Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies
Abstract
:1. Introduction
2. Stable Isotope Labeling of RNA Building Blocks
2.1. Commercial Isotopes Sources
2.2. Biomass Labeling
2.2.1. Biomass Uniform Labeling
2.2.2. Biomass Atom-Specific Labeling
2.3. Ribonucleotide De Novo Biosynthesis
2.3.1. Purine De Novo Biosynthesis
2.3.2. Pyrimidine De Novo Biosynthesis
2.4. Chemo-Enzymatic Labeling
2.5. RNA Phosphoramidite Labeling
3. RNA Preparation Methods
3.1. Chemical Solid-Phase RNA Synthesis
3.2. T7 RNA Polymerase-Based In Vitro Transcription
5′-End Sequences a | 5′-End Heterogeneity (<1%) |
---|---|
GGG | No |
GAG | No |
GCG | No |
GUG | Yes |
GGA | Yes |
GAA | Yes |
GCA b | Yes |
GUA | Yes |
GGC | No |
GAC | Yes |
GCC | No |
GUC | Yes |
GGU | No |
GAU | Yes |
GCU | Yes |
GUU | Yes |
AGG | No |
AAG | Yes |
ACG | Yes |
AUG b | Yes |
AGA | No |
AAA | No |
ACA | No |
AUA | No |
AGC | Yes |
AAC | No |
ACC | No |
AUC | No |
AGU b | Yes |
AAU | No |
ACU | Yes |
AUU | Yes |
3.3. Enzymatic Ligation
3.3.1. T4 DNA and RNA Ligation
3.3.2. Segmental RNA Labeling
3.4. Enzymatic Position-Specific RNA Labeling
3.4.1. Position-Selective Labeling of RNA (PLOR)
3.4.2. Chemo-Enzymatic Position-Specific Labeling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambrost, V. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Mironov, A.S.; Gusarov, I.; Rafikov, R.; Lopez, L.E.; Shatalin, K.; Kreneva, R.A.; Perumov, D.A.; Nudler, E. Sensing small molecules by nascent RNA: A mechanism to control transcription in bacteria. Cell 2002, 111, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Winkler, W.; Nahvi, A.; Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002, 419, 952–956. [Google Scholar] [CrossRef]
- Grundy, F.J.; Henkin, T.M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 1993, 74, 475–482. [Google Scholar] [CrossRef]
- Steitz, T.A.; Steitz, J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 1993, 90, 6498–6502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, K.; Grabowski, P.J.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-Splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Sequence of Tetrahymena. Cell 1982, 31, 147–157. [Google Scholar] [CrossRef]
- Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983, 35, 849–857. [Google Scholar] [CrossRef]
- Zappulla, D.C.; Cech, T.R. RNA as a flexible scaffold for proteins: Yeast telomerase and beyond. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Yik, J.H.N.; Chen, R.; Nishimura, R.; Jennings, J.L.; Link, A.J.; Zhou, Q. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 2003, 12, 971–982. [Google Scholar] [CrossRef]
- D’Souza, V.; Summers, M.F. How retroviruses select their genomes. Nat. Rev. Microbiol. 2005, 3, 643–655. [Google Scholar] [CrossRef]
- Tycowski, K.T.; Guo, Y.E.; Lee, N.; Moss, W.N.; Vallery, T.K.; Xie, M.; Steitz, J.A. Viral noncoding RNAs: More surprises. Genes Dev. 2015, 29, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Ganser, L.R.; Kelly, M.L.; Herschlag, D.; Al-Hashimi, H.M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 2019, 20, 25–27. [Google Scholar] [CrossRef]
- Marušič, M.; Schlagnitweit, J.; Petzold, K. RNA Dynamics by NMR Spectroscopy. ChemBioChem 2019, 20, 1–27. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Q. Characterizing excited conformational states of RNA by NMR spectroscopy. Curr. Opin. Struct. Biol. 2015, 30, 134–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, R.M.; Longhini, A.P.; Tugarinov, V.; Dayie, T.K. NMR probing of invisible excited states using selectively labeled RNAs. J. Biomol. NMR 2018, 71, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Strebitzer, E.; Nußbaumer, F.; Kremser, J.; Tollinger, M.; Kreutz, C. Studying sparsely populated conformational states in RNA combining chemical synthesis and solution NMR spectroscopy. Methods 2018, 148, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Wijmenga, S.S.; Buuren, B.N.M. Van The use of NMR methods for conformational studies of nucleic acids. Prog. Nucl. Magn. Reson. Spectrosc. 1998, 32, 287–387. [Google Scholar] [CrossRef]
- Dayie, K.T. Key labeling technologies to tackle sizeable problems in RNA structural biology. Int. J. Mol. Sci. 2008, 9, 1214–1240. [Google Scholar] [CrossRef] [Green Version]
- Tolbert, T.J.; Williamson, J.R. Preparation of specifically deuterated and 13C-labeled RNA for NMR studies using enzymatic synthesis. J. Am. Chem. Soc. 1997, 119, 12100–12108. [Google Scholar] [CrossRef]
- Lu, K.; Miyazaki, Y.; Summers, M.F. Isotope labeling strategies for NMR studies of RNA. J. Biomol. NMR 2010, 46, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Nikonowicz, E.P.; Sirr, A.; Legault, P.; Jucker, F.M.; Baer, L.M.; Pardi, A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992, 20, 4507–4513. [Google Scholar] [CrossRef] [Green Version]
- Batey, R.T.; Inada, M.; Kujawinski, E.; Puglisi, J.D.; Williamson, J.R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992, 20, 4515–4523. [Google Scholar] [CrossRef]
- Barnwal, R.P.; Yang, F.; Varani, G. Applications of NMR to structure determination of RNAs large and small. Arch. Biochem. Biophys. 2017, 628, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Milligan, J.; Groebe, D.; Whherell, G.; Uhlenbeck, O. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987, 15, 8783–8798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milligan, J.F.; Uhlenbeck, O.C. Synthesis of Small RNAs Using T7 RNA Polymerase. Methods Enzymol. 1989, 180, 51–62. [Google Scholar] [PubMed]
- Schultheisz, H.L.; Szymczyna, B.R.; Scott, L.G.; Williamson, J.R. Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem. Biol. 2008, 3, 499–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultheisz, H.L.; Szymczyna, B.R.; Scott, L.G.; Williamson, J.R. Enzymatic de novo pyrimidine nucleotide synthesis. J. Am. Chem. Soc. 2011, 133, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SantaLucia, J.; Shen, L.X.; Cai, Z.; Lewis, H.; Tinoco, I. Synthesis and NMR of RNA with selective isotopic enrichment in the bases. Nucleic Acids Res. 1995, 23, 4913–4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado, L.J.; LeBlanc, R.M.; Longhini, A.P.; Keane, S.C.; Jain, N.; Yildiz, Z.F.; Tolbert, B.S.; D’Souza, V.M.; Summers, M.F.; Kreutz, C.; et al. Regio-Selective Chemical-Enzymatic Synthesis of Pyrimidine Nucleotides Facilitates RNA Structure and Dynamics Studies. ChemBioChem 2014, 15, 1573–1577. [Google Scholar] [CrossRef] [Green Version]
- Longhini, A.P.; Leblanc, R.M.; Becette, O.; Salguero, C.; Wunderlich, C.H.; Johnson, B.A.; D’souza, V.M.; Kreutz, C.; Dayie, T.K. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Res. 2015, 44, 52. [Google Scholar] [CrossRef]
- Ogilvie, K.K.; Theriault, N.; Sadana, K.L. Synthesis of Oligoribonucleotides. J. Am. Chem. Soc. 1977, 99, 7741–7743. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, K.K.; Sadana, K.L.; Thompson, E.A.; Quilliam, M.A.; Westmore, J.B. The use of silyl groups in protecting the hydroxyl functions of ribonucleosides. Tetrahedron Lett. 1974, 15, 2861–2863. [Google Scholar] [CrossRef]
- Reese, C.B. The Chemical Synthesis of Oligo- and Poly-ribonucleotides. In Nucleic Acids and Molecular Biology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 164–181. [Google Scholar] [CrossRef]
- Beaucage, S.L.; Reese, C.B. Recent advances in the chemical synthesis of RNA. In Current Protocols in Nucleic Acid Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 38, pp. 2.16.1–2.16.31. [Google Scholar] [CrossRef]
- Becette, O.; Olenginski, L.T.; Dayie, T.K. Solid-phase chemical synthesis of stable isotope-labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules 2019, 24, 3476. [Google Scholar] [CrossRef] [Green Version]
- Abbreviations and Symbols for the Description of Conformations of Polynucleotide Chains: Recommendations 1982. Eur. J. Biochem. 1983, 131, 9–15. [CrossRef]
- Markley, J.L.; Bax, A.; Arata, Y.; Hilbers, C.W.; Kaptein, R.; Sykes, B.D.; Wright, P.E.; Wüthrich, K. Recommendations for the presentation of NMR structures of proteins and nucleic acids. J. Mol. Biol. 1998, 280, 933–952. [Google Scholar] [CrossRef]
- Weickhmann, A.K.; Keller, H.; Duchardt-Ferner, E.; Strebitzer, E.; Juen, M.A.; Kremser, J.; Wurm, J.P.; Kreutz, C.; Wöhnert, J. NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine. Biomol. NMR Assign. 2018, 12, 329–334. [Google Scholar] [CrossRef]
- Weickhmann, A.K.; Keller, H.; Wurm, J.P.; Strebitzer, E.; Juen, M.A.; Kremser, J.; Weinberg, Z.; Kreutz, C.; Duchardt-Ferner, E.; Wöhnert, J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res. 2019, 47, 2654–2665. [Google Scholar] [CrossRef] [Green Version]
- Hoard, D.E.; Ott, D.G. Conversion of Mono-and Oligodeoxyribonucleotides to 5′-Triphosphates1. J. Am. Chem. Soc. 1965, 87, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.S.; Grabowski, S.; Whitesides, G.M. Convenient Syntheses of Cytidine 5′-Triphosphate, Guanosine 5′-Triphosphate, and Uridine 5′-Triphosphate and Their Use in the Preparation of UDP-glucose, UDP-glucuronic Acid, and GDP-mannose. J. Org. Chem. 1990, 55, 1834–1841. [Google Scholar] [CrossRef]
- Michnicka, M.J.; King, G.C.; Harper, J.W. Selective Isotopic Enrichment of Synthetic RNA: Application to the HIV-1 TAR Element. Biochemistry 1993, 32, 395–400. [Google Scholar] [CrossRef]
- Thakur, C.S.; Dayie, T.K. Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. J. Biomol. NMR 2012, 52, 65–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeMaster, D.M.; Kushlan, D.M. Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J. Am. Chem. Soc. 1996, 118, 9255–9264. [Google Scholar] [CrossRef]
- Hines, J.V.; Landry, S.M.; Varani, G.; Tinoco, I. Carbon-Proton Scalar Couplings in RNA: 3D Heteronuclear and 2D Isotope-Edited NMR of a 13C-Labeled Extra-Stable Hairpin. J. Am. Chem. Soc. 1994, 116, 5823–5831. [Google Scholar] [CrossRef]
- Hoffman, D.W.; Holland, J.A. Preparation of carbon-13 labeled ribonucleotides using acetate as an isotope source. Nucleic Acids Res. 1995, 23, 3361–3362. [Google Scholar] [CrossRef]
- Fraenkel, D.G. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J. Bacteriol. 1968, 95, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.E.; Julien, K.R.; Hoogstraten, C.G. Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA. J. Biomol. NMR 2006, 35, 261–274. [Google Scholar] [CrossRef]
- Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber. 1981, 114, 1234–1255. [Google Scholar] [CrossRef]
- Földesi, A.; Nilson, F.P.R.; Glemarec, C.; Gioeli, C.; Chattopadhyaya, J. Synthesis of 1′,2′,3′,4′,5′,5″-2H6-β-D-ribonucleosides and 1′, 2′,2″,3′,4′,5′,5″-2H7-β-D-2′-deoxyribonucleosides for selective suppression of proton resonances in partially-deuterated oligo-DNA, oligo-RNA and in 2,5A core (1H-NMR window). Tetrahedron 1992, 48, 9033–9072. [Google Scholar] [CrossRef]
- Toyama, A.; Takino, Y.; Takeuchi, H.; Harada, I. Ultraviolet Resonance Raman Spectra of Ribosyl C(1′)-Deuterated Purine Nucleosides: Evidence of Vibrational Coupling between Purine and Ribose Rings. J. Am. Chem. Soc. 1993, 115, 11092–11098. [Google Scholar] [CrossRef]
- Cook, G.P.; Greenberg, M.M. A General Synthesis of C2′-Deuteriated Ribonucleosides. J. Org. Chem. 1994, 59, 4704–4706. [Google Scholar] [CrossRef]
- Kline, P.C.; Serianni, A.S. 13C-Enriched Ribonucleosides: Synthesis and Application of 13C-1H and 13C-13C Spin-Coupling Constants ToAssess Furanose and A-Glycoside Bond Conformations. J. Am. Chem. Soc. 1990, 112, 7373–7381. [Google Scholar] [CrossRef]
- Lunn, F.A.; MacDonnell, J.E.; Bearne, S.L. Structural requirements for the activation of Escherichia coli CTP synthase by the allosteric effector GTP are stringent, but requirements for inhibition are lax. J. Biol. Chem. 2008, 283, 2010–2020. [Google Scholar] [CrossRef] [Green Version]
- Arthur, P.K.; Alvarado, L.J.; Dayie, T.K. Expression, purification and analysis of the activity of enzymes from the pentose phosphate pathway. Protein Expr. Purif. 2011, 76, 229–237. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, R.M.; Longhini, A.P.; Le Grice, S.F.J.; Johnson, B.A.; Dayie, T.K. Combining asymmetric 13C-labeling and isotopic filter/edit NOESY: A novel strategy for rapid and logical RNA resonance assignment. Nucleic Acids Res. 2017, 45, e146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olenginski, L.T.; Dayie, T.K. Chemo-enzymatic synthesis of [2-13C, 7-15N]-ATP for facile NMR analysis of RNA. Mon. für Chem. 2020, 151, 1467–1473. [Google Scholar] [CrossRef]
- Taiwo, K.M.; Becette, O.B.; Zong, G.; Chen, B.; Zavalij, P.Y.; Dayie, T.K. Chemo-enzymatic synthesis of 13C- and 19F-labeled uridine-5′-triphosphate for RNA NMR probing. Mon. für Chem.-Chem. Mon. 2021, 1, 3. [Google Scholar] [CrossRef]
- Zhang, W.; Turney, T.; Surjancev, I.; Serianni, A.S. Enzymatic synthesis of ribo- and 2′-deoxyribonucleosides from glycofuranosyl phosphates: An approach to facilitate isotopic labeling. Carbohydr. Res. 2017, 449, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Longhini, A.; Nußbaumer, F.; Kreutz, C.; Dinman, J.; Dayie, T.K. CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding. Chem.-A Eur. J. 2018, 24, 5462–5468. [Google Scholar] [CrossRef]
- Wenter, P.; Pitsch, S. Synthesis of Selectively15N-Labeled 2′-O-{[(Triisopropylsilyl)oxy]methyl}(=tom)-Protected Ribonucleoside Phosphoramidites and Their Incorporation into a Bistable 32Mer RNA Sequence. Helv. Chim. Acta 2003, 86, 3955–3974. [Google Scholar] [CrossRef]
- Zhang, X.; Gaffney, B.L.; Jones, R.A. 15N NMR of a Specifically Labeled RNA Fragment Containing Intrahelical GU Wobble Pairs. J. Am. Chem. Soc. 1997, 119, 6432–6433. [Google Scholar] [CrossRef]
- Zhang, X.; Gaffney, B.L.; Jones, R.A. 15N NMR of RNA fragments containing specifically labeled GU and GC pairs. J. Am. Chem. Soc. 1998, 120, 615–618. [Google Scholar] [CrossRef]
- Shallop, A.J.; Gaffney, B.L.; Jones, R.A. Use of Both Direct and Indirect 13C Tags for Probing Nitrogen Interactions in Hairpin Ribozyme Models by 15N NMRI. Nucleosides Nucleotides Nucleic Acids 2004, 23, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, B.L.; Jones, R.A. Regioselective 2′-Silylation of Purine Ribonucleosides for Phosphoramidite RNA Synthesis. Curr. Protoc. Nucleic Acid Chem. 2001, 6, 2.8.1–2.8.13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuner, S.; Kreutz, C.; Micura, R. The synthesis of 15N(7)-Hoogsteen face-labeled adenosine phosphoramidite for solid-phase RNA synthesis. Mon. für Chem. 2017, 148, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Neuner, S.; Santner, T.; Kreutz, C.; Micura, R. The “speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA. Chem.-A Eur. J. 2015, 21, 11634–11643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremser, J.; Strebitzer, E.; Plangger, R.; Juen, M.A.; Nußbaumer, F.; Glasner, H.; Breuker, K.; Kreutz, C. Chemical synthesis and NMR spectroscopy of long stable isotope labelled RNA. Chem. Commun. 2017, 53, 12938–12941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juen, M.A.; Wunderlich, C.H.; Nußbaumer, F.; Tollinger, M.; Kontaxis, G.; Konrat, R.; Hansen, D.F.; Kreutz, C. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angew. Chem. Int. Ed. 2016, 55, 12008–12012. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, C.H.; Spitzer, R.; Santner, T.; Fauster, K.; Tollinger, M.; Kreutz, C. Synthesis of (6-13C)pyrimidine nucleotides as spin-labels for RNA dynamics. J. Am. Chem. Soc. 2012, 134, 7558–7569. [Google Scholar] [CrossRef]
- D’Souza, V.; Dey, A.; Habib, D.; Summers, M.F. NMR structure of the 101-nucleotide core encapsidation signal of the moloney murine leukemia virus. J. Mol. Biol. 2004, 337, 427–442. [Google Scholar] [CrossRef]
- Zhang, K.; Keane, S.C.; Su, Z.; Irobalieva, R.N.; Chen, M.; Van, V.; Sciandra, C.A.; Marchant, J.; Heng, X.; Schmid, M.F.; et al. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 2018, 26, 490–498.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keane, S.C.; Heng, X.; Lu, K.; Kharytonchyk, S.; Ramakrishnan, V.; Carter, G.; Barton, S.; Hosic, A.; Florwick, A.; Santos, J.; et al. Structure of the HIV-1 RNA packaging signal. Science 2015, 348, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Marchant, J.; Bax, A.; Summers, M.F. Accurate Measurement of Residual Dipolar Couplings in Large RNAs by Variable Flip Angle NMR. J. Am. Chem. Soc. 2018, 140, 6978–6983. [Google Scholar] [CrossRef] [PubMed]
- Beaucage, S.L.; Caruthers, M.H. Deoxynucleoside phosphoramidites-A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981, 22, 1859–1862. [Google Scholar] [CrossRef]
- Scaringe, S.A.; Kitchen, D.; Kaiser, R.J.; Marshall, W.S. Preparation of 5′-silyl-2′-orthoester ribonucleosides for use in oligoribonucleotide synthesis. Curr. Protoc. Nucleic Acid Chem. 2004, 16, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.E.; Breaker, R.R.; Asteriadis, G.T.; deBear, J.S.; Gough, G.R. Rapid synthesis of oligoribonucleotides using 2′-O-(o-nitrobenzyloxymethyl)-protected monomers. Bioorg. Med. Chem. Lett. 1992, 2, 1019–1024. [Google Scholar] [CrossRef]
- Pitsch, S.; Weiss, P.; Jenny, L.; Stutz, A.; Wu, X. Reliable Chemical Synthesis of Oligoribonucleotides (RNA) with 2′-O-[(Triisopropylsilyl)oxy]methyl(2′-O-tom)-Protected Phosphoramidites. Helv. Chim. Acta 2001, 84, 3773–3795. [Google Scholar] [CrossRef]
- Shiba, Y.; Masuda, H.; Watanabe, N.; Ego, T.; Takagaki, K.; Ishiyama, K.; Ohgi, T.; Yano, J. Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2′-O-protecting group: Structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate. Nucleic Acids Res. 2007, 35, 3287–3296. [Google Scholar] [CrossRef]
- Krieg, P.A.; Melton, D.A. In Vitro RNA Synthesis with SP6 RNA Polymerase. Methods Enzymol. 1987, 155, 397–415. [Google Scholar] [CrossRef]
- Pokrovskaya, I.D.; Gurevich, V.V. In Vitro transcription: Preparative RNA yields in analytical scale reactions. Anal. Biochem. 1994, 220, 420–423. [Google Scholar] [CrossRef] [PubMed]
- William Studier, F.; Rosenberg, A.H.; Dunn, J.J.; Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990, 185, 60–89. [Google Scholar] [CrossRef]
- Coleman, T.M.; Wang, G.; Huang, F. Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res. 2004, 32, e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleiss, J.A.; Derrick, M.L.; Uhlenbeck, O.C. T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 1998, 4, 1313–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helm, M.; Brule, H.; Giege, R.; Florentz, C. More mistakes by T7 RNA polymerase at the 5′ ends of in vitro- transcribed RNAs. RNA 1999, 5, 618–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupp, G. RNA synthesis: Strategies for the use of bacteriophage RNA polymerases. Gene 1988, 72, 75–89. [Google Scholar] [CrossRef]
- Ferré-D’Amaré, A.R.; Doudna, J.A. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 1996, 24, 977–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosshans, C.A.; Cech, T.R. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3′ end blocked for transesterification. Nucleic Acids Res. 1991, 19, 3875–3880. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.; Zheng, M.; Rüdisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 1999, 5, 1268–1272. [Google Scholar] [CrossRef] [Green Version]
- Brieba, L.G.; Sousa, R. Roles of Histidine 784 and Tyrosine 639 in Ribose Discrimination by T7 RNA Polymerase. Biochemistry 2000, 39, 919–923. [Google Scholar] [CrossRef]
- Padilla, R.; Sousa, R. A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Res. 2002, 30, e138. [Google Scholar] [CrossRef]
- Sousa, R.; Padilla, R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995, 14, 4609–4621. [Google Scholar] [CrossRef] [PubMed]
- Kostyuk, D.A.; Dragan, S.M.; Lyakhov, D.L.; Rechinsky, V.O.; Tunitskaya, V.L.; Chernov, B.K.; Kochetkov, S.N. Mutants of T7 RNA polymerase that are able to synthesize both RNA and DNA. FEBS Lett. 1995, 369, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.Z.; Asahara, H.; Tzertzinis, G.; Roy, B. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. RNA 2020, 26, 345–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Yu, P.; Leproust, E.; Gao, X. An efficient and economic site-specific deuteration strategy for NMR studies of homologous oligonucleotide repeat sequences. Nucleic Acids Res. 1997, 25, 4758–4763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilleres, J.; Lopez, P.J.; Proux, F.; Launay, H.; Dreyfus, M. A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc. Natl. Acad. Sci. USA 2005, 102, 5958–5963. [Google Scholar] [CrossRef] [Green Version]
- Salvail-Lacoste, A.; Di Tomasso, G.; Piette, B.L.; Legault, P. Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags. RNA 2013, 19, 1003–1014. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.J.; Query, C.C. Joining of RNAs by splinted ligation. Methods Enzymol. 2000, 317, 109–123. [Google Scholar] [CrossRef]
- Porecha, R.; Herschlag, D. RNA radiolabeling. In Methods in Enzymology; Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 530, pp. 255–279. ISBN 9780124200371. [Google Scholar]
- Romaniuk, P.J.; Uhlenbeck, O.C. Joining of RNA molecules with RNA ligase. Methods Enzymol. 1983, 100, 52–59. [Google Scholar] [CrossRef]
- Bain, J.D.; Switzer, C. Regioselective ligation of oligoribonucleotides using DNA splints. Nucleic Acids Res. 1992, 20, 4372. [Google Scholar] [CrossRef] [Green Version]
- Stark, M.R.; Pleiss, J.A.; Deras, M.; Scaringe, S.A.; Rader, S.D. An RNA ligase-mediated method for the efficient creation of large, synthetic RNAs. RNA 2006, 12, 2014–2019. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Lukavsky, P.J.; Puglisi, J.D. NMR study of 100 kDa HCV IRES RNA, using segmental isotope labeling. J. Am. Chem. Soc. 2002, 124, 9338–9339. [Google Scholar] [CrossRef] [PubMed]
- Tzakos, A.G.; Easton, L.E.; Lukavsky, P.J. Complementary segmental labeling of large RNAs: Economic preparation and simplified NMR spectra for measurement of more RDCs. J. Am. Chem. Soc. 2006, 128, 13344–13345. [Google Scholar] [CrossRef]
- Nelissen, F.H.T.; van Gammeren, A.J.; Tessari, M.; Girard, F.C.; Heus, H.A.; Wijmenga, S.S. Multiple segmental and selective isotope labeling of large RNA for NMR structural studies. Nucleic Acids Res. 2008, 36, e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duss, O.; Maris, C.; Von Schroetter, C.; Dé, F.; Allain, H.-T. A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Res. 2010, 38, e188. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Holmstrom, E.; Zhang, J.; Yu, P.; Wang, J.; Dyba, M.A.; Chen, D.; Ying, J.; Lockett, S.; Nesbitt, D.J.; et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 2015, 522, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, P.; Dyba, M.; Sousa, R.; Stagno, J.R.; Wang, Y.X. Applications of PLOR in labeling large RNAs at specific sites. Methods 2016, 103, 4–10. [Google Scholar] [CrossRef]
- Stagno, J.R.; Yu, P.; Dyba, M.A.; Wang, Y.X.; Liu, Y. Heavy-atom labeling of RNA by PLOR for de novo crystallographic phasing. PLoS ONE 2019, 14, e0215555. [Google Scholar] [CrossRef]
- Liu, Y.; Holmstrom, E.; Yu, P.; Tan, K.; Zuo, X.; Nesbitt, D.J.; Sousa, R.; Stagno, J.R.; Wang, Y.X. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat. Protoc. 2018, 13, 987–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, M.; Liu, Y. Optimization and characterization of position-selective labelling of RNA (PLOR) for diverse RNA and DNA sequences. RNA Biol. 2020, 17, 1009–1017. [Google Scholar] [CrossRef]
- Martin, C.T.; Muller, D.K.; Coleman, J.E. Processivity in Early Stages of Transcription by T7 RNA Polymerase. Biochemistry 1988, 27, 3966–3974. [Google Scholar] [CrossRef] [PubMed]
- Imburgio, D.; Rong, M.; Ma, K.; McAllister, W.T. Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 2000, 39, 10419–10430. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, P.R.; Weitzmann, C.J.; Ofengand, J. SP6 RNA polymerase stutters when initiating from an AAA… sequence. Nucleic Acids Res. 1991, 19, 4669–4673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyhani, S.; Goldau, T.; Blümler, A.; Heckel, A.; Schwalbe, H. Chemo-Enzymatic Synthesis of Position-Specifically Modified RNA for Biophysical Studies including Light Control and NMR Spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 12017–12021. [Google Scholar] [CrossRef] [PubMed]
- Kappel, K.; Zhang, K.; Su, Z.; Watkins, A.M.; Kladwang, W.; Li, S.; Pintilie, G.; Topkar, V.V.; Rangan, R.; Zheludev, I.N.; et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 2020, 17, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zhang, K.; Kappel, K.; Li, S.; Palo, M.Z.; Pintilie, G.D.; Rangan, R.; Luo, B.; Wei, Y.; Das, R.; et al. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature 2021, 596, 603. [Google Scholar] [CrossRef] [PubMed]
- Seffernick, J.T.; Lindert, S. Hybrid methods for combined experimental and computational determination of protein structure. J. Chem. Phys. 2020, 153, 240901. [Google Scholar] [CrossRef]
- Shimada, I.; Ueda, T.; Kofuku, Y.; Eddy, M.T.; Wüthrich, K. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 2018, 18, 59–82. [Google Scholar] [CrossRef]
- Gauto, D.F.; Estrozi, L.F.; Schwieters, C.D.; Effantin, G.; Macek, P.; Sounier, R.; Sivertsen, A.C.; Schmidt, E.; Kerfah, R.; Mas, G.; et al. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 2019, 10, 2697. [Google Scholar] [CrossRef] [Green Version]
- Pratap Barnwal, R.; Loh, E.; Godin, K.S.; Yip, J.; Lavender, H.; Tang, C.M.; Varani, G. Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis. Nucleic Acids Res. 2016, 44, 9426–9437. [Google Scholar] [CrossRef] [Green Version]
Building Block | Price a ($) | Supplier b |
---|---|---|
Uniformly 2H-labeled rNTPs | ||
rNTP (N = A, C, G, or U) | 1300 | Silantes |
Selectively 2H-labeled rNTPs | ||
[3′,4′,5′,5″-2H4]-X (X = ATP or GTP) | 800 | CIL |
[2-2H]-ATP | 1200 | CIL |
[5,1′,2′,3′,4′,5′,5″-2H7]-CTP | 1800 | CIL |
[5,3′,4′,5′,5″-2H5]-Y- (CTP or UTP) | 800 | CIL |
[5,6-2H2]-CTP | 1800 | CIL |
[5,1′,2′,3′,4′,5′,5″-2H7]-UTP | 1400 | CIL |
Uniformly 13C-labeled rNTPs and Amidites | ||
rNTP (N = A, C, G, or U) | 1400 | Silantes |
N (N = A, C, G, or U Amidites) | 6600 | Silantes |
Selectively 13C-labeled rNTPs and Amidites | ||
[8-13C]- X (X = ATP or GTP) | 1400 | Silantes |
[8-13C]-A | 900 | Silantes |
[2,8-13C2]-A | 2700 | Silantes |
[8-13C]-G | 1000 | INNotope |
Selectively 2H/13C-labeled rNTPs and Amidites | ||
[6-13C-5-2H]- Y (Y = CTP or UTP) | 1600 | Silantes |
[6-13C-5-2H]-C or U | 1000 | INNotope |
Uniformly 15N-labeled rNTPs and Amidites | ||
rNTP (N = A, C, G, or U) | 900 | CIL |
A, or G, or C, or U | 1400 | Silantes |
Selectively 15N-labeled Amidites | ||
[1-15N]-A | 1000 | INNotope |
[1-15N]-G | 1100 | INNotope |
[3-15N]-C- or U | 1000 | Silantes |
[1,3-15N2]-C | 1200 | Silantes |
[1,3,4-15N3]-C | 1000 | INNotope |
[1,3-15N2]-U | 1000 | INNotope |
Uniformly 2H/15N-labeled rNTPs | ||
rNTP (N = A, C, G, or U) | 5600 | Silantes |
Uniformly 13C/15N-labeled rNTPs and Amidites | ||
rNTP (N = A, C, G, or U) | 1100 | CIL |
N (N = A, C, G, or U Amidites) | 5300 | Silantes |
Enzyme a | Gene | EC Number | PDB ID | Organism b |
---|---|---|---|---|
Hexokinase | hxk1/2 | 2.7.1.1 | 1HKG | Saccharomyces cerevisiae |
Glucokinase | glk | 2.7.1.2 | 1Q18 | Escherichia coli |
Glucose-6-phosphate dehydrogenase | zwf1 | 1.1.1.49 | 2BHL | Homo sapiens |
Phosphogluconate dehydrogenase | gndA | 1.1.1.44 | 2ZYA | Escherichia coli K-12 |
Ribose-5-phosphate isomerase | rpiA | 5.3.1.6 | 1O8B | Escherichia coli |
Ribose-phosphate diphosphate kinase | prsA | 2.7.6.1 | 3Q89 | Staphylococcus aureus |
Amido phosphoribosyl-transferase | purF | 2.4.2.14 | IECF | Escherichia coli |
Phosphoribosylamine-glycine ligase | purD | 6.3.4.13 | 5VEV | Neisseria gonnorhea |
Phosphoribosylglycinamide formyltransferase | purN | 2.1.2.2 | 3P9X | Bacillus halodurans |
Phosphoribosylformylglycinamidine synthase | purL | 6.3.5.3 | 1VK3 | Thermotoga maritima |
Phosphoribosylformylglycinamidine cyclo-ligase | purM | 6.3.3.1 | 5VK4 | Neisseria gonorrhoea |
Phosphoribosylamino-imidazole carboxylase (catalytic subunit) | purE | 4.1.1.21 | 4GRD | Burkholderia cenocepacia |
Phosphoribosylamino-imidazole carboxylase (ATPase subunit) | purK | 4.1.1.21 | 2Z04 | Aquifex aeolicus |
Phosphoribosylamino-imidazole-succinocarboxamide synthase | purC | 6.3.2.6 | 3NUA | Clostridium perfringens |
Adenylosuccinate lyase | purB | 4.3.2.2 | 3GZH | Escherichia coli |
Phosphoribosylamino-imidazole-carboxamide formyltransferase | purH | 2.1.2.3 | 1ZCZ | Thermotoga maritima |
Inosine-monophosphate cyclohydrolase | purH | 3.5.4.10 | 2IU0 | Gallus gallus |
Adenylosuccinate synthase | purA | 6.3.4.4 | 2J91 | Homo sapiens |
Inosine-monophosphate dehydrogenase | guaB | 1.1.1.205 | 1B30 | Homo sapiens |
Guanosine-monophosphate synthase | guaA | 6.3.5.2 | 2YWB | Thermus thermophilus |
Adenylate kinase | plsA | 2.7.4.3 | 1E4Y | Escherichia coli |
Creatine phosphokinase | ckmT | 2.7.3.2 | 2CRK | Oryctolagus cuniculus |
Guanylate kinase | spoR | 2.7.4.8 | 2ANC | Escherichia coli |
Glycine hydroxymethyltransferase | glyA | 2.1.2.1 | 5VMB | Acinetobacter baumannii |
Methylene-tetrahydrofolate dehydrogenase | folD | 1.5.1.5 | 1B0A | Escherichia coli K-12 |
Methenyl-tetrahydrofolate cyclohydrolase | folD | 3.5.4.9 | 5TCA | Homo sapiens |
Aspartate ammonia-lyase | aspA | 4.3.1.1 | 1JSW | Escherichia coli |
Glutamate dehydrogenase (NAD(P)+) | glud1/ghA | 1.4.1.3 | 4fcc | Escherichia coli |
Glutamine syntethase | glnA | 6.3.1.2 | 4IS4 | Medicago truncatula |
Inorganic diphosphatase | ppa | 3.6.1.1 | 1IPW | Escherichia coli |
Enzyme a | Gene | EC Number | PDB ID | Availability | Organism a |
---|---|---|---|---|---|
T7 RNA polymerase | 1 | 2.7.7.6 | 1ARO | Thermo Fisher Scientific | Escherichia coli |
T4 DNA ligase | 1.3 | 6.5.1.1 | 5WFY | Sigma-Aldrich | Escherichia coli |
T4 Polynucleotide kinase | pseT | 2.7.1.78 | 1LY1 | Thermo Fisher Scientific | Escherichia coli |
T4 RNA ligase | 63 | 6.5.1.3 | 5TT6 | Thermo Fisher Scientific | Escherichia coli |
Alkaline phosphatase | ALPL | 3.1.3.1 | 1K7H | New England Biolabs | Pandalus borealis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olenginski, L.T.; Taiwo, K.M.; LeBlanc, R.M.; Dayie, T.K. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021, 26, 5581. https://doi.org/10.3390/molecules26185581
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules. 2021; 26(18):5581. https://doi.org/10.3390/molecules26185581
Chicago/Turabian StyleOlenginski, Lukasz T., Kehinde M. Taiwo, Regan M. LeBlanc, and Theodore K. Dayie. 2021. "Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies" Molecules 26, no. 18: 5581. https://doi.org/10.3390/molecules26185581
APA StyleOlenginski, L. T., Taiwo, K. M., LeBlanc, R. M., & Dayie, T. K. (2021). Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules, 26(18), 5581. https://doi.org/10.3390/molecules26185581