Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Microorganisms
3.2. Antagonist Activity and Minimum Inhibitory Concentration for Extracts from Rosa Spp.
3.3. Obtaining the Extracts
3.4. HPLC-FD Measurement of Flavanols and Procyanidins
3.5. Qualitative and Quantitative Measurement of Selected Polyphenols by UHPLC-DAD-MS
3.6. Validation Parameters of HPLC Methods
3.6.1. Linearity
3.6.2. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.7. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ruiz, P.; Barragan, I.; Sesena, S.; Palop, M.L. Is staphylococci population from milk of healthy goats safe? Int. J. Food Microbiol. 2016, 238, 146–152. [Google Scholar] [CrossRef]
- Argudin, M.A.; Mendoza, M.C.; Radicio, M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef]
- Usery, J.B.; Vo, N.H.; Finch, C.K.; Cleveland, K.O.; Gelfand, M.S.; Self, T.H. Evaluation of the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Am. J. Med. Sci. 2015, 349, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.W.; Lee, B.; Her, J.Y.; Lee, K.G.; Lee, J.H. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development. Int. J. Food Microbiol. 2016, 236, 9–16. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, X.; Zhao, X.; Meng, R.; Liu, Z.; Chen, X.; Guo, N. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 2017, 71, 10–16. [Google Scholar] [CrossRef]
- Grys, A. Dzika Róża (Rosa canina L.)—Chemizm i zastosowanie w lecznictwie [Dog Rose (Rosa canina)—Chemical Content and Medical Application]. Postępy Fitoter. 2009, 4, 245–247. [Google Scholar]
- Türkben, C.; Barat, E.; Çopur, Ö.U.; Durgut, E.; Himelrick, D.G. Evaluation of Rose Hips (Rosa spp.) Selections. Int. J. Fruit Sci. 2005, 5, 113–115. [Google Scholar] [CrossRef]
- Cendrowski, A.; Kalisz, S.; Mitek, M. Właściwości i zastosowanie owoców róży w przetwórstwie spożywczym [Properties and application of rose hips in food processing]. Żywność Nauka Technol. Jakość 2012, 4, 24–31. [Google Scholar]
- Kazaz, S.; Baydar, H.; Erbas, S. Variations in Chemical Compositions of Rosa damascena Mill. and Rosa canina L. Fruits 2009, 27, 178–182. [Google Scholar]
- Buchwald, W.; Zieliński, J.; Mścisz, A.; Adamczak, A.; Mrozikiewicz, P.M. Aktualny stan i perspektywy badań róż owocowych. [Current research on roses and their perspectives]. Herba Pol. 2007, 53, 85–89. [Google Scholar]
- Landete, J.M. Dietary Intake of Natural Antioxidants: Vitamins and Polyphenols. Crit. Rev. Food Sci. Nutr. 2013, 53, 706–712. [Google Scholar] [CrossRef]
- Stănilă, A.; Diaconeasa, Z.; Roman, I.; Roman, A.; Sima, N.; Sima, R.; Măniuţiu, D. Extraction and Characterization of Phenolic Compounds from Rose Hip (Rosa canina L.) Using Liquid Chromatography Coupled with Electrospray Ionization—Mass Spectrometry. Not. Bot. Horti Agrobot. 2015, 43, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Nowak, R. Influence of different extraction procedures on the antiradical activity and phenolic profile of Rosa rugosa petals. Acta Pol. Pharm. 2012, 69, 501–507. [Google Scholar] [PubMed]
- Nowak, R.; Olech, M.; Pecio, Ł.; Oleszek, W.; Los, R.; Malm, J.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 2014, 94, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Tumbas, V.T.; Čanadanović-Brunet, J.M.; Gille, L.; Ðila, S.M.; Ćetković, G.S. Characterization of the free Radical Scavenging Activity of Rose Hip (Rosa canina L.) Extract. Int. J. Food Prop. 2012, 15, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Adamczak, A.; Buchwald, W.; Zieliński, J.; Mielcarek, S. Flavonoid and organic acid content in Rose hip (Rosa L., Sect. Caninae Dc. Em. Christ.). Acta Biol. Crac. Ser. Bot. 2012, 54, 105–107. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1383. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anakočv, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Oszmiański, J. Zawartość kwasu elagowego i spolimeryzowanych proantocyjanidyn w pseudoowocach wybranych gatunków róż [Content of ellagic acid and polymerized proanthocyanidins in pseudo fruits of selected rose species]. Żywność Nauka Technol. Jakość 2012, 5, 37–43. [Google Scholar]
- Fecka, I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal. 2009, 20, 177–190. [Google Scholar] [CrossRef]
- Riffault, L.; Destandau, E.; Pasquier, L.; André, P.; Elfakir, C. Phytochemical analysis of Rosa hybrida cv. ‘Jardin de Granville’ by HPTLC, HPLC-DAD and HPLC-ESI-HRMS: Polyphenolic fingerprints of six plant Organs. Phytochemistry 2014, 99, 127–132. [Google Scholar] [CrossRef]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem. 2014, 152, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Salminen, J.P.; Karonen, M.; Lempa, K.; Liimatainen, J.; Sinkkonen, J.; Lukkarinen, M.; Pihlaja, K. Characterisation of proanthocyanidin aglycones and glycosides from rose hips by high-performance liquid chromatography–mass spectrometry, and their rapid quantification together with Vitamin C. J. Chromatogr. A 2005, 1077, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Hvattum, E. Determination of phenolic compound in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionization tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 2002, 16, 655–662. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the Phenolic Compounds of Rosa rugosa Petals. J. Food Qual. 2017, 2017, 7941347. [Google Scholar] [CrossRef] [Green Version]
- Ochir, S.; Park, B.J.; Nishizawa, M.; Kanazawa, T.; Funaki, M.; Yamagishi, T. Simultaneous determination of hydrolysable tannins in the petals of Rosa rugosa and allied plants. J. Nat. Med. 2010, 64, 383–387. [Google Scholar] [CrossRef]
- Kamijo, M.; Kanazawa, T.; Funaki, M.; Nishizawa, M.; Yamagishi, T. Effects of Rosa rugosa Petals on Intestinal Bacteria. Biosci. Biotechnol. Biochem. 2008, 72, 773–777. [Google Scholar] [CrossRef]
- Cho, Y.-J. Antioxidant and Antimicrobial Activity of Rosa multiflora Thunberg Fruits Extracts. Curr. Res. Agric. Life Sci. 2013, 31, 170–175. [Google Scholar]
- Tatke, P.; Satyapal, U.S.; Mahajan, D.C.; Naharwar, V. Phytochemical Analysis, In-Vitro Antioxidant and Antimicrobial Activities of Flower Petals of Rosa damascene. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 246–250. [Google Scholar]
- Ulusoy, S.; Boşgelmez-Tinaz, G.; Seçilmiş-Canbay, H. Tocopherol, Carotene, Phenolic Contents and Antibacterial Properties of Rose Essential Oil, Hydrosol and Absolute. Curr. Microbiol. 2009, 59, 554–558. [Google Scholar] [CrossRef]
- Özkan, G.; Sagdiç, O.; Baydar, N.G.; Baydar, H. Antioxidant and Antibacterial Activities of Rosa damascena Flower Extracts. Int. J. Food Sci. Technol. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Khan, A.J.; Tewar, S. A Study on Antibacterial Properties of Rosa indica against Various Pathogens. Asian J. Plant Sci. 2011, 1, 22–30. [Google Scholar]
- Yilmaz, S.O.; Ercisli, S. Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Rom. Biotechnol. Lett. 2011, 16, 6407–6410. [Google Scholar]
- Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and Antioxidant Activity of Extracts from Rose Fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghendov-Moșanu, A.; Cojocari, D.; Balan, G.; Sturza, R. Antimicrobial activity of rose hip and hawthorn powders on pathogenic bacteria. J. Eng. Sci. 2018, 25, 100–107. [Google Scholar]
- Puljula, E.; Walton, G.; Woodward, M.J.; Karonen, M. Antimicrobial Activities of Ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. Molecules 2020, 25, 3714. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.-M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
Preparation | Ellagitannins (MS Data (m/z) ≤ (1256)− | Ellagitannins (m/z) > (1256)− | Dominant Ellagitannin (m/z) (934)−2 | Sum of Ellagitaninns | Sum of Ellagitaninns and Ellagic Acid | Flavonols | Flavanols | Procyanidins | Total Polyphenols |
---|---|---|---|---|---|---|---|---|---|
[mg/100g] | |||||||||
RRC | 4425.2 ± 10.9 f | 6565.7 ± 95.4 e | 3515.9 ± 55.1 e | 11588.7 ± 98.2 f | 12226.6 ± 97.1 f | 213.4 ± 2.7 a | 20971.9 ± 737.4 a | 20564.6 ± 737.3 a | 33411.9 ± 835.2 bc |
RRM | 2493.8 ± 31.6 e | 4557.6 ± 35.7 d | 2010.5 ± 21.1 d | 7051.5 ± 49.7 e | 7249.4 ± 50.6 e | 217.6 ± 3.2 a | 24690.4 ± 1221.1 b | 24656.9 ± 1222.2 b | 32157.4 ± 1266.3 b |
RCC | 1027.6 ± 12.7 b | 636.4 ± 8.6 ab | 473.9 ± 9.2 b | 1664.0 ± 11.7 b | 1725.9 ± 12.6 b | 505.7 ± 6.8 d | 30159.4 ± 2641.6 c | 29395.6 ± 2633.9 c | 32391.1 ± 2646.1 bc |
RCM | 416.2 ± 4.7 a | 693.8 ± 6.3 b | 491.3 ± 14.9 b | 1110.1 ± 1.8 a | 1146.6 ± 1.4 a | 384.1 ± 4.1 b | 33828.5 ± 1792.0 d | 33767.2 ± 1790.2 d | 35358.8 ± 1789.6 c |
RKC | 1496.2 ± 9.2 d | 1106.1 ± 10.8 c | 878.6 ± 13.0 c | 2602.3 ± 19.9 d | 2715.3 ± 20.9 d | 506.8 ± 2.4 d | 25806.1 ± 1654.4 b | 25389.4 ± 1567.2 b | 29028.2 ± 1648.1 a |
RKM | 1196.2 ± 7.0 c | 599.3 ± 4.6 a | 413.8 ± 1.1 a | 1795.5 ± 10.8 c | 1834.4 ± 11.4 c | 443.8 ± 6.2 c | 26584.0 ± 769.6 b | 26528.2 ± 769.9 b | 28862.1 ± 772.1 a |
Growth Inhibition Zone [mm] | ||||||
---|---|---|---|---|---|---|
Rosa canina | Rosa rugosa | Rosa pomifera Karpatia | ||||
Whole Fruit | Flesh | Whole Fruit | Flesh | Whole Fruit | Flesh | |
ATCC 25923 | 20.7 ± 0.6 a* | 13.3 ± 0.6 A# | 23.3 ± 0.6 b* | 13.0 ± 0.0 A# | 20.7 ± 1.5 a* | 13.0 ± 0.0 A# |
DSMZ 3270 | 15.7 ± 0.6 a* | 12.0 ± 0.5 A# | 23.3 ± 2.1 b* | 14.3 ± 1.2 B# | 18.3 ± 0.6 a* | 13.0 ± 0.0 AB# |
A5 | 24.3 ± 0.6 a* | 15.7 ± 1.5 A# | 29.0 ± 1.1 b* | 13.7 ± 0.6 A# | 22.8 ± 0.6 c* | 19.0 ± 1.0 B# |
M5 | 20.7 ± 0.6 a* | 17.7 ± 0.6 A# | 24.3± 0.6 b* | 23.0 ± 0.0 B# | 23.0 ± 0.0 c* | 19.3 ± 0.6 C# |
M6 | 18.3 ± 0.1 a* | 12.0 ± 0.0 A# | 20.3 ± 0.6 b* | 11.7 ± 0.6 A# | 19.0 ± 1.1 ab* | 13.3 ± 0.6 B# |
KR6 | 1.7 ± 0.6 a* | 17.0 ± 0.0 A# | 20.3 ± 0.6 b* | 17.5 ± 1.2 A# | 20.7 ± 0.6 b* | 17.0 ± 1.7 A# |
KR2A | 18.0 ± 0.0 a* | 15.5 ± 1.0 A# | 21.7 ± 0.6 b* | 14.7 ± 0.6 AB# | 19.7 ± 1.5 ab* | 13.0 ± 0.0 B# |
MIC [mg/mL] | ||||||
---|---|---|---|---|---|---|
Rosa canina | Rosa rugosa | Rosa pomifera Karpatia | ||||
Whole Fruit | Flesh | Whole Fruit | Flesh | Whole Fruit | Flesh | |
ATCC 25923 | 12.5 | 300 | 3.125 | 500 | 25 | 500 |
DSMZ 3270 | 200 | 500 | 25 | 400 | 300 | 400 |
A5 | 3.125 | 300 | 6.25 | 400 | 3.125 | 100 |
M5 | 50 | 300 | 6.25 | 12.5 | 12.5 | 50 |
M6 | 50 | 500 | 100 | 500 | 100 | 400 |
KR6 | 25 | 200 | 12.5 | 50 | 25 | 300 |
KR2A | 25 | 300 | 6.25 | 400 | 100 | 500 |
Variable | Correlation (p < 0.050) Microorganism | ||||||
---|---|---|---|---|---|---|---|
ATCC 25923 | DSMZ 3270 | A5 | M5 | M6 | KR6 | KR2A | |
Sum of ellagitannins | 0.837 * | 0.913 * | 0.905 * | 0.805 * | 0.814 * | 0.388 | 0.825 * |
Flavanols | −0.527 | −0.921 * | −0.623 | −0.890 * | −0.746 * | −0.593 | −0.741 * |
Procyanidins | −0.526 | −0.921 * | −0.634 | −0.882 * | −0.740 * | −0.576 | −0.734 * |
Total polyphenols | 0.712 * | 0.198 | 0.688 * | 0.044 | 0.301 | −0.252 | 0.330 |
Variable | Correlation (p < 0.050) Microorganism | ||||||
---|---|---|---|---|---|---|---|
ATCC 25923 | DSMZ 3270 | A5 | M5 | M6 | KR6 | KR2A | |
Sum of ellag-itannins | −0.294 | 0.824 * | −0.662 | 0.965 * | −0.504 | 0.299 | 0.218 |
Flavanols | 0.369 | −0.699 * | 0.110 | −0.829 * | −0.163 | −0.325 | 0.350 |
Procyanidins | 0.369 | −0.698 * | 0.110 | −0.838 * | −0.165 | −0.325 | −0.351 |
Total poly-phenols | 0.251 | −0.234 | −0.447 | −0.304 | −0.689 * | −0.188 | 0.691 * |
Species | Nucleotide Sequence Number | Isolate Symbol | Origin |
---|---|---|---|
Staphylococcus epidermidis | MW 040699 | A5 | Dietary supplement—acai berries extract |
Staphylococcus xylosus | MW 776359 | M5 | Fresh milk |
Staphylococcus haemolyticus | MW 776358 | M6 | Fresh milk |
Staphylococcus capitis | MW 776357 | KR6 | Radish sprouts |
Staphylococcus warneri | MW 776360 | KR2A | Radish sprouts |
Compound | Calibration Curves | R2 | LOD (mg/L) | LOQ (mg/L) |
---|---|---|---|---|
Pedunculagin bis-HHDP-glucose | y = 6263.4x − 2220.5 | R2 = 0.9989 | 0.29 | 0.59 |
Agrimoniin | y = 11296x − 1056 | R2 = 0.9999 | 0.16 | 0.32 |
Quercetin-3-glucoside | y = 15513x + 2283.2 | R2 = 0.9996 | 0.11 | 0.22 |
Quercetin 3-d-galactoside | y = 19134x + 1932.3 | R2 = 0.9999 | 0.09 | 0.18 |
Tiliroside | y = 11305x + 2734.3 | R2 = 0.9998 | 0.15 | 0.30 |
kaempferol 3-glucoside | y = 15287x − 166.39 | R2 = 0.9997 | 0.11 | 0.22 |
Quercetin | y = 24852x − 1257.3 | R2 = 0.9992 | 0.07 | 0.14 |
Kaempferol | y = 18344x − 2565.7 | R2 = 0.9999 | 0.09 | 0.18 |
Elllagic acid | y = 17521x − 816.99 | R2 = 0.9998 | 0.10 | 0.20 |
(−)-epicatechin-phloroglucnol adduct | y = 75639x + 43737 | R2 = 0.9974 | 0.34 | 0.68 |
(−)-epicatechin | y= 98857x − 1666.1 | R2 = 0.9999 | 0.03 | 0.06 |
(+)-catechin | y = 99608x + 40.24 | R2 = 0.9999 | 0.04 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milala, J.; Piekarska-Radzik, L.; Sójka, M.; Klewicki, R.; Matysiak, B.; Klewicka, E. Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant. Molecules 2021, 26, 4590. https://doi.org/10.3390/molecules26154590
Milala J, Piekarska-Radzik L, Sójka M, Klewicki R, Matysiak B, Klewicka E. Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant. Molecules. 2021; 26(15):4590. https://doi.org/10.3390/molecules26154590
Chicago/Turabian StyleMilala, Joanna, Lidia Piekarska-Radzik, Michał Sójka, Robert Klewicki, Bożena Matysiak, and Elżbieta Klewicka. 2021. "Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant" Molecules 26, no. 15: 4590. https://doi.org/10.3390/molecules26154590
APA StyleMilala, J., Piekarska-Radzik, L., Sójka, M., Klewicki, R., Matysiak, B., & Klewicka, E. (2021). Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant. Molecules, 26(15), 4590. https://doi.org/10.3390/molecules26154590