Biofilm Medium Chemistry and Calcium Oxalate Morphogenesis
Abstract
:1. Introduction
2. Results
2.1. The Precipitate Phase Composition and the Morphology of Calcium Oxalate Crystals
2.1.1. Syntheses without Additives
2.1.2. Syntheses with the Addition of Environmental Ions
2.1.3. Syntheses with the Addition of Organic Acids
2.1.4. Syntheses with the Addition of Citric Acid + Environmental Ions
2.1.5. Syntheses with Citric Acid; Addition of Organic Acids and K+, Mg2+, Fe3+, SO42− and PO43− Ions
2.2. Crystal Chemistry Characterization of Synthesized Weddellites
3. Discussion
3.1. The Influence of Medium Chemistry on the Formation of Weddellite and the Content of Zeolite Water in It
- -
- Organic acids (fumaric + malic, succinic + malic, fumaric + succinic + malic);
- -
- Environmental ions (CO32−, Mg2+ + SO42− + CO32−, K+ + PO43− + Sr2+, K+ + Mg2+ + Fe2+ + SO42− + PO43− + CO32−);
- -
- Environmental ions (K+ + Mg2+ + Fe2+ + SO42− + PO43− + CO32−) simultaneously with either of the combinations of organic acids: fumaric, succinic, malic, fumaric + succinic, malic + fumaric, malic + succinic; or malic + succinic + fumaric.
3.2. The Influence of pH on Weddellite Formation and Its Characteristic
3.3. The Influence of Biofilm Additives on the Morphology of Calcium Oxalates
- Single dipyramidal or dipyramidal–prismatic crystals.
- Skeletal crystals with a flattened dipyramid.
- Regular intergrowths.
3.4. Mechanisms of the Interaction of Additives with Crystallizing Calcium Oxalates
4. Materials and Methods
4.1. Synthesis
4.2. Methods
4.2.1. X-ray Powder Diffraction (XRPD)
4.2.2. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDXS) Spectroscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Synthesis No. | Additives in Solution * | pH | ||
---|---|---|---|---|
Organic Acids | Environmental Ions | Initial | Final | |
Without additives | ||||
1 | - | - | 6.36 | 6.46 |
Environmental ions only | ||||
2 | - | K+, Mg2+, SO42− | 6.82 | 6.79 |
3 | - | K+, Mg2+, Fe3+, SO42−, PO43− | 5.02 | 4.94 |
Organic acids only | ||||
4 | citric | - | 5.01 | 5.35 |
5 | citric | - | 5.56 | 6.20 |
6 | citric | - | 6.06 | 6.90 |
7 | citric | - | 8.60 | 7.48 |
8 | citric, malic | - | 5.25 | 5.47 |
9 | citric, fumaric, malic | - | 4.52 | 4.62 |
10 | citric, fumaric, succinic, malic | - | 4.46 | 4.57 |
11 | citric, succinic, malic | - | 4.45 | 4.56 |
12 | fumaric, succinic, malic | - | 5.82 | 6.17 |
Citric acid + environmental ions | ||||
13 | citric | K+ | 5.82 | 5.62 |
14 | citric | Mg2+ | 4.32 | 4.90 |
15 | citric | Mg2+ | 6.5 | 5.61 |
16 | citric | Fe3+ | 4.01 | 4.60 |
17 | citric | Fe3+ | 5.00 | 5.22 |
18 | citric | Fe3+ | 5.48 | 5.88 |
19 | citric | Fe3+ | 6.07 | 7.01 |
20 | citric | CO32− | 4.78 | 5.34 |
21 | citric | K+, PO43− | 4.18 | 4.82 |
22 | citric | Mg2+, SO42− | 5.06 | 5.36 |
23 | citric | Mg2+, CO32− | 6.00 | 5.15 |
24 | citric | Fe3+, SO42− | 4.62 | 4.72 |
25 | citric | K+, Mg2+, PO43− | 4.78 | 5.32 |
26 | citric | Mg2+, SO42−, CO32− | 5.72 | 6.46 |
27 | citric | K+, Mg2+, PO43− | 6.50 | 5.01 |
28 | citric | K+, Sr2+, PO43− | 6.50 | 6.81 |
29 | citric | K+, Mg2+, SO42−, PO43− | 4.90 | 6.75 |
30 | citric | K+, Mg2+, Fe3+, SO42−, PO43− | 4.73 | 6.45 |
31 | citric | K+, Mg2+, Fe2+, SO42−, PO43−, CO32− | 4.91 | 5.62 |
Organic acid combinations and K+, Mg2+, Fe3+, SO42−, PO43− ions | ||||
32 | citric, fumaric | K+, Mg2+, Fe3+, SO42−, PO43− | 4.66 | 5.09 |
33 | citric, succinic | K+, Mg2+, Fe3+, SO42−, PO43− | 4.64 | 5.01 |
34 | citric, malic | K+, Mg2+, Fe3+, SO42−, PO43− | 4.87 | 5.84 |
35 | citric, fumaric, succinic | K+, Mg2+, Fe3+, SO42−, PO43− | 4.78 | 5.21 |
36 | citric, malic, fumaric | K+, Mg2+, Fe3+, SO42−, PO43− | 4.69 | 5.17 |
37 | citric, malic, succinic | K+, Mg2+, Fe3+, SO42−, PO43− | 4.72 | 5.20 |
38 | citric, malic, fumaric, succinic | K+, Mg2+, Fe3+, SO42−, PO43− | 4.67 | 5.21 |
Synthesis No. (Table A1) | Wd Content via XRPD, wt% | Weddellite Characterization | |||
---|---|---|---|---|---|
a, Å | c, Å | CSD, Å | x, apfu * | ||
Without additives | |||||
1 | 0 | - | - | - | - |
Environmental ions only | |||||
2 | 0 | - | - | - | - |
3 | 3 | no data | no data | no data | no data |
Organic acids only | |||||
4 | 100 | 12.342(1) | 7.352(1) | 104(1) | 0.22 |
5 | 100 | 12.374(1) | 7.359(1) | 107(2) | 0.39 |
6 | 100 | 12.339(1) | 7.359(1) | 157(3) | 0.20 |
7 | 100 | 12.312(2) | 7.343(1) | 72(1) | 0.05 |
8 | 75 | 12.329(1) | 7.352(1) | 75(1) | 0.15 |
9 | 39 | 12.346(1) | 7.352(1) | 218(10) | 0.24 |
10 | 23 | 12.359(1) | 7.357(1) | 204(15) | 0.31 |
11 | 24 | 12.383(2) | 7.362(1) | 168(13) | 0.44 |
12 | 12 | 12.35(1) | 7.357(8) | 55(4) | 0.24 |
Citric acid + environmental ions | |||||
13 | 99 | 12.338(1) | 7.352(1) | 98(1) | 0.20 |
14 | 80 | 12.345(1) | 7.353(1) | 196(5) | 0.23 |
15 | 100 | 12.370(2) | 7.363(1) | 122(2) | 0.37 |
16 | 41 | 12.353(5) | 7.358(3) | 72(2) | 0.28 |
17 | 100 | 12.348(1) | 7.353(1) | 158(2) | 0.25 |
18 | 100 | 12.334(1) | 7.350(1) | 140(2) | 0.17 |
19 | 100 | 12.317(3) | 7.348(2) | 70(1) | 0.08 |
20 | 23 | 12.351(3) | 7.357(2) | 115(6) | 0.27 |
21 | 76 | 12.358(1) | 7.353(1) | 195(4) | 0.30 |
22 | 61 | 12.348(1) | 7.355(1) | 131(3) | 0.25 |
23 | 88 | 12.351(1) | 7.356(1) | 267(7) | 0.27 |
24 | 63 | 12.360(1) | 7.355(1) | 186(6) | 0.31 |
25 | 62 | 12.349(1) | 7.352(1) | 188(5) | 0.26 |
26 | 27 | 12.367(6) | 7.357(3) | 76(6) | 0.35 |
27 | 98 | 12.350(1) | 7.357(1) | 202(4) | 0.26 |
28 | 22 | 12.376(1) | 7.368(1) | 148(6) | 0.40 |
29 | 89 | 12.356(1) | 7.354(1) | 118(2) | 0.29 |
30 | 100 | 12.354(1) | 7.353(1) | 66(1) | 0.28 |
31 | 9 | 12.367(11) | 7.366(6) | 77(8) | 0.35 |
Organic acid combinations and K+, Mg2+, Fe3+, SO42− and PO43− ions | |||||
32 | 17 | 12.354(4) | 7.356(2) | 128(9) | 0.28 |
33 | 15 | 12.362(4) | 7.356(2) | 158(19) | 0.33 |
34 | 20 | 12.339(1) | 7.530(1) | 207(14) | 0.20 |
35 | 21 | 12.341(9) | 7.352(5) | 75(4) | 0.21 |
36 | 9 | 12.376(16) | 7.366(9) | 52(5) | 0.40 |
37 | 16 | 12.348(8) | 7.358(4) | 87(6) | 0.25 |
38 | 23 | 12.352(3) | 7.356(2) | 121(6) | 0.27 |
No. (Table A1 and Table A2) | Ca | Mg | Fe | Sr | K | Na | Σ Cations | P | S | Cl |
---|---|---|---|---|---|---|---|---|---|---|
1 | 32.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
2 | 30.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.1 |
3 | 36.7 | 0.0 | 1.7 | 0.0 | 0.2 | 0.1 | 2.0 | 1.3 | 0.2 | 0.1 |
4 | 37.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
13 | 27.5 | 0.0 | 0.0 | 0.0 | 0.4 | 0.1 | 0.5 | 0.0 | 0.0 | 0.1 |
14 | 33.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
15 | 22.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.0 | 0.0 | 0.1 |
16 | 34.9 | 0.0 | 0.2 | 0.0 | 0.0 | 0.1 | 0.3 | 0.0 | 0.0 | 0.1 |
17 | 41.3 | 0.0 | 0.4 | 0.0 | 0.0 | 0.2 | 0.6 | 0.0 | 0.0 | 0.1 |
18 | 29.7 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.1 |
19 | 41.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.2 | 0.5 | 0.0 | 0.0 | 0.1 |
21 | 34.8 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | 0.0 | 0.0 | 0.1 |
22 | 40.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 |
23 | 19.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.1 |
24 | 35.1 | 0.0 | 0.3 | 0.0 | 0.0 | 0.1 | 0.4 | 0.0 | 0.1 | 0.1 |
25 | 33.5 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | 0.1 | 0.0 | 0.1 |
27 | 24.9 | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.0 | 0.0 | 0.1 |
28 | 22.5 | 0.0 | 0.0 | 2.1 | 0.0 | 0.1 | 2.3 | 0.0 | 0.0 | 0.1 |
29 | 34.9 | 0.1 | 0.0 | 0.0 | 0.4 | 0.3 | 0.8 | 3.0 | 1.4 | 0.1 |
30 | 31.2 | 0.2 | 0.3 | 0.0 | 0.4 | 0.4 | 1.3 | 2.8 | 1.5 | 0.1 |
32 | 44.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 |
33 | 48.5 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 |
34 | 35.9 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 |
35 | 38.3 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
36 | 33.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
37 | 36.8 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
38 | 31.5 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
References
- Marques, J.; Gonçalves, J.; Oliveira, C.; Favero-Longo, S.E.; Paz-Bermúdez, G.; Almeida, R.; Prieto, B. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments. Ecology 2016, 97, 2844–2857. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, D.Y.; Frank-Kamenetskaya, O.V.; Zelenskaya, M.S.; Sazanova, K.V.; Rusakov, A.V.; Izatulina, A.R. The use of Aspergillus niger in modelling of modern mineral formation in lithobiotic systems. In Aspergillus Niger Pathogenicity, Cultivation and Uses; Baughan, E., Ed.; Nova Science Publishers: New York, NY, USA, 2020; ISBN 978-1-53618-080-0. [Google Scholar]
- Rampazzi, L. Calcium oxalate films on works of art: A review. J. Cult. Herit. 2019, 40, 195–214. [Google Scholar] [CrossRef]
- Gadd, G.M.; Bahri-Esfahani, J.; Li, Q.; Rhee, Y.J.; Wei, Z.; Fomina, M.; Liang, X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014, 28, 36–55. [Google Scholar] [CrossRef]
- Baran, E.J. Review: Natural oxalates and their analogous synthetic complexes. J. Coord. Chem. 2014, 67, 3734–3768. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Zelenskaya, M.S.; Manurtdinova, V.V.; Izatulina, A.R.; Rusakov, A.V.; Vlasov, D.Y.; Frank-Kamenetskaya, O.V. Accumulation of Elements in Biodeposits on the Stone Surface in Urban Environment. Case Studies from Saint Petersburg, Russia. Microorganisms 2021, 9, 36. [Google Scholar] [CrossRef]
- Rusakov, A.V.; Frank-Kamenetskaya, O.V.; Zelenskaya, M.S.; Vlasov, D.Y.; Gimelbrant, D.E.; Knauf, I.V.; Plotkina, Y.V. Calcium oxalates in biofilms on surface of the chersonesus archaeological limestone monuments (Crimea). Zap. Rmo (Proc. Russ. Mineral. Soc. Russ.) 2010, 5, 96–104. [Google Scholar]
- Frank-Kamenetskaya, O.V.; Ivanyuk, G.Y.; Zelenskaya, M.S.; Izatulina, A.R.; Kalashnikov, A.O.; Vlasov, D.J.; Polyanskaya, E.I. Calcium Oxalates in Lichens on Surface of Apatite-Nepheline Ore (Kola Peninsula, Russia). Minerals 2019, 9, 656. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Tang, J.; Gao, S. Characterization and origin of weathering crusts on Kylin carved-stone, Kylin countryside, Nanjing—A case study. J. Cult. Herit. 2010, 11, 228–232. [Google Scholar] [CrossRef]
- Vazquez-Calvo, C.; Alvarez De Buergo, M.; Fort, R.; De Los Rios, A. Detection of calcium phosphates in calcium oxalate patinas. Eur. J. Mineral. 2012, 24, 1031–1045. [Google Scholar] [CrossRef]
- Bonazza, A.; Natali, C.; Ghedini, N.; Vaccaro, C.; Sabbioni, C. Oxalate patinas on stone monuments in Venetian Lagoon: Characterization and origin. Int. J. Archir. Herit. 2015, 9, 542–552. [Google Scholar] [CrossRef]
- Benzzi, K.; Tanouti, B.; Bouabdelli, M.; Alvarez, A.; Brianso, J.L.; Cherradi, F. Determination of the composition and the origin of the ochre brown patina on the monumental Bab Agnaou gate (Marrakech, Morocco). Environ. Geol. 2008, 53, 1283–1288. [Google Scholar] [CrossRef]
- Campos-Suñol, M.J.; Domínguez-Vidal, A.; Ayora-Cañada, M.J.; De La Torre-López, M.J. Renaissance patina sin Ubeda (Spain): Mineralogic, petrographic and spectroscopic study. Anal. Bioanal. Chem. 2008, 391, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Sturm, E.V.; Frank-Kamenetskaya, O.V.; Vlasov, D.Y.; Zelenskaya, M.S.; Sazanova, K.V.; Rusakov, A.V.; Kniep, R. Crystallization of calcium oxalate hydrates by interaction of calcite marble with fungus Aspergillus niger. Am. Mineral. 2015, 100, 2559–2565. [Google Scholar] [CrossRef]
- Rusakov, A.V.; Vlasov, A.D.; Zelenskaya, M.S.; Frank-Kamenetskaya, O.V.; Vlasov, D.Y. The crystallization of calcium oxalate hydrates formed by interaction between microorganisms and minerals. In Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems; Frank-Kamenetskaya, O., Panova, E., Vlasov, D., Eds.; Lecture Notes in Earth System Sciences; Springer: Cham, Switzerland, 2016; pp. 357–377. [Google Scholar] [CrossRef]
- Wiedemann, H.G.; Bayer, G. Formation of whewellite and weddellite by displacement reactions. In Proceedings of the Internationla Symposium “The Oxalate Films: Origin and Significancein the Concervation of Works of Art”; Alessandrini, G., Ed.; Gino Bozza: Milan, Italy, 1989; pp. 127–135. [Google Scholar]
- Conti, C.; Brambilla, L.; Colombo, C.; Dellasega, D.; Gatta, G.D.; Realini, M.; Zerbi, G. Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 14560–14566. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Frank-Kamenetskaya, O.V.; Vlasov, D.Y.; Zelenskaya, M.S.; Vlasov, A.D.; Rusakov, A.V.; Petrova, M. Carbonate and oxalate crystallization by interaction of calcite marble with Bacillus subtilis and Bacillus subtilis–Aspergillus niger association. Crystals 2020, 10, 756. [Google Scholar] [CrossRef]
- Zelenskaya, M.S.; Rusakov, A.V.; Frank-Kamenetskaya, O.V.; Vlasov, D.J.; Izatulina, A.R.; Kuz’mina, M.A. Crystallization of calcium oxalate hydrates by interaction of apatites and fossilized tooth tissue with fungus Aspergillus niger. In Abiogenic Interactions in Natural and Anthropogenic Systems; Lecture Notes in Earth System Sciences; Springer: Cham, Switzerland, 2016; pp. 581–604. [Google Scholar]
- Izatulina, A.R.; Gurzhiy, V.V.; Frank-Kamenetskaya, O.V. Weddellite from renal stones: Structure refinement and dependence of crystal chemicalfeatures on H2O content. Am. Mineral. 2014, 99, 2–7. [Google Scholar] [CrossRef]
- Frank-Kamenetskaya, O.V.; Izatulina, A.R.; Kuz’mina, M.A. Ion Substitutions, non-stoichiometry, and formation conditions of oxalate and phosphate minerals of the human body. In Abiogenic Interactions in Natural and Anthropogenic Systems; Lecture Notes in Earth System Sciences; Springer: Cham, Switzerland, 2016; pp. 425–442. [Google Scholar]
- Kuz’mina, M.A.; Rusakov, A.V.; Frank-Kamenetskaya, O.V.; Vlasov, D.Y. The Influence of Inorganic and Organic Components of Biofilms with Microscopic Fungi on the Phase Composition and Morphology of Crystallizing Calcium Oxalates. Crystallogr. Rep. 2019, 64, 161–167. [Google Scholar] [CrossRef]
- Rusakov, A.V.; Kuzmina, M.A.; Izatulina, A.R.; Frank-Kamenetskaya, O.V. Synthesis and Characterization of (Ca,Sr)[C2O4]·nH2O Solid Solutions: Variations of Phase Composition, Crystal Morphologies and in Ionic Substitutions. Crystals 2019, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Rusakov, A.V.; Frank-Kamenetskaya, O.V.; Gurzhii, V.V.; Zelenskaya, M.S.; Izatulina, A.R.; Sazanova, K.V. Refinement of the Crystal Structures of Biomimetic Weddellites Produced by Microscopic Fungus Aspergillus niger. Crystallogr. Rep. 2014, 59, 405–411. [Google Scholar] [CrossRef]
- Punin, J.O.; Shtukenberg, A.G. Self-Deformation Defects of Crystals; SPbU: St. Petersburg, Russia, 2008; 316p. (In Russian) [Google Scholar]
- Novosel, B.; Tezak, B.; Cular-Elijas, Z.; Haramincic, A.; Jakopovic, V.; Ryznar, B.; Stiglic, M.; Vidas, M. The behaviour of precipitating systems of Mg, Ca, Sr, Ba, Mn and Zn-oxalates in aqueous and in ethanol medium at the room temperature. Colloid Polym. Sci. 1976, 254, 412–416. [Google Scholar] [CrossRef]
- Barinova, K.V.; Shchiparev, D.Y.; Vlasov, S.M. Formation of organic acids by fungi isolated from the surface of stone monuments. Mikol. Fitopatol. 2010, 44, 137. [Google Scholar]
- Bruker, A.X.S. Topas V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data; User’s Manual; Bruker AXS GmbH: Karlsruhe, Germany, 2009. [Google Scholar]
- Zuzuk, F.V. Urinary Calculus Mineralogy; Volynsk State University: Luzk, Ukraine, 2003; Chapter 2; 507p. (In Ukranian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusakov, A.; Kuz’mina, M.; Frank-Kamenetskaya, O. Biofilm Medium Chemistry and Calcium Oxalate Morphogenesis. Molecules 2021, 26, 5030. https://doi.org/10.3390/molecules26165030
Rusakov A, Kuz’mina M, Frank-Kamenetskaya O. Biofilm Medium Chemistry and Calcium Oxalate Morphogenesis. Molecules. 2021; 26(16):5030. https://doi.org/10.3390/molecules26165030
Chicago/Turabian StyleRusakov, Aleksei, Maria Kuz’mina, and Olga Frank-Kamenetskaya. 2021. "Biofilm Medium Chemistry and Calcium Oxalate Morphogenesis" Molecules 26, no. 16: 5030. https://doi.org/10.3390/molecules26165030
APA StyleRusakov, A., Kuz’mina, M., & Frank-Kamenetskaya, O. (2021). Biofilm Medium Chemistry and Calcium Oxalate Morphogenesis. Molecules, 26(16), 5030. https://doi.org/10.3390/molecules26165030