A Newly Developed HPLC-UV/Vis Method Using Chemical Derivatization with 2-Naphthalenethiol for Quantitation of Sulforaphane in Rat Plasma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation
2.2.1. Linearity and Calibration Curve
2.2.2. Accuracy and Precision
2.2.3. Recovery and Matrix Effect
2.2.4. Stability
2.3. In Vivo Pharmacokinetics Study
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Equipment
3.3. Preparation of the Stock Solution and Working Solutions
3.4. Calibration Standards and Quality Control (QC) Samples
3.5. SFN Extraction from Rat Plasma and Chemical Derivatization with 2-NT
3.6. Derivatives Confirmation by ESI Mass Spectrometry
3.7. Chromatographic Conditions to Quantify SFN in Rat Plasma
3.8. Method Validation
3.9. In Vivo Pharmacokinetic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nakagawa, K.; Umeda, T.; Higuchi, O.; Tsuzuki, T.; Suzuki, T.; Miyazawa, T. Evaporative light-scattering analysis of sulforaphane in broccoli samples: Quality of broccoli products regarding sulforaphane contents. J. Agric. Food Chem. 2006, 54, 2479–2483. [Google Scholar] [CrossRef] [PubMed]
- Matusheski, N.V.; Wallig, M.A.; Juvik, J.A.; Klein, B.P.; Kushad, M.M.; Jeffery, E.H. Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea. J. Agric. Food Chem. 2001, 49, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, S.M.; Royce, S.G.; Licciardi, P.V.; Karagiannis, T.C. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid. Redox Signal. 2015, 22, 1382–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, K.L.; Kong, A.N. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010, 12, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 2010, 16, 2580–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Atkinson, S.J.; Akbareian, S.E.; Zhou, Z.; Munsterberg, A.; Robinson, S.D.; Bao, Y. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1alpha/VEGF signalling. Sci. Rep. 2017, 7, 12651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, M.; Spagnuolo, C.; Russo, G.L.; Skalicka-Wozniak, K.; Daglia, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Nabavi, S.M. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit. Rev. Food Sci. Nutr. 2018, 58, 1391–1405. [Google Scholar] [CrossRef] [PubMed]
- Budnowski, J.; Hanschen, F.S.; Lehmann, C.; Haack, M.; Brigelius-Flohe, R.; Kroh, L.W.; Blaut, M.; Rohn, S.; Hanske, L. A derivatization method for the simultaneous detection of glucosinolates and isothiocyanates in biological samples. Anal. Biochem. 2013, 441, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.; Elbarbry, F. A new validated HPLC method for the determination of sulforaphane: Application to study pharmacokinetics of sulforaphane in rats. Biomed. Chromatogr. 2016, 30, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Campas-Baypoli, O.N.; Sanchez-Machado, D.I.; Bueno-Solano, C.; Ramirez-Wong, B.; Lopez-Cervantes, J. HPLC method validation for measurement of sulforaphane level in broccoli by-products. Biomed. Chromatogr. 2010, 24, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.A.; Ennahar, S.; Zhao, M.; Bergaentzle, M.; Marchioni, E.; Bindler, F. Simultaneous Determination of Various Isothiocyanates by RP-LC Following Precolumn Derivatization with Mercaptoethanol. Chromatographia 2011, 73, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Perles, R.; Medina, S.; Moreno, D.A.; Garcia-Viguera, C.; Ferreres, F.; Gil-Izquierdo, A. A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chem. 2014, 143, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.A.; Ennahar, S.; Marchioni, E.; Bergaentzle, M.; Bindler, F. Improvement in determination of isothiocyanates using high-temperature reversed-phase HPLC. J. Sep. Sci. 2012, 35, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Hamdamali, M.; Aryanasab, F.; Shabanian, M. 2-Naphthalenthiol derivatization followed by dispersive liquid-liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography. J. Chromatogr. A 2018, 1558, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, N.; Coldham, N.; Gielbert, A.; Kuhnert, N.; Sauer, M.J.; King, L.J.; Ioannides, C. Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br. J. Nutr. 2008, 99, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Dinkova-Kostova, A.T.; Wade, K.L.; Zhang, Y.; Shapiro, T.A.; Talalay, P. Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: Pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin. Chim. Acta 2002, 316, 43–53. [Google Scholar] [CrossRef]
- Kamal, M.M.; Nazzal, S. Development and validation of a HPLC-UV method for the simultaneous detection and quantification of paclitaxel and sulforaphane in lipid based self-microemulsifying formulation. J. Chromatogr. Sci. 2020, 57, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Sangthong, S.; Weerapreeyakul, N. Simultaneous quantification of sulforaphene and sulforaphane by reverse phase HPLC and their content in Raphanus sativus L. var. caudatus Alef extracts. Food Chem. 2016, 201, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Row, K.H. Separation and purification of sulforaphane from broccoli by solid phase extraction. Int. J. Mol. Sci. 2011, 12, 1854–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Calibration Curve | R2 | Linear Range (µg/mL) | LOD | LLOQ |
---|---|---|---|---|
y = 2.2502x + 0.0499 | 0.9995 | 0.01~2.0 | 0.0028 | 0.0091 |
Spike Amount (µg/mL) | Intra-Day (RSD, %) 1 | Inter-Day (RSD, %) | Intra-Day (Accuracy, %) 2 | Inter-Day (Accuracy, %) |
---|---|---|---|---|
0.01 | 7.95 | 8.14 | 93.41 ± 6.41 | 94.21 ± 7.14 |
0.03 | 7.27 | 7.69 | 92.15 ± 6.71 | 91.97 ± 8.19 |
0.8 | 3.04 | 3.41 | 100.17 ± 3.27 | 100.83 ± 3.57 |
2.0 | 1.57 | 2.22 | 98.94 ± 2.11 | 99.09 ± 2.58 |
Component | Spike Amount (µg/mL) | Recovery 1 | Matrix Effect 2 | Process Efficiency 3 |
---|---|---|---|---|
SFN | 0.03 | 85.31 ± 4.94 | −2.87 ± 0.14 | 82.35 ± 5.89 |
0.8 | 86.71 ± 1.24 | −2.99 ± 0.16 | 84.10 ± 2.71 | |
2.0 | 87.41 ± 0.47 | −2.37 ± 0.13 | 85.91 ± 0.83 | |
IS | 0.5 | 80.27 ± 2.18 | −2.58 ± 0.21 | 78.14 ± 2.61 |
Condition Tested | 0.03 µg/mL | 0.8 µg/mL | 2 µg/mL | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | RSD 1 (%) | RE 2 (%) | Mean | RSD (%) | RE (%) | Mean | RSD (%) | RE (%) | |
Short-term stability | |||||||||
Freeze-thaw (−80 °C, 3 cycle) | 0.028 | 3.74 | −7.67 | 0.797 | 2.91 | −0.38 | 2.013 | 1.84 | 0.65 |
Refrigerator (4 °C, 1 day) | 0.025 | 3.12 | −17.67 | 0.589 | 3.17 | −26.38 | 1.731 | 1.56 | −13.45 |
Freezer (−20 °C, 1 day) | 0.027 | 3.39 | −10.00 | 0.703 | 2.67 | −12.13 | 1.959 | 1.58 | −2.05 |
Freezer (−80 °C, 1 day) | 0.033 | 2.95 | 9.67 | 0.751 | 3.10 | −6.13 | 2.003 | 0.87 | 0.15 |
post-preparative stability (4 °C, 1 day) | 0.030 | 2.34 | −1.00 | 0.792 | 2.36 | −1.00 | 2.084 | 1.41 | 4.20 |
post-preparative stability (4 °C, 1 week) | 0.031 | 3.49 | 4.33 | 0.862 | 2.81 | 7.75 | 2.002 | 2.10 | 0.10 |
Long-term stability | |||||||||
Freezer (−80 °C, 30 days) | 0.032 | 3.81 | 7.00 | 0.780 | 2.90 | −2.50 | 1.777 | 1.59 | −11.15 |
Freezer (−20 °C, 30 days) | 0.024 | 2.67 | −19.67 | 0.768 | 3.13 | −4.00 | 1.726 | 2.88 | −13.70 |
Parameters | 10 mg/kg | 20 mg/kg |
---|---|---|
AUC0–12h (μg·h/mL) | 4.88 ± 0.89 | 9.85 ± 1.37 |
AUC0–∞h (μg·h/mL) | 6.25 ± 1.59 | 12.42 ± 2.36 |
AUMC (0–12 h) | 21.85 ± 5.11 | 44.57 ± 7.42 |
MRT (0–12 h) (h) | 4.45 ± 0.24 | 4.51 ± 0.13 |
t1/2 (h) | 5.05 ± 0.91 | 5.47 ± 0.56 |
Tmax (h) | 1.00 ± 0.00 | 1.00 ± 0.00 |
CLz/F (L/h/kg) | 1.67 ± 0.44 | 1.65 ± 0.32 |
Vz/F (L/kg) | 11.83 ± 0.93 | 12.84 ± 1.14 |
Cmax (μg/mL) | 0.92 ± 0.09 | 1.67 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.-O.; Park, K. A Newly Developed HPLC-UV/Vis Method Using Chemical Derivatization with 2-Naphthalenethiol for Quantitation of Sulforaphane in Rat Plasma. Molecules 2021, 26, 5473. https://doi.org/10.3390/molecules26185473
Shin K-O, Park K. A Newly Developed HPLC-UV/Vis Method Using Chemical Derivatization with 2-Naphthalenethiol for Quantitation of Sulforaphane in Rat Plasma. Molecules. 2021; 26(18):5473. https://doi.org/10.3390/molecules26185473
Chicago/Turabian StyleShin, Kyong-Oh, and Kyungho Park. 2021. "A Newly Developed HPLC-UV/Vis Method Using Chemical Derivatization with 2-Naphthalenethiol for Quantitation of Sulforaphane in Rat Plasma" Molecules 26, no. 18: 5473. https://doi.org/10.3390/molecules26185473
APA StyleShin, K.-O., & Park, K. (2021). A Newly Developed HPLC-UV/Vis Method Using Chemical Derivatization with 2-Naphthalenethiol for Quantitation of Sulforaphane in Rat Plasma. Molecules, 26(18), 5473. https://doi.org/10.3390/molecules26185473