Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines 4,6,8; General procedure 1
3.2. 6-Nitroazolo[1,5-a]pyrimidines 5,7,9; General procedure 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pinheiro, S.; Pinheiro, E.M.C.; Muri, E.M.F.; Pessôa, J.C.; Cadorini, A.M.; Greco, S.J. Biological Activities of [1,2,4]Triazolo[1,5-a]Pyrimidines and Analogues. Med. Chem. Res. 2020, 29, 1751–1776. [Google Scholar] [CrossRef]
- Oukoloff, K.; Lucero, B.; Francisco, K.R.; Brunden, K.R.; Ballatore, C. 1,2,4-Triazolo[1,5-a]Pyrimidines in Drug Design. Eur. J. Med. Chem. 2019, 165, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G. Recent Advances in 1,2,4-Triazolo[1,5-a]Pyrimidine Chemistry. In Advances in Heterocyclic Chemistry; Academic Press Inc.: Cambridge, MA, USA, 2019; Volume 128, pp. 1–101. [Google Scholar] [CrossRef]
- Tigreros, A.; Aranzazu, S.-L.; Bravo, N.-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10, 39542–39552. [Google Scholar] [CrossRef]
- Tigreros, A.; Castillo, J.C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215, 120905. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, R.; Lan, J.; Zhang, H.; Yan, L.; Pu, X.; Huang, Z.; Wu, D.; You, J. Oxidative C-H/C-H Cross-Coupling of [1,2,4]Triazolo[1,5-a]Pyrimidines with Indoles and Pyrroles: Discovering Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. Org. Lett. 2019, 21, 4058–4062. [Google Scholar] [CrossRef]
- Tigreros, A.; Rosero, H.A.; Castillo, J.C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine–Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395–401. [Google Scholar] [CrossRef]
- Łakomska, I.; Śmiłowicz, D.; Jakubowski, M.; Sitkowski, J.; Wojtczak, A. Materials Platinum(II) Complexes with Bulky Disubstitute Triazolopyrimidines as Promising Materials for Anticancer Agents. Materials 2020, 13, 5312. [Google Scholar] [CrossRef]
- Esteban-Parra, G.M.; Sebastián, E.S.; Cepeda, J.; Sánchez-González, C.; Rivas-García, L.; Llopis, J.; Aranda, P.; Sánchez-Moreno, M.; Quirós, M.; Rodríguez-Diéguez, A. Anti-Diabetic and Anti-Parasitic Properties of a Family of Luminescent Zinc Coordination Compounds Based on the 7-Amino-5-Methyl-1,2,4-Triazolo[1,5-a]Pyrimidine Ligand. J. Inorg. Biochem. 2020, 212, 111235. [Google Scholar] [CrossRef]
- Fandzloch, M.; Augustyniak, A.W.; Dobrzańska, L.; Jędrzejewski, T.; Sitkowski, J.; Wypij, M.; Golińska, P. First Dinuclear Rhodium(II) Complexes with Triazolopyrimidines and the Prospect of Their Potential Biological Use. J. Inorg. Biochem. 2020, 210, 111072. [Google Scholar] [CrossRef]
- Shen, J.; Deng, X.; Sun, R.; Tavallaie, M.S.; Wang, J.; Cai, Q.; Lam, C.; Lei, S.; Fu, L.; Jiang, F. Structural Optimization of Pyrazolo[1,5-a]Pyrimidine Derivatives as Potent and Highly Selective DPP-4 Inhibitors. Eur. J. Med. Chem. 2020, 208, 112850. [Google Scholar] [CrossRef]
- Peytam, F.; Adib, M.; Shourgeshty, R.; Firoozpour, L.; Rahmanian-Jazi, M.; Jahani, M.; Moghimi, S.; Divsalar, K.; Faramarzi, M.A.; Mojtabavi, S.; et al. An Efficient and Targeted Synthetic Approach towards New Highly Substituted 6-Amino-Pyrazolo[1,5-a]Pyrimidines with α-Glucosidase Inhibitory Activity. Sci. Rep. 2020, 10, 2595. [Google Scholar] [CrossRef] [PubMed]
- Kato, N.; Oka, M.; Murase, T.; Yoshida, M.; Sakairi, M.; Yamashita, S.; Yasuda, Y.; Yoshikawa, A.; Hayashi, Y.; Makino, M.; et al. Discovery and Pharmacological Characterization of N-[2-({2-[(2S)-2- Cyanopyrrolidin-1-Yl]-2-Oxoethyl}amino)-2-Methylpropyl]-2-Methylpyrazolo[1,5-a]Pyrimidine-6-Carboxamide Hydrochloride (Anagliptin Hydrochloride Salt) as a Potent and Selective DPP-IV Inhibitor. Bioorg. Med. Chem. 2011, 19, 7221–7227. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.H.; Wu, W.Y.; Guo, S.X.; He, S.J.; Tang, X.D.; Wu, X.Y.; Nandakumar, K.S.; Zou, M.; Li, L.; Chen, X.G.; et al. [1,2,4]Triazolo[1,5-a]Pyrimidine Derivative (Mol-5) Is a New NS5-RdRp Inhibitor of DENV2 Proliferation and DENV2-Induced Inflammation. Acta Pharm. Sin. 2020, 41, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi-Sasaki, T.; Tamura, Y.; Ogata, Y.; Kawaguchi, T.; Kurosaka, J.; Sugaya, Y.; Iwakiri, K.; Busujima, T.; Takahashi, R.; Ueda-Yonemoto, N.; et al. Design and Synthesis of 2-(1-Alkylaminoalkyl)Pyrazolo[1,5-a]Pyrimidines as New Respiratory Syncytial Virus Fusion Protein Inhibitors. Chem. Pharm, Bull. 2020, 68, 345–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massari, S.; Nannetti, G.; Desantis, J.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Palù, G.; Cruciani, G.; et al. A Broad Anti-Influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein−Basic Protein 1 (PA-PB1) Subunits. J. Med. Chem. 2015, 58, 3830–3842. [Google Scholar] [CrossRef]
- Wang, H.; Lee, M.; Peng, Z.; Blázquez, B.; Lastochkin, E.; Kumarasiri, M.; Bouley, R.; Chang, M.; Mobashery, S. Synthesis and Evaluation of 1,2,4-Triazolo[1,5-a]Pyrimidines as Antibacterial Agents against Enterococcus Faecium. J. Med. Chem. 2015, 58, 4194–4203. [Google Scholar] [CrossRef] [Green Version]
- Zuniga, E.S.; Korkegian, A.; Mullen, S.; Hembre, E.J.; Ornstein, P.L.; Cortez, G.; Biswas, K.; Kumar, N.; Cramer, J.; Masquelin, T.; et al. The Synthesis and Evaluation of Triazolopyrimidines as Anti-Tubercular Agents. Bioorg. Med. Chem. 2017, 25, 3922–3946. [Google Scholar] [CrossRef]
- Ding, J.; Cao, F.D.; Geng, Y.R.; Tian, Y.; Li, P.; Li, X.F.; Huang, L.J. Synthesis and in Vitro Anti-Epileptic Activities of Novel[1,2,4]-Triazolo[1,5-a]Pyrimidin-7(4H)-One Derivatives. J. Asian Nat. Prod. Res. 2019, 21, 1190–1204. [Google Scholar] [CrossRef]
- Sullivan, S.K.; Petroski, R.E.; Verge, G.; Gross, R.S.; Foster, A.C.; Grigoriadis, D.E. Characterization of the Interaction of Indiplon, a Novel Pyrazolopyrimidine Sedative-Hypnotic, with the GABAA Receptor. J. Pharmacol. Exp. Ther. 2004, 311, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.L.; Wang, S.; Yuan, X.H.; Yu, B.; Zhao, W.; Liu, H.M. Discovery of [1,2,4]Triazolo[1,5-a]Pyrimidines Derivatives as Potential Anticancer Agents. Eur. J. Med. Chem. 2021, 211, 113108. [Google Scholar] [CrossRef]
- Krämer, A.; Kurz, C.G.; Berger, B.T.; Celik, I.E.; Tjaden, A.; Greco, F.A.; Knapp, S.; Hanke, T. Optimization of Pyrazolo[1,5-a]Pyrimidines Lead to the Identification of a Highly Selective Casein Kinase 2 Inhibitor. Eur. J. Med. Chem. 2020, 208, 112770. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, S.-Q.; Teng, Q.-X.; Yang, L.; Lei, Z.-N.; Yuan, X.-H.; Huo, J.-F.; Chen, X.-B.; Wang, M.; Yu, B.; et al. Structure-Based Design, Synthesis, and Biological Evaluation of New Triazolo[1,5-a]Pyrimidine Derivatives as Highly Potent and Orally Active ABCB1 Modulators. J. Med. Chem. 2020, 63, 15979–15996. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Li, L.; Ren, Y.; Deng, X.; Liu, J.; Wang, W.; Luo, M.; Liu, S.; Chen, J. Design, Synthesis, and Bioevaluation of Pyrazolo[1,5-a]Pyrimidine Derivatives as Tubulin Polymerization Inhibitors Targeting the Colchicine Binding Site with Potent Anticancer Activities. Eur. J. Med. Chem. 2020, 202. [Google Scholar] [CrossRef] [PubMed]
- Mathison, C.; Chianelli, D.; Rucker, P.; Nelson, J.; Roland, J.; Huang, Z.; Yang, Y.; Jiang, J.; Feng Xie, Y.; Epple, R.; et al. Efficacy and Tolerability of Pyrazolo[1,5-a]Pyrimidine RET Kinase Inhibitors for the Treatment of Lung Adenocarcinoma. ACS Med. Chem. Lett. 2020, 11, 558–565. [Google Scholar] [CrossRef]
- Badolato, M.; Manetti, F.; Garofalo, A.; Aiello, F. Triazolopyrimidinium Salts: Discovery of a New Class of Agents for Cancer Therapy. Future Med. Chem. 2020, 12, 387–402. [Google Scholar] [CrossRef]
- Oukoloff, K.; Nzou, G.; Varricchio, C.; Lucero, B.; Alle, T.; Kovalevich, J.; Monti, L.; Cornec, A.-S.; Yao, Y.; James, M.; et al. Evaluation of the Structure–Activity Relationship of Microtubule-Targeting 1,2,4-Triazolo[1,5-a]Pyrimidines Identifies New Candidates for Neurodegenerative Tauopathies. J. Med. Chem. 2021, 64, 1073–1102. [Google Scholar] [CrossRef]
- Uryu, S.; Tokuhiro, S.; Murasugi, T.; Oda, T. A Novel Compound, RS-1178, Specifically Inhibits Neuronal Cell Death Mediated by β-Amyloid-Induced Macrophage Activation in Vitro. Brain Res. 2002, 946, 298–306. [Google Scholar] [CrossRef]
- Lou, K.; Yao, Y.; Hoye, A.T.; James, M.J.; Cornec, A.-S.; Hyde, E.; Gay, B.; Lee, V.; Trojanowski, J.Q.; Smith, A.B.; et al. Brain-Penetrant, Orally Bioavailable Microtubule-Stabilizing Small Molecules Are Potential Candidate Therapeutics for Alzheimer’s Disease and Related Tauopathies. J. Med. Chem. 2014, 57, 6116–6127. [Google Scholar] [CrossRef] [PubMed]
- Rusinov, V.L.; Charushin, V.N.; Chupakhin, O.N. Biologically Active Azolo-1,2,4-Triazines and Azolopyrimidines. Russ. Chem.Bull. 2018, 67, 573–599. [Google Scholar] [CrossRef]
- Chupakhin, O.N. 5-Methyl-6-nitro-7-oxo-4,7-dihydro-1,2,4-triazolo[1,5-alpha]pyrimidine L-argininium monohydrate. RF Patent 2529487, 20 October 2014. [Google Scholar]
- Deyeva, E.G.; Shevchik, Y.I.; Shaldghan, A.A.; Zagorodnikova, K.A.; Tumashov, A.A.; Baklykov, A.V.; Kotovskaya, S.K.; Chupahin, O.N.; Charushin, V.N.; Rusinov, V.L.; et al. New Antiviral Drug Triazid. Results of First Phase of Clinical Trial. Drug Dev. Registration 2018, 3, 172–180. (In Russ) [Google Scholar]
- Savateev, K.V.; Ulomsky, E.N.; Fedotov, V.V.; Rusinov, V.L.; Sivak, K.V.; Lyubishin, M.M.; Kuzmich, N.N.; Aleksandrov, A.G. 6-Nitrotriazolo[1,5-a]Pyrimidines as Promising Structures for Pharmacotherapy of Septic Conditions. Russ. J. Bioorg. Chem. 2017, 43, 421–428. [Google Scholar] [CrossRef]
- Savateev, K.V.; Ulomsky, E.N.; Rusinov, V.L.; Isenov, M.L.; Chupakhin, O.N. Structural Analogs of Adenosine Receptor Inhibitors in the Series of 1,2,4-Triazolo[1,5-a]Pyrimidines. Russ. Chem. Bull. 2015, 64, 1378–1384. [Google Scholar] [CrossRef]
- Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R.; et al. Synthesis and Biological Evaluation of 6-Nitro-1,2,4-Triazoloazines Containing Polyphenol Fragments Possessing Antioxidant and Antiviral Activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Gerasimova, E.; Gazizullina, E.; Borisova, M.; Drokin, R.; Gorbunov, E.; Ulomskiy, E.; Rusinov, V. The Antioxidant Screening of Potential Materials for Drugs Based on 6-Nitro-1,2,4-Triazoloazines Containing Natural Polyphenol Fragments. Anal. Bioanal. Chem. 2020, 412, 5147–5155. [Google Scholar] [CrossRef]
- Safari, F.; Bayat, M.; Nasri, S.; Karami, S. Synthesis and Evaluation of Anti-Tumor Activity of Novel Triazolo[1,5-a] Pyrimidine on Cancer Cells by Induction of Cellular Apoptosis and Inhibition of Epithelial-to-Mesenchymal Transition Process. Bioorganic Med. Chem. Lett. 2020, 30, 127111. [Google Scholar] [CrossRef] [PubMed]
- Spasov, A.A.; Babkov, D.A.; Sysoeva, V.A.; Litvinov, R.A.; Shamshina, D.D.; Ulomsky, E.N.; Savateev, K.V.; Fedotov, V.V.; Slepukhin, P.A.; Chupakhin, O.N.; et al. 6-Nitroazolo[1,5-a]Pyrimidin-7(4H)-Ones as Antidiabetic Agents. Arch. Pharm. 2017, 350, 1700226. [Google Scholar] [CrossRef]
- Gazizov, D.A.; Gorbunov, E.B.; Rusinov, G.L.; Ulomsky, E.N.; Charushin, V.N. A New Family of Fused Azolo[1,5-A]Pteridines and Azolo[5,1-b]Purines. ACS Omega 2020, 5, 18226–18233. [Google Scholar] [CrossRef]
- Savateev, K.V.; Ulomsky, E.N.; Borisov, S.S.; Voinkov, E.K.; Fedotov, V.V.; Rusinov, V.L. 8-Alkyl[1,2,4]Triazolo[5,1-b]Purines. Chem. Heterocycl. Comp. 2014, 50, 880–887. [Google Scholar] [CrossRef]
- Fedotov, V.V.; Ulomsky, E.N.; Savateev, K.V.; Mukhin, E.M.; Gazizov, D.A.; Gorbunov, E.B.; Rusinov, V.L. A PASE Approach to the Synthesis of Benzimidazopurines as Polycondensed Purine Derivatives. Synth 2020, 52, 3622–3631. [Google Scholar] [CrossRef]
- Gorbunov, E.B.; Rusinov, G.L.; Ulomskii, E.N.; Isenov, M.L.; Charushin, V.N. Synthesis of 2H-Azolo[1,5-a][1,2,3]Triazolo[4,5-e]Pyrimidines. Chem. Heterocycl. Comp. 2015, 51, 491–495. [Google Scholar] [CrossRef]
- Gorbunov, E.B.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of Fused Systems Based on Σh-Adducts of 6-Nitro-1,2,4- Triazolo[1,5-a]Pyrimidine with π-Excessive Heteroaromatic Compounds. Russ. Chem. Bull. 2009, 58, 1309–1314. [Google Scholar] [CrossRef]
- Lyapustin, D.N.; Ulomsky, E.N.; Zanakhov, T.O.; Rusinov, V.L. Three-Component Coupling of Aromatic Aldehydes, 1-Morpholino-2-Nitroalkenes, and 3-Aminoazoles via Boron Trifluoride Etherate Catalysis: Reaction Pathway and Features of the Formation of Intermediates. J. Org. Chem. 2019, 84, 15267–15275. [Google Scholar] [CrossRef]
- Lyapustin, D.N.; Ulomsky, E.N.; Rusinov, V.L. 6-Nitro-4,7-Dihydroazolo [1,5-a]Pyrimidines: An Alternative Mechanism of Formation and Studies of Alkylation. Chem. Heterocycl. Compd. 2020, 56, 1465–1472. [Google Scholar] [CrossRef]
- Rusinov, V.L.; Postovskii, I.Y.; Petrov, A.Y.; Sidorov, E.O.; Azev, Y.A. Synthesis and study of the covalent solvation of 6-nitroazalopyrimidines. Chem. Heterocycl. Comp. 1981, 17, 1139–1141. [Google Scholar] [CrossRef]
- Pilicheva, T.L.; Rusinov, V.L.; Chupakhin, O.N.; Klyuev, N.A.; Aleksandrov, G.G.; Eslpov, S.E.; Kirov, S.M. Nitroazines. 6. Direct introduction of indole residues into 6-nitroazolo[1,5-a]pyrimidines. Chem. Heterocycl. Comp. 1986, 22, 1250–1255. [Google Scholar] [CrossRef]
- Rusinov, V.L.; Pilicheva, T.L.; Myasnikov, A.V.; Klyuev, N.A.; Chupakhin, O.N. Direct Introduction of Azoloazine Residues into Resorcinol. Chem. Heterocycl. Comp. 1986, 22, 928. [Google Scholar] [CrossRef]
- Rusinov, G.L.; Gorbunov, E.B.; Charushin, V.N.; Chupakhin, O.N. An Unusual Aromatisation of Dihydropyrimidines Facilitated by Reduction of the Nitro Group. Tetrahedron Lett. 2007, 48, 5873–5876. [Google Scholar] [CrossRef]
- Chupakhin, O.N.; Shchepochkin, A.V.; Charushin, V.N.; Maiorova, A.V.; Kulikova, T.V.; Shunyaev, K.Y.; Enyashin, A.N.; Slepukhin, P.A.; Suvorova, A.I. Electrochemical Oxidative Aromatizationof 9-Substituted 9,10-Dihydroacridines: Cleavage of C–H vs C–X Bond. Chem. Heterocycl. Compd. 2019, 55, 956–963. [Google Scholar] [CrossRef]
- Gallardo, I.; Guirado, G. Thermodynamic Study of ΣH Complexes in Nucleophilic Aromatic Substitution Reactions: Relative Stabilities of Electrochemically Generated Radicals. Eur. J. Org. Chem. 2008, 14, 2463–2472. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Hussain, K. Iodobenzene Diacetate (IBD) Catalyzed an Quick Oxidative Aromatization of Hantzsch-1,4-Dihydropyridines to Pyridines under Ultrasonic Irradiation. Ultrason. Sonochem. 2012, 19, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Rusinov, V.L.; Drokin, R.A.; Tiufiakov, D.V.; Voinkov, E.K.; Ulomsky, E.N. Synthesis and Properties of the Salts of 1-Nitropropan-2-One and 1-Nitrobutan-2-One. Mendeleev Commun. 2020, 30, 177–179. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
№ | Solvent | Oxidizing Agent | Temperature, °C | Reaction Time, h | Yield, % |
---|---|---|---|---|---|
1 | H2O | KMnO4, NaOH | 25 | 1 | - |
2 | TFA | O2 | 25 | 10 | - |
3 | CH2Cl2 | DDQ | 25→40 | 5 | - |
4 | MeCN | DDQ | 25→80 | 5 | Trace |
5 | CH2Cl2 | DMP | 25 | 5 | - |
6 | AcOH | PCC | 50 | 5 | 49 |
7 | CH2Cl2 | PIDA | 25→40 | 5 | - |
8 | AcOH | PIDA | 100 | 1 | 81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyapustin, D.N.; Ulomsky, E.N.; Balyakin, I.A.; Shchepochkin, A.V.; Rusinov, V.L.; Chupakhin, O.N. Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation. Molecules 2021, 26, 4719. https://doi.org/10.3390/molecules26164719
Lyapustin DN, Ulomsky EN, Balyakin IA, Shchepochkin AV, Rusinov VL, Chupakhin ON. Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation. Molecules. 2021; 26(16):4719. https://doi.org/10.3390/molecules26164719
Chicago/Turabian StyleLyapustin, Daniil N., Evgeny N. Ulomsky, Ilya A. Balyakin, Alexander V. Shchepochkin, Vladimir L. Rusinov, and Oleg N. Chupakhin. 2021. "Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation" Molecules 26, no. 16: 4719. https://doi.org/10.3390/molecules26164719
APA StyleLyapustin, D. N., Ulomsky, E. N., Balyakin, I. A., Shchepochkin, A. V., Rusinov, V. L., & Chupakhin, O. N. (2021). Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation. Molecules, 26(16), 4719. https://doi.org/10.3390/molecules26164719