2.7 × 103 | |||||||
1.0 | nd | 76 | 1.1 × 104 | Barley (commercial) | 25 | [63] | ||
1.5 | 1584 | 20 | 4.5 × 103 | Oat | 37 | [63] | ||
1300 | 2.6 ×103 | Barley | ||||||
1.0 | 175 | nd | 65 | Saccharomyces cereviseae (yeast) | Room | [23] | ||
28 | 39 | |||||||
10 | 181 | 1.9 × 102 | Agaricus bisporus (mushroom) | [24] | ||||
Galactomannans | 0.5 | nd | 5.4 | 1.1 × 102 | Guar gum | 25 | [64] | |
1.5 | 3.9 × 103 | |||||||
1.0 | nd | 200 | 8.0 × 102 | Locust bean gum | 25 | [32] | ||
nd | 200 | 90 | Guar gum | |||||
1.0 | nd | 100 | 5.0 × 102 | 20-23 | [65] | |||
1.5 | 1.5 × 103 | |||||||
2.0 | 2.5 × 103 | |||||||
2.0 | nd | 150 | 1.5 × 103 | 37 | [65] | |||
Arabinoxylans | 1 | nd | nd | 5.2 × 102 | Psyllium | 23 | [39] | |
1.5 | 1.1 × 104 | |||||||
2.0 | 1.5 × 104 | |||||||
1.0 | 1.6 × 102 | Wheat bran | ||||||
1.5 | 2.5 × 102 | |||||||
2.0 | 2.4 × 102 | |||||||
Glucomannans | 1.0 | 757 | 100 | 1.0 × 103 | Konjac | nd | [65] | |
1.0 | 253 | 100 | 1.0 × 102 | |||||
1.0 | 87 | 100 | 10 | |||||
1.0 | 239 | 50 | 2.9 × 102 | 37 | ||||
593 | 50 | 1.6 × 103 | ||||||
1006 | 50 | 3.3 × 103 | ||||||
Positively charged | Chitosan | 0.5 | 400 | nd | 92 | Crab (commercial) | 25 | [65] |
1.0 | 940 | nd | 3.7 × 102 | Crab shell | [66] | |||
140 | 6.2 | Aspergillusniger (fungi) | ||||||
69 | 3.5 | Rhizopusoryzae (fungi) | ||||||
Negatively charged | Pectins | 2.0 | 322 | 200 | 60 | Sugar beet by-products | 25 | [67] |
1000 | 40 | |||||||
Alginate | 1.0 | nd | 1 | 2.0 × 104 | Algae | 20 | [60] | |
10 | 3.0 × 103 | |||||||
100 | 5.0 × 102 | |||||||
0.04 | 20 | 200 | 4.0 | 25 | [68] |
Charge | Names | Polysaccharide Content Range | Bile Salt | Bile Salt Content Range | Food Origin | Sequestration | Ref. |
---|---|---|---|---|---|---|---|
Non-charged | β-glucans | 0.25% (w/v) | TCA | 2.5–20 mM | Oat | 32% * | [77] |
0.25% (w/v) | TCA | 2.5–20 mM | Barley | 32% * | [77] | ||
0.5 mg/mL | CA (35%), DCA (35%), GCA (15%), and TCA (15%) | 1.4 μmol/L | Mushroom (commercial) | 75.1% * | [14] | ||
2.5 mg/mL | CA | 1 mg/mL | Mushroom (irradiated) | 17.4–48.7% | [78] | ||
0.083%, 0.42%, 0.83% and 1.7% w/v | TCDCA | 20 mM | Barley (commercial) | Non-quantitative | [79] | ||
5 mg/mL | CA (35%), DCA (35%), GCA (15%) and TCA (15%) | 0.14 μmol/mL | Oat | 18.9–24.3% | [62] | ||
Arabinoxylans | 25 mg/mL | GCA, GDCA and GCDCA | 0.5 mM | Wheat | GCA: 0.96–1.21 GCDA: 1.08–1.41 GCDCA: 1.14–1.4 μmol BS/100 mg fiber | [80] | |
0.083%, 0.42%, 0.83% and 1.7% w/v | TCDCA | 20 mM | Wheat (commercial) | Non-quantitative | [79] | ||
Arabinogalactans/Galactomannans | 6–18 mg/mL | GDCA | 50 mM | coffee | 9–46% | [81] | |
Galactomannans | 0.5 mg/mL | CA (35%), DCA (35%), GCA (15%) and TCA (15%) | 1.4 μmol/L | Guar Gum | 80% * | [14] | |
4 mg/mL | TCA and TDCA | 5 mM | TDCA: 31–38% TCA: 32–36% | [10] | |||
0.25% (w/v) | TCA | 2.5–20 mM | 25% * | [77] | |||
25 mg | CA | 2 mg/mL | 50% * | [82] | |||
16.5 mg/mL | CA and CDCA | 133 µM/mL | Psyllium | CA: 1.2 mg/g; CDCA: 0.8 mg/g | [83] | ||
25 mg | CA | 2 mg/mL | Locust bean gum (Commercial) | 54% * | [82] | ||
0.25% (w/v) | TCA | 2.5–20 mM | 17% * | [77] | |||
Positively charged | Chitosan | 5, 10 and 50 mg/mL | CA, CDCA, DCA and TCA | 2 mM | Losbter | Chitosan: CA: 9–17%: CDCA: 17–29%; DCA: 23–32%; TCA: 24–35%. Chitooligosaccharides: CA: 5–7%; CDCA: 2–10%; DCA: 1–6%; TCA: 1–4% | [13] |
12 mg/mL | TCA | 10 mM | Sea Crab | Precipitation of 133–652 mg of cholesterol/g | [50] | ||
17 mg/mL | CA, DCA and CDCA | 400 μmol/L | Commercial | CA: 0.2–0.6 μmol/g; DCA: 0.4–1.6 μmol/g; CDCA: 0.6–1.6 μmol/g | [64] | ||
Negatively charged | Pectin | 30 mM | GCDCA, GCA, GDCA, TDCA, TCDCA and TCA | 1 mM (0.33 mM of each glyco- or tauro-conjugates) | Commercial, sugar-beet, grapefruit, oranges, lemon and lime | GCDCA: 8–15%; GCA: 6–13%; GDCA: 7–15% | [84] |
0.1 and 0.5% | TCA | 2.5% w/v | Commercial | Non-quantitative | [85] | ||
0.25% (w/v) | TCA | 2.5–20 mM | Commercial | 5.5% (low-methoxy) and 9.6% (high-methoxy) of cationic resin * | [77] | ||
10 mg/mL | CA, DCA and CDCA | 12.5 mM | Olive pomace | CA: 11–39%; DCA: 21–44%; CDCA: 17–48% of cationic resin * | [86] | ||
Fucoidan | 1, 25 mg/mL | CA, DCA and TCA | 500 μmol/L | Laminariajaponica | CA: 29–38%; GCA: 22–82%; TCA: 49–162% * | [12] | |
Carrageenan | 0.25% (w/v) | TCA | 2.5–20 mM | Commercial | 9.2% (ι-carragenan) and 10.7% (κ-carragenan) * | [77] | |
0.05, 0.1 and 0.2% | TCA (46.87%), GCA (30.82%), TCDA (9.45%), GDCA (5.95%), TCDCA (2.37%), GCDCA (1.67%) and CA (0.08%) | 2, 4 and 8 mM | Chondrus armatus (κ-carrageenan), Tichocarpus crinitus (κ/β-carrageenan), Ahnfeltiopsis flabelliformis (ι/κ-carrageenan) | κ-carrageenan: 51–66%, κ/β-carrageenan:70-74%; ι/κ-carrageenan: 33–35% * | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, I.M.V.; Machado, F.; Moreno, M.J.; Nunes, C.; Coimbra, M.A.; Coreta-Gomes, F. Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules 2021, 26, 4559. https://doi.org/10.3390/molecules26154559
Silva IMV, Machado F, Moreno MJ, Nunes C, Coimbra MA, Coreta-Gomes F. Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules. 2021; 26(15):4559. https://doi.org/10.3390/molecules26154559
Chicago/Turabian StyleSilva, Inês M. V., Fernanda Machado, Maria João Moreno, Cláudia Nunes, Manuel A. Coimbra, and Filipe Coreta-Gomes. 2021. "Polysaccharide Structures and Their Hypocholesterolemic Potential" Molecules 26, no. 15: 4559. https://doi.org/10.3390/molecules26154559
APA StyleSilva, I. M. V., Machado, F., Moreno, M. J., Nunes, C., Coimbra, M. A., & Coreta-Gomes, F. (2021). Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules, 26(15), 4559. https://doi.org/10.3390/molecules26154559