Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration
Abstract
:1. Introduction
2. Principles of the Cryogelation Process
3. Overview of GAG-Based Cryogels
4. Preparation of GAG-Based Cryogels
4.1. Physical Crosslinking
4.2. Chemical Crosslinking
4.3. Specific Structural Features of GAG-Based Cryogels
4.4. Fabrication Aspects
5. Adjustable Application Properties of GAG-Based Cryogels
5.1. Porosity and Interconnectivity
5.2. Mechanical Properties
5.3. Anisotropic Morphology
5.4. Stimuli-Responsive Behavior
6. Applications of GAG-Based Cryogels as Scaffolds in Cell Culture and Tissue Engineering
6.1. Cell Culture
6.2. Cartilage Tissue Engineering
6.3. Skin Regeneration and Wound Healing
6.4. Nerve Reconstruction and Tissue Engineering
6.5. Further Cryogel Applications in Soft Tissue Regeneration
6.6. Tissue Engineering-Related Drug and Cell Release
6.6.1. Drugs and Bioactive Molecules
6.6.2. Cells
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozinsky, V.I. Cryogels on the basis of natural and synthetic polymers: Preparation, properties and application. Russ. Chem. Rev. 2002, 71, 489–511. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003, 21, 445–451. [Google Scholar] [CrossRef]
- Ashok Kumar, A.; Mishra, R.; Reinwald, Y.; Bhat, S. Cryogels: Freezing unveiled by thawing. Mater. Today 2010, 11, 42–44. [Google Scholar] [CrossRef]
- Gunko, V.M.; Savina, I.N.; Mikhalovsky, S.V. Cryogels: Morphological, structural and adsorption characterisation. Adv. Colloid Interf. Sci. 2013, 187–188, 1–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razavi, M.; Qiao, Y.; Thakor, A.S. Three-dimensional cryogels for biomedical applications. J. Biomed. Mater. Res. 2019, 107A, 2736–2755. [Google Scholar] [CrossRef]
- Bakhshpour, M.; Idil, N.; Perçin, I.; Denizli, A. Biomedical Applications of Polymeric Cryogels. Appl. Sci. 2019, 9, 553. [Google Scholar] [CrossRef] [Green Version]
- Hixon, K.R.; Lu, T.; Sell, S.A. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater. 2017, 62, 29–41. [Google Scholar] [CrossRef]
- Memic, A.; Colombani, T.; Eggermont, L.J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z.J.; Navare, K.J.; Mohammed, H.S.; Bencherif, S.A. Latest Advances in Cryogel Technology for Biomedical Applications. Adv. Therap. 2019, 2, 1800114. [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.M.A.; Ladewig, K.; Haylock, D.N.; McLean, K.M.; O’Connor, A.J. Cryogels for biomedical applications. J. Mater. Chem. B 2013, 1, 2682–2695. [Google Scholar] [CrossRef]
- Okay, O.; Lozinsky, V.I. Synthesis and structure-property relationships of cryogels. In Polymeric Cryogel, 1st ed.; Okay, O., Ed.; Springer: Cham, Switzerland, 2014; pp. 103–157. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [Green Version]
- Raina, D.B.; Kumar, A. Cryogels and Related Research—A Glance over the Past Few Decades. In Supermacropotous Cryogels: Biomedical and Biotechnological Applications, 1st ed.; Kumar, A., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 3–34. [Google Scholar] [CrossRef]
- Ström, A.; Larsson, A.; Okay, O. Preparation and physical properties of hyaluronic acid-based cryogels. J. Appl. Polym. Sci. 2015, 132, 42194. [Google Scholar] [CrossRef]
- Oelschlaeger, C.; Bossler, F.; Willenbacher, N. Synthesis, structural and micromechanical properties of 3D hyaluronic acid-based cryogel scaffolds. Biomacromolecules 2016, 17, 580–589. [Google Scholar] [CrossRef]
- Roether, J.; Bertels, S.; Oelschlaeger, C.; Bastmeyer, M.; Willenbacher, N. Microstructure, local viscoelasticity and cell culture suitability of 3D hybrid HA/collagen scaffolds. PLoS ONE 2018, 13, e0207397. [Google Scholar] [CrossRef] [Green Version]
- Suner, S.S.; Demirci, S.; Yetiskin, B.; Fakhrullin, R.; Naumenko, E.; Okay, O.; Ayyala, R.S.; Sahiner, N. Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. Int. J. Biol. Macromol. 2019, 130, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.M.A.; Ladewig, K.; Haylock, D.; McLean, K.M.; O’Connor, A.J. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform. J. Biomater. Sci. Polym. Ed. 2015, 26, 881–897. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-H.; Liao, H.-T.; Chen, J.-P. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies. Acta Biomater. 2013, 9, 9012–9026. [Google Scholar] [CrossRef]
- Chen, C.-H.; Kuo, C.-Y.; Wang, Y.-J.; Chen, J.-P. Dual Function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic henotype for cartilage tissue engineering. Int. J. Mol. Sci. 2016, 17, 1957. [Google Scholar] [CrossRef]
- Roether, J.; Oelschlaeger, C.; Willenbacher, N. Hyaluronic acid cryogels with non-cytotoxic crosslinker genipin. Mater. Lett. X 2019, 4, 100027. [Google Scholar] [CrossRef]
- Florczyk, S.J.; Wang, K.; Jana, S.; Wood, D.L.; Sytsma, S.K.; Sham, J.; Kievit, F.M.; Zhang, M. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 2013, 34, 10143–10150. [Google Scholar] [CrossRef] [Green Version]
- Kutlusoy, T.; Oktay, B.; Apohan, N.K.; Mediha, A.; Süleymanoglu, M.; Kuruca, S.E. Chitosan-co-Hyaluronic acid porous cryogels and their application in tissue engineering. Int. J. Biol. Macromol. 2017, 103, 366–378. [Google Scholar] [CrossRef]
- Simionescu, B.C.; Neamtu, A.; Balhui, C.; Danciu, M.; Ivanov, D.; David, G. Macroporous structures based on biodegradable polymers—Candidates for biomedical application. J. Biomed. Mater. Res. 2013, 101A, 2689–2698. [Google Scholar] [CrossRef]
- Reichelt, S.; Becher, J.; Weisser, J.; Prager, A.; Decker, U.; Möller, S.; Berg, A.; Schnabelrauch, M. Biocompatible polysaccharide-based cryogels. Mater. Sci. Eng. 2014, C35, 164–170. [Google Scholar] [CrossRef]
- Reichelt, S.; Naumov, S.; Knolle, W.; Prager, A.; Decker, U.; Becher, J.; Weisser, J.; Schnabelrauch, M. Studies on the formation and characterization of macroporous electron-beam generated hyaluronan cryogels. Radiat. Phys. Chem. 2014, 105, 69–77. [Google Scholar] [CrossRef]
- Thönes, S.; Kutz, L.M.; Oehmichen, S.; Becher, J.; Heymann, K.; Saalbach, A.; Knolle, W.; Schnabelrauch, M.; Reichelt, S.; Anderegg, U. New E-beam-initiated hyaluronan acrylate cryogels support growth and matrix deposition by dermal fibroblasts. Int. J. Biol. Macromol. 2017, 94, 611–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Ji, K.; Shih, T.-Y.; Haddad, A.; Giatsidis, G.; Mooney, D.J.; Orgill, D.P.; Nabzdyk, C.S. Injectable shape-memorizing three-dimensional hyaluronic acid cryogels for skin sculpting and soft tissue reconstruction. Tissue Eng. Part A 2017, 23, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Rezaeeyazdi, M.; Colombani, T.; Memic, A.; Bencherif, S.A. Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications. Materials 2018, 11, 1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavsanli, B.; Okay, O. Macroporous methacrylated hyaluronic acid cryogels of high mechanical strength and flow-dependent viscoelasticity. Carbohydr. Polym. 2020, 115458. [Google Scholar] [CrossRef]
- Qi, D.; Wu, S.; Kuss, M.A.; Shi, W.; Soonkyu Chung, S.; Paul, T.; Deegan, P.T.; Kamenskiy, A.; Yini He, Y.; Duan, B. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Acta Biomater. 2018, 131–142. [Google Scholar] [CrossRef]
- Zhou, D.; Shen, S.; Yun, J.; Yao, K.; Lin, D.-Q. Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications. Front. Front. Chem. Sci. Eng. 2012, 6, 339–347. [Google Scholar] [CrossRef]
- Fan, C.; Ling, Y.; Deng, W.; Xue, J.; Sun, P.; Wang, D.-A. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: A three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. Biomed. Mater. 2019, 14, 055006. [Google Scholar] [CrossRef]
- Tam, R.Y.; Fisher, S.A.; Baker, A.E.G.; Shoichet, M.S. Transparent porous polysaccharide cryogels provide biochemically defined, biomimetic matrices for tunable 3D cell culture. Chem. Mater. 2016, 28, 3762–3770. [Google Scholar] [CrossRef]
- Owen, S.C.; Fisher, S.A.; Tam, R.Y.; Nimmo, C.M.; Shoichet, M.S. Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir 2013, 29, 7393–7400. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-Y.; Chen, C.-H.; Hsiao, C.-Y.; Chen, J.-P. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Carbohydr. Polym. 2015, 117, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Kuo, C.-Y.; Chen, J.-P. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Int. J. Mol. Sci. 2018, 19, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Qian, G.; Chen, S.; Xu, D.; Zhao, X.; Du, C. A tracheal scaffold of gelatin-chondroitin sulfate-hyaluronan-polyvinyl alcohol with orientated porous structure. Carbohydr. Polym. 2017, 159, 20–28. [Google Scholar] [CrossRef]
- Han, M.-E.; Kang, B.J.; Kim, S.-H.; Kim, H.D.; Hwang, N.S. Gelatin-based extracellular matrix cryogels for cartilage tissue engineering. J. Ind. Eng. Chem. 2017, 45, 421–429. [Google Scholar] [CrossRef]
- Han, M.-E.; Kim, S.-H.; Kim, H.D.; Yim, H.-G.; Bencherif, S.A.; Kim, T.-I.; Hwang, N.S. Extracellular matrix-based cryogels for cartilage tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1410–1419. [Google Scholar] [CrossRef]
- Welzel, P.B.; Grimmer, M.; Renneberg, C.; Naujox, L.; Zschoche, S.; Freudenberg, U.; Werner, W. Macroporous StarPEG-Heparin Cryogels. Biomacromolecules 2012, 13, 2349–2358. [Google Scholar] [CrossRef]
- Borg, D.J.; Welzel, P.B.; Grimmer, M.; Friedrichs, J.; Weigelt, M.; Wilhelm, C.; Prewitz, M.; Stißel, A.; Hommel, A.; Kurth, T.; et al. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells. Acta Biomater. 2016, 44, 178–187. [Google Scholar] [CrossRef]
- Aliperta, R.; Welzel, P.B.; Bergmann, R.; Freudenberg, U.; Berndt, N.; Feldmann, A.; Arndt, C.; Koristka, S.; Stanzione, M.; Cartellieri, M.; et al. Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy. Sci. Rep. 2017, 7, 42855. [Google Scholar] [CrossRef] [Green Version]
- Schirmer, L.; Hoornaert, C.; Le Blon, D.; Eigel, D.; Neto, C.; Gumbleton, M.; Welzel, P.B.; Rosser, A.E.; Werner, C.; Ponsaerts, P.; et al. Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomater. Sci. 2020, 8, 4997–5004. [Google Scholar] [CrossRef]
- Newland, B.; Welzel, P.B.; Newland, H.; Renneberg, C.; Petr Kolar, P.; Tsurkan, M.; Rosser, A.; Freudenberg, U.; Werner, C. Tackling cell transplantation anoikis: An injectable, shape memory cryogel microcarrier platform material for stem cell and neuronal cell growth. Small 2015, 11, 5047–5053. [Google Scholar] [CrossRef] [Green Version]
- Newland, B.; Ehret, F.; Hoppe, F.; Eigel, D.; Pette, D.; Newland, H.; Welzel, P.B.; Kempermann, G.; Werner, C. Static and dynamic 3D culture of neural precursor cells on Macroporous cryogel microcarriers. MethodsX 2020, 7, 100805. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Lee, S.S.; Bae, S.; Lee, H.; Hwang, N.S. Heparin Functionalized Injectable Cryogel with Rapid Shape-Recovery Property for Neovascularization. Biomacromolecules 2018, 19, 2257–2269. [Google Scholar] [CrossRef]
- Kim, S.H.L.; Lee, S.S.; Kim, I.; Kwon, J.; Kwon, S.; Bae, T.; Hur, J.; Lee, H.; Hwang, N.S. Ectopic transient overexpression of OCT-4 facilitates BMP4-induced osteogenic transdifferentiation of human umbilical vein endothelial cells. J. Tissue Eng. 2020, 11. [Google Scholar] [CrossRef]
- Kim, I.; Lee, S.S.; Kim, S.H.L.; Bae, S.; Lee, H.; Hwang, N.S. Osteogenic Effects of VEGF-Overexpressed Human Adipose-Derived Stem Cells with Whitlockite Reinforced Cryogel for Bone Regeneration. Macromol. Biosci. 2019, 19, 1800460. [Google Scholar] [CrossRef]
- Sultankulov, B.; Berillo, D.; Kauanova, S.; Mikhalovsky, S.; Mikhalovska, L.; Saparov, A. Composite Cryogel with Polyelectrolyte Complexes for Growth Factor Delivery. Pharmaceutics 2019, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Huynh, C.; Shih, T.-Y.; Mammoo, A.; Samant, A.; Pathan, S.; Nelson, D.W.; Ferran, C.; Mooney, D.; LoGerfo, F.; Pradhan-Nabzdyk, L. Delivery of targeted gene therapies using a hybrid cryogel-coated prosthetic vascular graft. Peer J. 2019, 7, e7377. [Google Scholar] [CrossRef]
- Konovalova, M.V.; Markov, P.A.; Durnev, E.A.; Kurek, D.V.; Popov, S.V.; Varlamov, V.P. Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application. J. Biomed. Mater. Res. Pt A 2017, 105A, 547–556. [Google Scholar] [CrossRef]
- Ciolacu, D.; Rudaz, C.; Vasilescu, M.; Budtova, T. Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr. Polym. 2016, 151, 392–400. [Google Scholar] [CrossRef]
- Ghorpade, V.S. Preparation of hydrogels based on natural polymers via chemical reaction and cross-linking. In Hydrogels Based on Natural Polymers; Chen, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 91–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 615665. [Google Scholar] [CrossRef] [PubMed]
- Becher, J.; Möller, S.; Schnabelrauch, M. Phase transfer-catalyzed synthesis of highly acrylated hyaluronan. Carbohydr. Polym. 2013, 93, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, C.M.; Owen, S.C.; Shoichet, M.S. Diels-Alder Click Cross-Linked Hyaluronic Acid Hydrogels for Tissue Engineering. Biomacromolecules 2011, 12, 824–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, A.; Peters, F.; Schnabelrauch, M. Biodegradable (meth)acrylate-based adhesives for surgical applications. In Biological Adhesive Systems: From Nature to Technical and Medical Application; von Byern, J., Grunwald, I., Eds.; Springer: Wien, Austria, 2010; pp. 261–272. [Google Scholar] [CrossRef]
- Hwang, Y.; Zhang, C.; Varghese, S. Poly(ethylene glycol) cryogels as potential cell scaffolds: Effect of polymerization conditions on cryogel microstructure and properties. J. Mater. Chem. 2010, 20, 345–351. [Google Scholar] [CrossRef]
- Reichelt, S.; Abe, C.; Hainich, S.; Knolle, W.; Decker, U.; Prager, A.; Konieczny, R. Electron-beam derived polymeric cryogels. Soft Matter 2013, 9, 2484–2492. [Google Scholar] [CrossRef]
- Naumov, S.; Knolle, W.; Becher, J.; Schnabelrauch, M.; Reichelt, S. Electron-beam generated porous dextran gels: Experimental and quantum chemical studies. Electron-beam generated porous dextran gels: Experimental and quantum chemical studies. Int. J. Radiat. Biol. 2014, 90, 503–511. [Google Scholar] [CrossRef]
- Fisher, J.P.; Dean, D.; Engel, P.S.; Mikos, A.G. Photoinitiated Polymerization of Biomaterials. Annu. Rev. Mater. Res. 2001, 31, 171–181. [Google Scholar] [CrossRef]
- Ifkovits, J.L.; Burdick, J.A. Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. Tiss. Eng. 2007, 13, 2369–2385. [Google Scholar] [CrossRef]
- Tomal, W.; Ortyl, J. Water-Soluble Photoinitiators in Biomedical Applications. Polymers 2020, 12, 1073. [Google Scholar] [CrossRef]
- Luan, T.; Wu, L.; Zhang, H.; Wang, Y. A study on the nature of intermolecular links in the cryotropic weak gels of hyaluronan. Carbohydr. Polym. 2012, 87, 2076–2085. [Google Scholar] [CrossRef]
- Setayeshmehr, M.; Esfandiari, E.; Rafieinia, M.; Hashemibeni, B.; Taheri-Kafrani, A.; Ali Samadikuchaksaraei, A.; Kaplan, D.L.; Moroni, L.; Joghataei, M.T. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering. Tissue Eng. Part B 2019, 25, 202–224. [Google Scholar] [CrossRef]
- Savina, I.N.; Gun’ko, V.M.; Turov, V.V.; Dainiak, M.; Phillips, G.J.; Galaev, I.Y.; Mikhalovsky, S.V. Porous structure and water state in cross-linked polymer and protein cryo-hydrogels. Soft Matter 2011, 7, 4276–4283. [Google Scholar] [CrossRef]
- Tessmar, J.K.V.; Holland, T.A.; Mikos, A.G. Salt Leaching for Polymer Scaffolds: Laboratory-Scale Manufacture of Cell Carriers. In Scaffolding in Tissue Engineering, 1st ed.; Ma, P.X., Elisseeff, J., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 111–124. [Google Scholar]
- Chen, V.J.; Ma, P.X. Polymer Phase Separation. In Scaffolding in Tissue Engineering, 1st ed.; Ma, P.X., Elisseeff, J., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 125–137. [Google Scholar]
- Huang, Y.-C.; Mooney, D.J. Gas Foaming to Fabricate Polymer Scaffolds I Tissue Enginnering. In Scaffolding in Tissue Engineering, 1st ed.; Ma, P.X., Elisseeff, J., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 155–167. [Google Scholar]
- Hutmacher, D.W. Design and Fabrication of Scaffolds via Solid Free-Form Fababrication. In Biodegradable Systems in Tissue Engineering and Regenerative Medicine, 1st ed.; Reis, R.L., San Roman, J., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 67–90. [Google Scholar] [CrossRef]
- Tripathi, A.; Melo, J.S. Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J. Chem. Sci. 2019, 131, 92. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, R.V.; Lozinsky, V.I.; Noh, S.K.; Lee, Y.R.; Han, S.S.; Lyoo, W.S. Preparation and characterization of polyacrylamide cryogels produced from a high-molecular-weight precursor. II. The influence of the molecular weight of the polymeric precursor. J. Appl. Polym. Sci. 2008, 107, 382–390. [Google Scholar] [CrossRef]
- Van Vlierberghe, S.; Dubruel, P.; Lippens, E.; Cornelissen, M.; Schacht, E. Correlation between Cryogenic Parameters and Physico-Chemical Properties of Porous Gelatin Cryogels. J. Biomater. Sci. Polym. Ed. 2009, 20, 1417–1438. [Google Scholar] [CrossRef] [PubMed]
- Memic, M.; Rezaeeyazdi, M.; Villard, P.; Rogers, Z.J.; Abudula, T.; Colombani, T.; Bencherif, S.A. Effect of Polymer Concentration on Autoclaved Cryogel Properties. Macromol. Mater. Eng. 2020, 1900824. [Google Scholar] [CrossRef]
- Singh, A.; Parvaiz, A.S.; Das, M.; Seppälä, J.; Kumar, A. Aligned Chitosan-Gelatin Cryogel-Filled Polyurethane Nerve Guidance Channel for Neural Tissue Engineering: Fabrication, Characterization, and In Vitro Evaluation. Biomacromolecules 2019, 20, 662–673. [Google Scholar] [CrossRef]
- Parhi, R. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Adv. Pharm. Bull. 2017, 7, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, A.; Despang, F.; Lode, A.; Demmler, A.; Hanke, T.; Gelinsky, M. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate–gelatine–hydroxyapatite scaffolds with anisotropic pore structure. J. Tissue Eng. Regen. Med. 2009, 3, 54–62. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Plieva, F.M.; Galaev, I.Y.; Mattiasson, B. The potential of polymeric cryogels in bioseparation. Bioseparation 2001, 10, 163–188. [Google Scholar] [CrossRef]
- Yetiskin, B.; Okay, O. High-strength silk fibroin scaffolds with anisotropic mechanical properties. Polymer 2017, 112, 61–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Jiang, W.; Wenqian Zuo, W.; Han, G. Influence of Stage Cooling Method on Pore Architecture of Biomimetic Alginate Scaffold. Sci. Rep. 2017, 7, 16150. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Wang, Z.; He, Q.; Fan, W.; Cai, S. Porous double network gels with high toughness, high stretchability and fast solvent-absorption. Soft Matter 2017, 13, 6852–6857. [Google Scholar] [CrossRef] [PubMed]
- Serex, L.; Braschler, T.; Filippova, A.; Rochat, A.; Béduer, A.; Bertsch, A.; Renaud, P. Pore Size Manipulation in 3D Printed Cryogels Enables Selective Cell Seeding. Adv. Mater. Technol. 2018, 1700340. [Google Scholar] [CrossRef]
- Ozmen, M.M.; Dinu, M.V.; Dragan, E.S.; Okay, O. Preparation of Macroporous Acrylamide-based Hydrogels: Cryogelation under Isothermal Conditions. J. Macromol. Sci. Pure Appl. Chem. 2007, 44, 1195–1202. [Google Scholar] [CrossRef]
- Kathuria, N.; Tripathi, A.; Kar, K.K.; Kumar, A. Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater. 2009, 5, 406–418. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yao, K.; Shen, S.; Yun, J. Freezing characteristics of acrylamide-based aqueous solution used for the preparation of supermacroporous cryogels via cryo-copolymerization. Chem. Eng. Sci. 2007, 62, 1334–1342. [Google Scholar] [CrossRef]
- Bodenberger, N.; Kubiczek, D.; Abrosimova, I.; Scharm, A.; Kipper, F.; Walther, P.; Rosenau, F. Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel. Biotechnol. Rep. 2016, 12, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Rother, S.; Galiazzo, V.D.; Kilian, D.; Fiebig, K.M.; Becher, J.; Moeller, S.; Hempel, U.; Schnabelrauch, M.; Waltenberger, J.; Scharnweber, D.; et al. Hyaluronan/Collagen Hydrogels with Sulfated Hyaluronan for Improved Repair of Vascularized Tissue Tune the Binding of Proteins and Promote Endothelial Cell Growth. Macromol. Biosci. 2017, 17, 1700154. [Google Scholar] [CrossRef]
- Boyaci, T.; Orakdogen, N. Poly(N,N-dimethylaminoethyl methacrylate-co-2-acrylamido-2-methyl- propanosulfonic acid)/Laponite nanocomposite hydrogels and cryogels with improved mechanical strength and rapid dynamic properties. Appl. Clay Sci. 2016, 121–122, 162–173. [Google Scholar] [CrossRef]
- Leong, J.-Y.; Lam, W.-H.; Ho, K.-W.; Voo, W.-P.; Lee, M.F.-X.; Lim, H.-P.; Lim, S.-L.; Tey, B.-T.; Poncelet, D.; Chan, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 2016, 24, 44–60. [Google Scholar] [CrossRef]
- Radhakrishnan, J.; Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2017, 18, 1–26. [Google Scholar] [CrossRef]
- Jun, I.; Han, H.-S.; Edwards, J.R.; Jeon, H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 2018, 19, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, A.; Kothari, A.; Katti, D.S. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. J. Mech. Behav. Biomed. Mater. 2015, 51, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Lan, W.; Wu, Y.; Zhao, D.; Wang, Y.; He, X.; Li, J.; Li, Z.; Luo, F.; Tan, H.; et al. Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration. Regen. Biomater. 2020, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiriac, A.P.; Ghilan, A.; Neamtu, I.; Nita, L.E.; Rusu, A.G.; Chiriac, V.M. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol. Biosci. 2019, 1900187. [Google Scholar] [CrossRef] [PubMed]
- Badeau, B.A.; DeForest, C.A. Programming Stimuli-Responsive Behavior into Biomaterials. Annu. Rev. Biomed. Eng. 2019, 21, 241–265. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Fallahi, A.; El-Sokkary, A.M.A.; Salehi, S.; Akl, M.A.; Jafari, A.; Tamayol, A.; Fenniri, H.; Khademhossein, A.; Andreadis, S.T.; et al. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Progr. Polym. Sci. 2019, 101147. [Google Scholar] [CrossRef]
- Le, N.T.T.; Nguyen, T.N.Q.; Cao, V.D.; Hoang, D.T.; Ngo, V.C.; Hoang Thi, T.T. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, C.; Wang, C.; Xiao, Y.; Lin, W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers 2021, 13, 2299. [Google Scholar] [CrossRef]
- Saylan, Y.; Denizli, A. Supermacroporous Composite Cryogels in Biomedical Applications. Gels 2019, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savina, I.N.; Zoughaib, M.; Yergeshov, A.A. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021, 7, 79. [Google Scholar] [CrossRef]
- Kao, H.-H.; Kuo, C.-Y.; Chen, K.-S.; Chen, J.-P. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Int. J. Mol. Sci. 2019, 20, 4527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, R.Y.; Smith, L.J.; Shoichet, M.S. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models. Acc. Chem. Res. 2017, 50, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Bray, L.J.; Secker, C.; Murekatete, B.; Sievers, J.; Binner, M.; Welzel, P.B.; Werner, C. Three-Dimensional In Vitro Hydro- and Cryogel-Based Cell-Culture Models for the Study of Breast-Cancer Metastasis to Bone. Cancers 2018, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Davies, R.L.; Kuiper, N.J. Regenerative Medicine: A Review of the Evolution of Autologous Chondrocyte Implantation (ACI) Therapy. Bioengineering 2019, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Chircov, C.; Grumezescu, A.M.; Bejenaru, L.E. Hyaluronic Acid-Based Scaffolds for Tissue Engineering. Rom. J. Morphol. Embryol. 2018, 59, 71–76. Available online: http://www.rjme.ro (accessed on 11 June 2018).
- Varkey, M.; Ding, J.; Tredget, E.E. Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. J. Funct. Biomater. 2015, 6, 547–563. [Google Scholar] [CrossRef]
- Yannas, I.V.; Burke, J.F.; Gordon, P.L.; Huang, C.; Rubenstein, R.H. Design of an artificial skin. II. Control of chemical composition. J. Biomed. Mater. Res. 1980, 14, 107–131. [Google Scholar] [CrossRef]
- Boni, R.; Ali, A.; Shavandi, A.; Clarkson, A.N. Current and novel polymeric biomaterials for neural tissue engineering. J. Biomed. Sci. 2018, 25, 90. [Google Scholar] [CrossRef] [Green Version]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.L.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Thomas, R.C.; Philip Vu, P.; Modi, S.P.; Chung, P.E.; Landis, R.C.; Khaing, Z.Z.; Hardy, J.G.; Schmidt, C.E. Sacrificial crystal templated hyaluronic acid hydrogels as biomimetic 3D tissue scaffolds for nerve tissue regeneration. ACS Biomater. Sci. Eng. 2017, 3, 1451–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Walczak, P.; Bulte, J.W.M. The Survival of Engrafted Neural Stem Cells within Hyaluronic Acid Hydrogels. Biomaterials 2013, 34, 5521–5529. [Google Scholar] [CrossRef] [Green Version]
- Sensharma, P.; Madhumathi, G.; Jayant, R.D.; Jaiswal, A.K. Biomaterials and cells for neural tissue engineering: Current choices. Mater. Sci. Eng. 2017, C77, 1302–1315. [Google Scholar] [CrossRef]
- Humpolíček, P.; Radaszkiewicz, A.K.; Capáková, Z.; Pacherník, J.; Bober, P.; Kašpárková, V.; Rejmontová, P.; Lehocký, M.; Ponížil, P.; Stejskal, J. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci. Rep. 2018, 8, 135. [Google Scholar] [CrossRef]
- Jasenská, D.; Kašpárková, V.; Radaszkiewicz, K.A.; Capáková, Z.; Pacherník, J.; Trchová, M.; Humpolíček, P. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr. Polym. 2020, 117244. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Kuss, M.; Qi, D.; Hong, J.; Wang, H.-J.; Zhang, W.; Chen, S.; Ni, S.; Duan, B. Development of Cryogel-Based Guidance Conduit for Peripheral Nerve Regeneration. ACS Appl. Bio Mater. 2019, 2, 4864–4871. [Google Scholar] [CrossRef]
- Eigel, D.; Werner, C.; Newland, B. Cryogel biomaterials for neuroscience applications. Neurochem. Int. 2021, 147, 105012. [Google Scholar] [CrossRef] [PubMed]
- Brett, E.; Chung, N.; Leavitt, W.T.; Momeni, A.; Longaker, M.T.; Wan, D.C. A Review of Cell-Based Strategies for Soft Tissue Reconstruction. Tissue Eng. Part B 2017, 23, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Temofeew, N.A.; Hixon, K.R.; McBride-Gagyi, S.H.; Sell, S.A. The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus. J. Mater. Sci. Mater. Med. 2017, 28, 36. [Google Scholar] [CrossRef]
- Cloyd, J.M.; Malhotra, N.R.; Lihui Weng, L.; Chen, W.; Mauck, R.L.; Elliott, D.M. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur. Spine J. 2007, 16, 1892–1898. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef] [PubMed]
- Koshy, S.T.; Zhang, D.K.Y.; Grolman, J.M.; Stafford, A.G.; Mooney, D.J. Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater. 2018, 65, 36–43. [Google Scholar] [CrossRef]
- Bakhshpour, M.; Yavuz, H.; Denizli, A. Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes. Artific. Cells Nanomed. Biotechnol. 2018, 46, 946–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, M.; Teal, C.T.; Shoichet, M.S. A hyaluronan/methylcellulose-based hydrogel for local cell and biomolecule delivery to the central nervous system. Brain Res. Bull. 2019, 148, 46–54. [Google Scholar] [CrossRef]
- Freudenberg, U.; Liang, Y.; Kiick, K.L.; Werner, C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. Adv. Mater. 2016, 28, 8861–8891. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, J.H.; Jeong, J.; Kim, S.H.L.; Koh, R.H.; Kim, I.; Bae, S.; Lee, H.; Hwang, N.S. Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials 2020, 257, 120223. [Google Scholar] [CrossRef] [PubMed]
- Newland, B.; Newland, H.; Lorenzi, F.; Eigel, D.; Welzel, P.B.; Fischer, D.; Wang, W.; Freudenberg, U.; Rosser, A.; Werner, C. Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chem. Neurosci. 2021, 12, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Weiden, J.; Tel, J.; Figdor, C. Synthetic immune niches for cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 212–219. [Google Scholar] [CrossRef]
- Leach, D.G.; Young, S.; Hartgerink, J.D. Advances in Immunotherapy Delivery from Implantable and Injectable Biomaterials. Acta Biomater. 2019, 88, 15–31. [Google Scholar] [CrossRef]
- Bachmann, D.; Aliperta, R.; Bergmann, R.; Feldmann, A.; Koristka, S.; Arndt, C.; Loff, S.; Welzel, P.; Albert, S.; Kegler, A.; et al. Retargeting of UniCAR T cells with an in vivo synthesized target module directed against CD19 positive tumor cells. Oncotarget 2018, 9, 7487–7500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GAG | Further Polymer | Crosslinking | Properties | Applications | References |
---|---|---|---|---|---|
HA | - | EGDE | Large, interconnected macropores (diameters > 100 µm) | Structure-property study | [13,14] |
Collagen (Col) | Decreased swelling with higher Col portion | Dermal fibroblast cultivation | [15] | ||
HA | Halloysite nanotubes (HNTs, Al2Si2 O5(OH)4∙nH2O) | Divinyl sulfone | Pores size from 50 to 500 µm. Increase in HNT-content enhances mechanical stability, haemocompatible, promoting cell viability, and proliferation | Cell carrier for mesenchymal stem cells and different cancer cells | [16] |
HA | - | EDC | Average pore size 18 to 87 μm (large macropores); wide range of elasticity, porosity > 90%, high extensibility, moderate toughness | Soft tissue engineering | [17] |
Gelatin (Gel) | Adipose tissue engineering | [18] | |||
Gel (+glucosamine, GlcN) | GlcN affects proliferation, and chondrogenic phenotype | Cartilage tissue engineering | [19] | ||
HA | - | Genipin | Interconnected macropores (~100 µm), elastic, low cytotoxicity | Cell culture scaffold, wound healing | [20] |
HA | Chitosan | PEC formation | Highly interconnected pore network, porosity: 87%, average pore size: 77 µm, Young’s modulus: 0.2 MPa (dry state) | Mimic of glioblastoma micro-environment ECM | [21] |
Glutar dialdehyde | Porosity > 90%, mean pore size 150–200 µm, high swelling ratio, highly elastic, cytocompatible | Cell culture scaffold | [22] | ||
HA | Atelocollagen | PCl-di-NCO | Dimensionally stable, elastic, high porosity (>93%), hemocompatible | Wound healing | [23] |
HA-methacrylate | - | Electron beam-initiated polymerization | Interconnected pores (~70 µm), mechanically stable | Soft tissue engineering | [24,25] |
HA-acrylate | Main pore size 70–120 µm, high elasticity, excellent swelling | Skin regeneration, wound healing | [26] | ||
HA-methacrylate | -/Gel-methacrylate | Free radical polymerization (APS/TEMED) | Maintaining shape for 30 days in vitro and in vivo | Skin sculpting, injectable shape-memorizing filler | [27] |
Gel-methacrylate | Macroporous, injectable, improved cell adhesion of biocomposite | Cell carrier | [28] | ||
Gel-methacrylate, N, N-dimethylacrylamide | Mechanically robust, high frictional resistance | Biomedical application | [29] | ||
Gel-methacrylate, 4arm-PEG-acrylate | Mechanically robust, injectable, printable | Adipose tissue engineering | [30] | ||
Dextran-methacrylate | Mechanically robust, Porosity: 80–93%, pore size: 50–135 µm | Tissue engineering scaffold | [31] | ||
HA-methacrylate | -/Gel-methacrylate | UV-Photo-crosslinking (365 nm, Irgacure 2959) | Macroporous, highly permeable gel structure | Cell encapsulation (chondrocytes, hMSCs) | [32] |
HA-furfurylamide | PEG-bis(maleimide) (+mono/disaccharides) (+dyes, bioactive ligands) | Diels-Alder reaction | Mean pore sizes 10–30 µm, optically transparent cryogels, Immobilization of dyes, bioactive molecules | Biomimetic cell culture models with 3D spatial control of cellular response | [33,34] |
GAG | Further (Co)Polymer | Crosslinking | Properties | Applications | References |
---|---|---|---|---|---|
CS | HA/Gel | EDC | Open connected pore morphology (diameter: 100–350 µm) | Cartilage tissue engineering | [35] |
HA/Gel/Chitosan | Chitosan incorporation increases elastic modulus (stiffness) and toughness; pore diameter: 100–500 µm; cultivation of chondrocytes from rabbit knee articular cartilage Dynamic cultivation of porcine chondrocytes and adipose-derived stem cells under cyclic loading | [36] | |||
CS | HA/Gel/Chitosan/PVA | Glutar dialdehyde | Unidirectional freeze-drying (pore size: 10–210 µm vertical and 20–160 µm transverse section, respectively), porosity 93–98% | Tracheal scaffold fabrication | [37] |
CS-methacrylate | Gel-methacrylate | Free radical polymerization (APS/TEMED) | Inter-connected macroporous structure; pore diameters about 89 µm; compressive modulus about 38 kPa; supports chondrocyte phenotype and cellular distribution; subcutaneous implantation of cell-laden cryogel in mice led to dense deposition of cartilage-specific ECM molecules | Cartilage tissue engineering | [38] |
CS-methacrylate | PEG-diacrylate | Free radical polymerization (APS/TEMED) | Formation of penetrating polymer network (IPN); ChS-based cryogel showed elevated elastic modulus compared to HA-based system; pore diameter of about 63 µm | Cartilage tissue engineering | [39] |
HE | 4arm-PEG-NH2 | EDC/Sulfo-NHS | Macroporous, interconnective 3D-architecture, pore size ranges between 10 and 80 μm; cryogels behave mechanically comparable to the native ECM of soft tissue, showing locally a high resistance to mechanical stress but low bulk stiffness | Endothelial cell cultivation | [40] |
Carrier for pancreative islets | [41] | ||||
Cancer immunotherapy | [42] | ||||
Cytokine release to the brain | [43] | ||||
stem cell culture; RGD-modification-mediated cell adhesion | Neural cell cultivation | [44,45] | |||
HE | Gel | EDC/Sulfo-NHS | Microporous, interconnective architecture stable against enzymatic degradation; injectable | Neovascularization; cell carrier | [46] |
Gel/Whitlockite | stem cell differentiation | Bone tissue engineering | [47,48] | ||
HE | Chitosan; PVA; Hydroxyapatite (HA) | Glutar dialdehyde | Large continuous interconnected pores, slowly degradable network, with 10% HA mechanically stable for bone implantation | Scaffold for growth factor (e.g., BMP-2) delivery | [49] |
HE-methacrylate | Alginate-methacrylate; PEG-acrylate-RGD | APS/TEMED | Interconnected porous structure, increase in shape recovery of coated hybrid grafts, enabling cell adherence and growth | Cryogel coating of prosthetic grafts | [50] |
Parameter | Effect | References |
---|---|---|
Polymer content/ polymer molecular weight | Gel solutions of lower molecular weight polymers result in the formation of larger pores compared to gel solutions of larger molecular weight polymers. Solutions of higher polymer concentration give a smaller average pore size. | [72,73,74,75] |
Crosslinking | Affecting both the stiffness of the cryogel and also the degree of swelling, which in turn impacts on the elastic and mechanical properties. Physical crosslinking: Normally, cryogels with small pore sizes (<100 µm) are formed, and their mechanical strength is inversely correlated with the thawing rate—takes place during the thawing stage. Chemical crosslinking: Commonly larger pore size (>100 µm), improving mechanical stability—occurs during the storage of the solution at the given temperature. | [8,9,76,77] |
Cryo-concentration (reaction constituents) | Decreasing the cryo-concentration lowers the critical concentration required for gelling. Increased cryo-concentration increases elasticity | [78] |
Cryogelation temperature | Lowering the cryogelation temperature leads to smaller pores, and to thinner and smaller pore walls | [79,80,81,82] |
Cooling rate | If the rate of crosslinking proceeds slower than the solvent crystallization, polymerization will generate cryogels of larger pore size; preparation of aligned pore structures | [46,83,84,85,86] |
Charge density | Increasing the charge density results in a decreased pore size | [10] |
Cryogel Type | Cryogel Concentration (% w/w) | Pure Density (g/cm³) | Open Cell Content (%) | Closed Cell Content (%) |
---|---|---|---|---|
PEGDA | 10 | 1.14 | 90.20 | 9.80 |
HA-A (DSA 1 = 0.2) | 2.5 | 1.49 | 97.04 | 2.96 |
HA-A/PEGDA (1:4) | 10 | 1.91 | 93.67 | 6.33 |
Dex-MA (DSMA 1 = 0.5) | 10 | 2.37 | 94.81 | 5.19 |
Dex-MA/PEGDA (1:4) | 10 | 1.82 | 92.95 | 7.05 |
CS-MA (DSMA 1 = 0.5) | 20 | 2.43 | 95.64 | 4.36 |
CS-MA/Dex-MA (1:1) | 10 | 2.2 | 95.69 | 4.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wartenberg, A.; Weisser, J.; Schnabelrauch, M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules 2021, 26, 5597. https://doi.org/10.3390/molecules26185597
Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules. 2021; 26(18):5597. https://doi.org/10.3390/molecules26185597
Chicago/Turabian StyleWartenberg, Annika, Jürgen Weisser, and Matthias Schnabelrauch. 2021. "Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration" Molecules 26, no. 18: 5597. https://doi.org/10.3390/molecules26185597
APA StyleWartenberg, A., Weisser, J., & Schnabelrauch, M. (2021). Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules, 26(18), 5597. https://doi.org/10.3390/molecules26185597