Lignans from Machilus thunbergii as Thymic Stromal Lymphopoietin Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. pSATA5 Assay
3.4.1. Cell Culture
3.4.2. Flow Cytometry
3.5. ELISA Assay
3.6. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Adamu, R.M.; Malik, B.K. Molecular Modeling and Docking Assessment of Thymic Stromal Lymphopoietin for the Development of Natural Anti Allergic Drugs. J. Young. Pharm. 2018, 10, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Han, N.R.; Moon, P.D.; Kim, H.M.; Jeong, H.J. Tryptanthrin ameliorates atopic dermatitis through down-regulation of TSLP. Arch. Biochem. Biophys. 2014, 542, 14–20. [Google Scholar] [CrossRef]
- Moon, P.D.; Jeong, H.J.; Kim, H.M. Effects of schizandrin on the expression of thymic stromal lymphopoietin in human mast cell line HMC-1. Life Sci. 2012, 91, 384–388. [Google Scholar] [CrossRef]
- Park, B.B.; Choi, J.W.; Park, D.; Choi, D.; Paek, J.; Kim, H.J.; Son, S.Y.; Mushtaq, A.U.; Shin, H.; Kim, S.H.; et al. Structure-activity relationships of baicalein and its analogs as novel TSLP inhibitors. Sci. Rep. 2019, 9, 8762. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Sharma, J.; Raju, R.; Palapetta, S.M.; Prasad, T.S.; Huang, T.C.; Yoda, A.; Tyner, J.W.; van Bodegom, D.; Weinstock, D.M.; et al. TSLP signaling pathway map: A platform for analysis of TSLP-mediated signaling. Database 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Bantz, S.K.; Zhu, Z.; Zheng, T. The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. J. Clin. Cell Immunol. 2014, 5, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spergel, J.M. From atopic dermatitis to asthma:the atopic march. Ann. Allergy Asthma Immunol. 2010, 105, 99–106. [Google Scholar] [CrossRef]
- Kapoor, Y.; Kumar, K. Structural and clinical impact of anti-allergy agents: An overview. Bioorg. Chem. 2020, 94, 103351. [Google Scholar] [CrossRef] [PubMed]
- Smruti, P. A review on natural remedies used for the treatment of respiratory disorders. Int. J. Pharm. 2021, 8, 104–111. [Google Scholar] [CrossRef]
- Wu, S.-J.; Len, W.-B.; Huang, C.-Y.; Liou, C.-J.; Huang, W.-C.; Lin, C.-F. Machilus thunbergii extract inhibits inflammatory response in lipopolysaccharide-induced RAW264.7 murine macrophages via suppression of NF-κB and p38 MAPK activation. Turk. J. Biol. 2015, 39, 657–665. [Google Scholar] [CrossRef]
- Ren, Q.; Wu, D.; Wu, C.; Wang, Z.; Jiao, J.; Jiang, B.; Zhu, J.; Huang, Y.; Li, T.; Yuan, W. Modeling the Potential Distribution of Machilus thunbergii under the Climate Change Patterns in China. Open J. For. 2020, 10, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.J.; Kim, Y.C.; Sung, S.H. Compounds with neuroprotective activity from the medicinal plant Machilus thunbergii. J. Enzym. Inhib. Med. Chem. 2009, 24, 1117–1121. [Google Scholar] [CrossRef]
- Jeon, J.S.; Oh, S.J.; Lee, J.Y.; Ryu, C.S.; Kim, Y.M.; Lee, B.H.; Kim, S.K. Metabolic characterization of meso-dihydroguaiaretic acid in liver microsomes and in mice. Food Chem. Toxicol. 2015, 76, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lyu, H.N.; Kwon, H.S.; Kim, Y.S.; Lee, K.H.; Kim, D.Y.; Chakraborty, G.; Choi, K.Y.; Yoon, H.S.; Kim, K.T. Obtusilactone B from Machilus thunbergii targets barrier-to-autointegration factor to treat cancer. Mol. Pharm. 2013, 83, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Yang, H.; Ma, C.J.; Kim, Y.C. Stimulatory activity of lignans from Machilus thunbergii on osteoblast differentiation. Biol. Pharm. Bull. 2007, 30, 814–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.J.; Kim, S.R.; Kim, J.; Kim, Y.C. Meso-dihydroguaiaretic acid and licarin A of Machilus thunbergii protect against glutamate-induced toxicity in primary cultures of a rat cortical cells. Br. J. Pharm. 2005, 146, 752–759. [Google Scholar] [CrossRef] [Green Version]
- Karikome, H.; Mimaki, Y.; Sashida, Y. A butanolide and phenolics from Machilus thunbergii. Phytochemistry 1991, 30, 315–319. [Google Scholar] [CrossRef]
- Yu, Y.U.; Kang, S.Y.; Park, H.Y.; Sung, S.H.; Lee, E.J.; Kim, S.Y.; Kim, Y.C. Antioxidant Lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes. J. Pharm. Pharm. 2000, 52, 1163–1169. [Google Scholar] [CrossRef]
- Ma, C.J.; Lee, M.K.; Kim, Y.C. Meso-dihydroguaiaretic acid attenuates the neurotoxic effect of staurosporine in primary rat cortical cultures. Neuropharmacology 2006, 50, 733–740. [Google Scholar] [CrossRef]
- Ma, C.J.; Sung, S.H.; Kim, Y.C. New neuroprotective dibenzyl butane lignans isolated from Machilus thunbergii. Nat. Prod. Res. 2010, 24, 562–568. [Google Scholar] [CrossRef]
- Favela-Hernandez, J.M.; Garcia, A.; Garza-Gonzalez, E.; Rivas-Galindo, V.M.; Camacho-Corona, M.R. Antibacterial and antimycobacterial lignans and flavonoids from Larrea tridentata. Phytother. Res. 2012, 26, 1957–1960. [Google Scholar] [CrossRef]
- Le, T.V.T.; Nguyen, P.H.; Choi, H.S.; Yang, J.-L.; Kang, K.W.; Ahn, S.-G.; Oh, W.K. Diarylbutane-type lignans from Myristica fragrans (Nutmeg) show the cytotoxicity against breast cancer cells through activation of AMP-activated protein kinase. Nat. Prod. Sci. 2017, 23, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.G.; Park, D.J.; Cho, H.S.; Kim, G.N.; Kim, J.H.; Park, J.H.; Jin, M.H. Compositions Containing Paper Mulberry Extracts. Patent WO2021137678A1, 30 June 2021. [Google Scholar]
- Liu, J.-S.; Huang, M.-F.; Gao, Y.-L. The structure of chicanine, a new lignan from Schisandra sp. Can. J. Chem. 1981, 59, 1680–1684. [Google Scholar] [CrossRef]
- Rye, C.E.; Barker, D. Asymmetric synthesis of (+)-galbelgin, (-)-kadangustin J, (-)-cyclogalgravin and (-)-pycnanthulignenes A and B, three structurally distinct lignan classes, using a common chiral precursor. J. Org. Chem. 2011, 76, 6636–6648. [Google Scholar] [CrossRef]
- Nakatani, N.; Ikeda, K.; Kikuzaki, H.; Kido, M.; Yamaguchi, Y. Diaryldimethylbutane Lignans from Myristica argentea and their antimicrobial action against Streptococcus mutans. Phytochemistry 1988, 27, 3127–3129. [Google Scholar] [CrossRef]
- Hwu, J.R.; Tseng, W.N.; Gnabre, J.; Giza, P.; Huang, R.C.C. Antiviral activities of methylated nordihydroguaiaretic acids. 1. Synthesis, structure identification, and inhibition of Tat-regulated HIV transactivation. J. Med. Chem. 1998, 41, 2994–3000. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, H.; Sashida, Y.; Oohara, M. Lignans from Machilus thunbergii. Phytochemistry 1987, 26, 1513–1515. [Google Scholar] [CrossRef]
- Lee, S.U.; Shim, K.S.; Ryu, S.Y.; Min, Y.K.; Kim, S.H. Machilin A isolated from Myristica fragrans stimulates osteoblast differentiation. Planta Med. 2009, 75, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Rochman, Y.; Kashyap, M.; Robinson, G.W.; Sakamoto, K.; Gomez-Rodriguez, J.; Wagner, K.U.; Leonard, W.J. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7–induced signaling. Proc. Natl. Acad. Sci. USA 2010, 107, 19455–19460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.W.; Seo, C.S.; Cho, E.S.; Kim, T.I.; Won, Y.S.; Kwon, H.J.; Son, J.K.; Son, H.Y. Meso-dihydroguaiaretic acid attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma. Int. Immunopharmacol. 2016, 31, 239–247. [Google Scholar] [CrossRef] [PubMed]
STAT5 Phosphorylation (%) | ||
---|---|---|
3 μM | 30 μM | |
Extracts of M. thunbergii | 79.2 (a) | 69.2 (b) |
1 | 67.6 | 54.5 |
2 | 68.7 | 64.1 |
3 | 111.9 | 104.3 |
Compounds | hTSLP/hTSLPR Interaction Inhibition (%) a | |
---|---|---|
0.1 mM | 0.3 mM | |
Control | 0.0 ± 0.9 | |
1 | 17.2 ± 2.2 ** | 27.3 ± 1.9 * |
2 | 13.8 ± 0.6 ** | 16.7 ± 1.2 ** |
3 | 11.0 ± 1.5 ** | 19.5 ± 1.2 * |
Compounds | Docking Analysis (Total Score) a | Key Residues |
---|---|---|
1 | 7.4243 | Lys161(1.89), Lys188(1.88, 2.46), Gln164(2.13), and Glu191(2.13, 2.43) |
2 | 7.2410 | Gln164(1.91), Glu165(1.93), Asp192(2.07), Glu191(2.09, 3.05), and Ser184(2.95) |
3 | 5.7852 | Ser162(1.93, 2.08), Glu149(2.56), and Lys188(2.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Han, Y.K.; Byun, Y.; Jeon, Y.H.; Lee, K.Y. Lignans from Machilus thunbergii as Thymic Stromal Lymphopoietin Inhibitors. Molecules 2021, 26, 4804. https://doi.org/10.3390/molecules26164804
Shin H, Han YK, Byun Y, Jeon YH, Lee KY. Lignans from Machilus thunbergii as Thymic Stromal Lymphopoietin Inhibitors. Molecules. 2021; 26(16):4804. https://doi.org/10.3390/molecules26164804
Chicago/Turabian StyleShin, Hyeji, Yoo Kyong Han, Youngjoo Byun, Young Ho Jeon, and Ki Yong Lee. 2021. "Lignans from Machilus thunbergii as Thymic Stromal Lymphopoietin Inhibitors" Molecules 26, no. 16: 4804. https://doi.org/10.3390/molecules26164804
APA StyleShin, H., Han, Y. K., Byun, Y., Jeon, Y. H., & Lee, K. Y. (2021). Lignans from Machilus thunbergii as Thymic Stromal Lymphopoietin Inhibitors. Molecules, 26(16), 4804. https://doi.org/10.3390/molecules26164804