Untargeted Metabolomics in Forensic Toxicology: A New Approach for the Detection of Fentanyl Intake in Urine Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples Collection and Preparation
2.2.1. In Vitro Samples
2.2.2. Urine Samples
2.3. Preliminary Urine Testing and Confirmation
2.4. Chromatographic Separation
2.4.1. Reverse Phase (RP) Chromatography
2.4.2. Hydrophilic Interaction Chromatography (HILIC)
2.5. High Resolution Mass Spectrometry Analysis
2.6. Statistical Analysis
2.6.1. In Vitro Samples
2.6.2. Urine Samples
3. Results and Discussion
3.1. Targeted Analysis
3.2. Examination of Technical Replicates of Urine Samples
3.3. Data Exploration of Real Samples
3.3.1. In Vitro Samples
3.3.2. Urine Samples
3.4. Construction of Classification Models Based on SIMCA Algorithm for Urine Samples
4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boslett, A.J.; Denham, A.; Hill, E.L.; Adams, M.C.B. Unclassified drug overdose deaths in the opioid crisis: Emerging patterns of inequity. J. Am. Med. Inform. Assoc. 2019, 26, 767–777. [Google Scholar] [CrossRef] [Green Version]
- EMCDDA. European Drug Report; EMCDDA: Lisbon, Portugal, 2019. [Google Scholar]
- Gleber, R.; Vilke, G.M.; Castillo, E.M.; Brennan, J.; Oyama, L.; Coyne, C.J. Trends in emergency physician opioid prescribing practices during the United States opioid crisis. Am. J. Emerg. Med. 2020, 38, 735–740. [Google Scholar] [CrossRef]
- Goldberg, R.F. The Opioid Crisis. Adv. Surg. 2019, 53, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Sered, S.S. The opioid crisis and the infrastructure of social capital. Int. J. Drug Policy 2019, 71, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D. Single-dose fentanyl sublingual spray for breakthrough cancer pain. Clin. Pharmacol. Adv. Appl. 2013, 5, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardanyan, R.S.; Hruby, V.J. Fentanyl-related compounds and derivatives: Current status and future prospects for pharmaceutical applications. Future Med. Chem. 2014, 6, 385–412. [Google Scholar] [CrossRef] [Green Version]
- Salomone, A.; Palamar, J.J.; Vincenti, M. Should NPS be included in workplace drug testing? Drug Test. Anal. 2020, 12, 191–194. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J. Metabolomics of drugs of abuse: A more realistic view of the toxicological complexity. Bioanalysis 2014, 6, 3155–3159. [Google Scholar] [CrossRef]
- Wang, L.; Wu, N.; Zhao, T.-Y.; Li, J. The potential biomarkers of drug addiction: Proteomic and metabolomics challenges. Biomarkers 2016, 21, 678–685. [Google Scholar] [CrossRef]
- Steuer, A.E.; Brockbals, L.; Kraemer, T. Metabolomic Strategies in Biomarker Research–New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front. Chem. 2019, 7, 319. [Google Scholar] [CrossRef]
- Ghanbari, R.; Sumner, S. Using Metabolomics to Investigate Biomarkers of Drug Addiction. Trends Mol. Med. 2018, 24, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, T.; Leng, C.; Chen, L.; Ma, B.; Gong, X. Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on 1H-nuclear magnetic resonance spectra. BMC Neurosci. 2018, 19, 4. [Google Scholar] [CrossRef]
- Zaitsu, K.; Miyawaki, I.; Bando, K.; Horie, H.; Shima, N.; Katagi, M.; Tatsuno, M.; Bamba, T.; Sato, T.; Ishii, A.; et al. Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. Anal. Bioanal. Chem. 2014, 406, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Mollerup, C.B.; Rasmussen, B.S.; Johansen, S.S.; Mardal, M.; Linnet, K.; Dalsgaard, P.W. Retrospective analysis for valproate screening targets with liquid chromatography–high resolution mass spectrometry with positive electrospray ionization: An omics-based approach. Drug Test. Anal. 2019, 11, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Steuer, A.E.; Raeber, J.; Steuer, C.; Boxler, M.I.; Dornbierer, D.A.; Bosch, O.G.; Quednow, B.B.; Seifritz, E.; Kraemer, T. Identification of new urinary gamma-hydroxybutyric acid markers applying untargeted metabolomics analysis following placebo-controlled administration to humans. Drug Test. Anal. 2019, 11, 813–823. [Google Scholar] [CrossRef]
- Bijlsma, L.; Gil-Solsona, R.; Hernández, F.; Sancho, J.V. What about the herb? A new metabolomics approach for synthetic cannabinoid drug testing. Anal. Bioanal. Chem. 2018, 410, 5107–5112. [Google Scholar] [CrossRef]
- Schiffman, C.; Petrick, L.; Perttula, K.; Yano, Y.; Carlsson, H.; Whitehead, T.; Metayer, C.; Hayes, J.; Rappaport, S.; Dudoit, S. Filtering procedures for untargeted LC-MS metabolomics data. BMC Bioinform. 2019, 20, 334. [Google Scholar] [CrossRef] [Green Version]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Manier, S.K.; Keller, A.; Schäper, J.; Meyer, M.R. Untargeted metabolomics by high resolution mass spectrometry coupled to normal and reversed phase liquid chromatography as a tool to study the in vitro biotransformation of new psychoactive substances. Sci. Rep. 2019, 9, 2741. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Xu, M.; Zhong, F.; Crist, M.C.; Prior, A.B.; Yang, K.; Allaire, D.M.; Choueiry, F.; Zhu, J.; Shi, H. A Multi-Omics Study Revealing the Metabolic Effects of Estrogen in Liver Cancer Cells HepG2. Cells 2021, 10, 455. [Google Scholar] [CrossRef]
- Ruiz-Aracama, A.; Peijnenburg, A.; Kleinjans, J.; Jennen, D.; van Delft, J.; Hellfrisch, C.; Lommen, A. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genom. 2011, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Patti, G.J. Separation strategies for untargeted metabolomics. J. Sep. Sci. 2011, 34, 3460–3469. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, B.; Priego-Capote, F.; de Castro, M.D.L. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. TrAC Trends Anal. Chem. 2010, 29, 111–119. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, B.; Priego-Capote, F.; de Castro, M.D.L. Metabolomics analysis II. Preparation of biological samples prior to detection. TrAC Trends Anal. Chem. 2010, 29, 120–127. [Google Scholar] [CrossRef]
- Bonner, R.; Hopfgartner, G. SWATH data independent acquisition mass spectrometry for metabolomics. TrAC Trends Anal. Chem. 2019, 120, 115278. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Z.; Lehmann, R.; Zhao, C.; Xu, G. The Application of Chromatography-Mass Spectrometry: Methods to Metabonomics. Chromatographia 2009, 69, 23–32. [Google Scholar] [CrossRef]
- Boxler, M.I.; Schneider, T.D.; Kraemer, T.; Steuer, A.E. Analytical considerations for (un)-targeted metabolomic studies with special focus on forensic applications. Drug Test. Anal. 2019, 11, 678–696. [Google Scholar] [CrossRef]
- Åstrand, A.; Töreskog, A.; Watanabe, S.; Kronstrand, R.; Gréen, H.; Vikingsson, S. Correlations between metabolism and structural elements of the alicyclic fentanyl analogs cyclopropyl fentanyl, cyclobutyl fentanyl, cyclopentyl fentanyl, cyclohexyl fentanyl and 2,2,3,3-tetramethylcyclopropyl fentanyl studied by human hepatocytes and LC-. Arch. Toxicol. 2019, 93, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Wohlfarth, A.; Roman, M.; Andersson, M.; Kugelberg, F.C.; Diao, X.; Carlier, J.; Eriksson, C.; Wu, X.; Konradsson, P.; Josefsson, M.; et al. 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test. Anal. 2017, 9, 680–698. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, T.; Iwata, Y.T.; Segawa, H.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Inoue, H. Metabolism of fentanyl and acetylfentanyl in human-induced pluripotent stem cell-derived hepatocytes. Biol. Pharm. Bull. 2018, 41, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, T.; Togawa-Iwata, Y.; Segawa, H.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Inoue, H. Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: Application to the metabolism of fentanyl and acetylfentanyl. Forensic Toxicol. 2018, 36, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Gundersen, P.O.M.; Åstrand, A.; Gréen, H.; Josefsson, M.; Spigset, O.; Vikingsson, S. Metabolite Profiling of Ortho-, Meta- and Para-Fluorofentanyl by Hepatocytes and High-Resolution Mass Spectrometry. J. Anal. Toxicol. 2020, 44, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Salomone, A.; Gerace, E.; Brizio, P.; Gennaro, M.C.; Vincenti, M. A fast liquid chromatography-tandem mass spectrometry method for determining benzodiazepines and analogues in urine. Validation and application to real cases of forensic interest. J. Pharm. Biomed. Anal. 2011, 56, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Gerace, E.; Salomone, A.; Luciano, C.; Di Corcia, D.; Vincenti, M. First Case in Italy of Fatal Intoxication Involving the New Opioid U-47700. Front. Pharmacol. 2018, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.R.; Pearce, J.T.M.; Spagou, K.; Green, M.; Dona, A.C.; Yuen, A.H.Y.; David, M.; Berry, D.J.; Chappell, K.; Horneffer-van der Sluis, V.; et al. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS for Precision Large Scale Urinary Metabolic Phenotyping. Anal. Chem. 2016, 88, 9004–9013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler, I.; Giera, M.; Derks, R.J.E. The Rise of Hydrophilic Interaction Chromatography in Untargeted Clinical Metabolomics. LCGC Eur. 2016, 29, 60–75. [Google Scholar]
- Wu, X.; Huang, Y.; Sun, J.; Wen, Y.; Qin, F.; Zhao, L.; Xiong, Z. A HILIC-UHPLC–MS/MS untargeted urinary metabonomics combined with quantitative analysis of five polar biomarkers on osteoporosis rats after oral administration of Gushudan. J. Chromatogr. B 2018, 1072, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, Y.; Subramanian, R. Comparison of Information-Dependent Acquisition, SWATH, and MS All Techniques in Metabolite Identification Study Employing Ultrahigh-Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chem. 2014, 86, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 10 August 2021).
- Alladio, E. SpectrApp. Available online: https://www.spectrapp.unito.it/app/spectrapp (accessed on 10 August 2021).
- Wise, B.M.; Gallagher, N.B.; Bro, R.; Shaver, J.M.; Windig, W.; Koch, R.S. PLS_Toolbox 8.0; SilverBow Resources, Inc.: Houston, TX, USA. Available online: https://eigenvector.com/software/pls-toolbox/ (accessed on 10 August 2021).
- Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 2018, 14, 72. [Google Scholar] [CrossRef] [Green Version]
- Tugizimana, F.; Steenkamp, P.; Piater, L.; Dubery, I. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps. Metabolites 2016, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 265–299. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Sjostrom, M. SIMCA: A method for analysing chemical data in terms of similarity and analogy. In Chemometrics, Theory and Application; Kowalski, B.R., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1977; Volume 52, p. 243. ISBN 13 9780841203792. [Google Scholar] [CrossRef]
- Cocchi, M.; Vigni, M.L.; Durante, C. Chemometrics—Bioinformatics. In Food Authentication; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 481–518. [Google Scholar]
- Kanik, E.A.; Orekici Temel, G.; Erdogan, S.; Ersoz Kaya, I. Affected States Soft Independent Modeling by Class Analogy from the Relation Between Independent Variables, Number of Independent Variables and Sample Size. Balkan Med. J. 2013, 30, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.J.; Emery, S.L.; Glen, W.G.; Scott, D.R. Preprocessing, variable selection, and classification rules in the application of SIMCA pattern recognition to mass-spectral data. Environ. Sci. Technol. 1989, 23, 1499–1505. [Google Scholar] [CrossRef]
- Bilel, S.; Azevedo, N.; Arfè, R.; Tirri, M.; Gregori, A.; Serpelloni, G.; De-Giorgio, F.; Frisoni, P.; Neri, M.; Calò, G.; et al. In vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology 2020, 171, 108110. [Google Scholar] [CrossRef]
- Pérez-Mañá, C.; Papaseit, E.; Fonseca, F.; Farré, A.; Torrens, M.; Farré, M. Drug Interactions With New Synthetic Opioids. Front. Pharmacol. 2018, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amante, E.; Alladio, E.; Rizzo, R.; Di Corcia, D.; Negri, P.; Visintin, L.; Guglielmotto, M.; Tamagno, E.; Vincenti, M.; Salomone, A. Untargeted Metabolomics in Forensic Toxicology: A New Approach for the Detection of Fentanyl Intake in Urine Samples. Molecules 2021, 26, 4990. https://doi.org/10.3390/molecules26164990
Amante E, Alladio E, Rizzo R, Di Corcia D, Negri P, Visintin L, Guglielmotto M, Tamagno E, Vincenti M, Salomone A. Untargeted Metabolomics in Forensic Toxicology: A New Approach for the Detection of Fentanyl Intake in Urine Samples. Molecules. 2021; 26(16):4990. https://doi.org/10.3390/molecules26164990
Chicago/Turabian StyleAmante, Eleonora, Eugenio Alladio, Rebecca Rizzo, Daniele Di Corcia, Pierre Negri, Lia Visintin, Michela Guglielmotto, Elena Tamagno, Marco Vincenti, and Alberto Salomone. 2021. "Untargeted Metabolomics in Forensic Toxicology: A New Approach for the Detection of Fentanyl Intake in Urine Samples" Molecules 26, no. 16: 4990. https://doi.org/10.3390/molecules26164990
APA StyleAmante, E., Alladio, E., Rizzo, R., Di Corcia, D., Negri, P., Visintin, L., Guglielmotto, M., Tamagno, E., Vincenti, M., & Salomone, A. (2021). Untargeted Metabolomics in Forensic Toxicology: A New Approach for the Detection of Fentanyl Intake in Urine Samples. Molecules, 26(16), 4990. https://doi.org/10.3390/molecules26164990