Sensory-Based Identification of Aroma-Active Compounds in Hotpot Seasoning before and after Boiling
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Boiling on Aroma Profile Evaluation of Hotpot Seasoning
2.2. The Effect of Boiling on the Composition of Aroma Compounds in Hotpot Seasoning
2.3. The Effect of Boiling on the Aroma-Active Compounds of Hotpot Seasoning
2.4. Quantitation of the Key Aroma-Active Compounds and OAVs
2.5. Correlation between Key Aroma-Active Compounds and Sensory Properties
3. Materials and Methods
3.1. Samples
3.2. Chemicals
3.3. Establishment and Evaluation of Aroma Profile
3.4. Isolation of the Volatiles by Solvent-Assisted Flavor Evaporation (SAFE)
3.5. SGC/GC×GC-O-MS Analysis System
3.6. Qualitative Analysis
3.7. AEDA
3.8. Quantitative Analysis
3.9. OAVs
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, J.; Ma, M.; Sun, B.; Ren, F.; Chen, H.; Zhang, N.; Zhang, Y. Identification of characteristic aroma components of butter from Chinese butter hotpot seasoning. Food Chem. 2021, 338, 127838. [Google Scholar] [CrossRef]
- Jing, H.; Luo, J.-Q.; Luo, D.; Deng, K.; Long, J.-P. Optimization design of parameters of red soup hotpot condiment. China Condiment 2020, 45, 111–115. [Google Scholar]
- Zhang, J.; Xue, Y.-X.; Li, C.-Y.; Xie, Z.-G.; Zhao, Z.-F. Comparative study on the flavor and sensory characteristics of two animal oils in hotpot seasoning. China Condiment 2020, 45, 16–30. [Google Scholar]
- Song, H.; Liu, J. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.-W. The Flavor Analysis and Development of Hotpot Seasoning Product with Chongqing Traditional Hotpot Flavor. Master’s Thesis, Beijing Technology and Business University, Beijing, China, 2019. [Google Scholar]
- Chao-yi, Z.; Li-zhu, Z.; Wei, T.; Ying, S.; Jie, T.; Zhen-ming, C. Comparison of volatile flavor substances and principal components analysis of Sichuan and Chongqing region characteristic red oil hot pot. Sci. Technol. Food Ind. 2016, 7, 283–287. [Google Scholar]
- Prashant, K.M.; Jyoti, T.; Sumit, G.; Prasad, S.V. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality. Food Chem. 2017, 215, 401–409. [Google Scholar]
- Bi, S.; Wang, A.; Wang, Y.; Xu, X.; Luo, D.; Shen, Q.; Wu, J. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality. Food Chem. 2019, 289, 680–692. [Google Scholar] [CrossRef]
- Delahunty, C.M.; Eyres, G.; Dufour, J.P. Gas chromatography-olfactometry. J. Sep. Sci. 2015, 29, 2107–2125. [Google Scholar] [CrossRef]
- Cordero, C.; Schmarr, H.-G.; Reichenbach, S.E.; Bicchi, C. Current developments in analyzing food volatiles by multidimensional gas chromatographic techniques. J. Agric. Food Chem. 2018, 66, 2226–2236. [Google Scholar] [CrossRef]
- Xiaojun, W.; Mengyao, G.; Huanlu, S.; Qi, M.; Xiaosheng, G. Characterization of key odor-active compounds in commercial high-salt liquid-state soy sauce by switchable GC/GC×GC-olfactometry-MS and sensory evaluation. Food Chem. 2021, 342, 128224. [Google Scholar]
- Ping, Y.; Huanlu, S.; Yanping, L.; Tianyang, G.; Lijin, W.; Granvogl, M.; Yongquan, X. Differences of characteristic aroma compounds in Rougui tea leaves with different roasting temperatures analyzed by switchable GC-O-MS and GC×GC-O-MS and sensory evaluation. Food Funct. 2021, 12, 4797–4807. [Google Scholar]
- Yang, L.; Hong-Feng, J.; Yang, F.; Lu-Shan, S.; Huang, Y.; Zhang, M.; Meng-Jie, T.; He, L. Analysis of changes in volatile components during parching and boiling of spicy hot pot seasoning by GC-MS combined with HS-SPME. Sci. Technol. Food Ind. 2020, 19, 52–59. [Google Scholar]
- Moughan, P.J. Amino acid availability: Aspects of chemical analysis and bioassay methodology. Nutr. Res. Rev. 2003, 16, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.H.; Kubota, K. Differences in the volatile components and their odor characteristics of green and ripe fruits and dried pericarp of Japanese pepper (Xanthoxylum piperitum DC.). J. Agric. Food Chem. 2004, 52, 4197–4203. [Google Scholar] [CrossRef]
- Jurado, J.M.; Ballesteros, O.; Alcazar, A.; Pablos, F.; Martin, M.J.; Vilchez, J.L.; Navalon, A. Characterization of aniseed-flavoured spirit drinks by headspace solid-phase microextraction gas chromatography-mass spectrometry and chemometrics. Talanta 2007, 72, 506–511. [Google Scholar] [CrossRef]
- Song, S.-Q.; Zhang, X.-M.; Hayat, K.; Liu, P.; Jia, C.-S.; Xia, S.-Q.; Xiao, Z.-B.; Tian, H.-X.; Niu, Y.-W. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011, 124, 203–209. [Google Scholar] [CrossRef]
- Farmer, L.J.; Patterson, R.L.S. Compounds contributing to meat flavour. Food Chem. 1991, 40, 201–205. [Google Scholar] [CrossRef]
- Specht, K.; Baltes, W. Identification of volatile flavor compounds with high aroma values from shallow-fried beef. J. Agric. Food Chem. 1994, 42, 2246–2253. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, H.; Li, P.; Yao, J.; Xiong, J. Determination of potential off-flavour in yeast extract. Lwt-Food Science. Technology 2017, 82, 184–191. [Google Scholar]
- Huang, J.; Liu, Y.; Yang, W.; Liu, Y.; Zhang, Y.; Huang, M.; Sun, B. Characterization of the potent odorants contributing to the characteristic aroma of Beijing Douzhi by gas chromatography-olfactometry, quantitative analysis, and odor activity value. J. Agric. Food Chem. 2018, 66, 689–694. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, X.; Tang, Y.; Xie, Y.; Du, Z. The effects of heat treatment and fermentation processes on the formation of furfurals in milk-based dairy products using a QuEChERS technique followed by gas chromatography coupled with triple quadrupole mass spectrometry. Food Chem. 2020, 313, 125930. [Google Scholar] [CrossRef]
- Wilson, R.A.; Katz, I. Review of literature on chicken flavor and report of isolation of several new chicken flavor components from aqueous cooked chicken broth. J. Agric. Food Chem. 1972, 20, 741–747. [Google Scholar] [CrossRef]
- Christlbauer, M.; Schieberle, P. Characterization of the key aroma compounds in beef and pork vegetable gravies a la chef by application of the aroma extract dilution analysis. J. Agric. Food Chem. 2009, 57, 9114–9122. [Google Scholar] [CrossRef]
- Greger, V.; Schieberle, P. Characterization of the key aroma compounds in apricots (Prunus armeniaca) by application of the molecular sensory science concept. J. Agric. Food Chem. 2007, 55, 5221–5228. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Luo, L.P.; Zhang, H.J.; Yang, X.; Lv, Y.; Song, H.L. Common aroma-active components of propolis in 23 regions of China. J. Sci. Food Agric. 2010, 90, 1268–1282. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, H.; Zhang, Y.; Sun, B.; Ren, F.; Chen, H.; Xie, J. Characterization of the oral breakdown, sensory properties, and volatile release during mastication of white bread. Food Chem. 2019, 298, 125003. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Corral, S. Olfactometry detection of aroma compounds. Adv. Food Diagn. 2017, 15, 379–400. [Google Scholar]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Xiang, Z.; Chen, X.; Zhao, Z.; Xiao, X.; Guo, P.; Song, H.; Yang, X.; Huang, M. Analysis of volatile components in Dalbergia cochinchinensis Pierre by a comprehensive two-dimensional gas chromatography with mass spectrometry method using a solid-state modulator. J. Sep. Sci. 2018, 41, 4315–4322. [Google Scholar] [CrossRef] [PubMed]
- Maikhunthod, B.; Marriott, P.J. Aroma-impact compounds in dried spice as a quality index using solid phase microextraction with olfactometry and comprehensive two-dimensional gas chromatography. Food Chem. 2013, 141, 4324–4332. [Google Scholar] [CrossRef] [PubMed]
- Ping, Y.; Yingying, Z.; Mengchen, Y.; Huanlu, S.; Tingting, Z. Characterization of key aroma-active compounds in four commercial egg flavor Sachimas with differing egg content. J. Food Biochem. 2019, 43, e13040. [Google Scholar]
- Huan, L.; Zhenyu, W.; Dequan, Z.; Qingwu, S.; Teng, P.; Teng, H.; Jianrong, M. Characterization of key aroma compounds in Beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor-activity values, and aroma-recombination experiments. J. Agric. Food Chem. 2019, 67, 5847–5856. [Google Scholar]
No. | Compound | RI a | Odor b | Identification c | Concentration (μg/g) d | FD e | ||
---|---|---|---|---|---|---|---|---|
HS f | HSBL g | HS f | HSBL g | |||||
Hydrocarbons | ||||||||
1 | D-(+)-α-pinene | 997 | Minty | MS/RI | ND | 1.87 ± 0.034 | - | - |
2 | α-pinene | 997 | Pine, turpentine | MS/RI/O/STD | 0.394 ± 0.024 | 0.371 ± 0.013 | 3 | 3 |
3 | toluene | 1008 | Paint | MS/RI/O | 71.6 ± 5.13 | 110.0 ± 5.99 | - | 1 |
4 | sabinene | 1095 | Pepper, turpentine | MS/RI/O | 7.39 ± 0.643 | 27.5 ± 1.41 | - | 1 |
5 | myrcene | 1138 | Balsamic, must, spice | MS/RI/O/STD | 1.90 ± 0.051 | 0.945 ± 0.039 | 27 | 9 |
6 | α-phellandrene | 1141 | Turpentine, mint, spice | MS/RI/O | 0.140 ± 0.004 | 0.855 ± 0.095 | - | 1 |
7 | 1,2-dimethylbenzene | 1156 | Geranium | MS/RI/O | 1.20 ± 0.11 | 0.849 ± 0.047 | 1 | - |
8 | α-terpinene | 1156 | Lemon | MS/RI | 0.161 ± 0.029 | 1.75 ± 0.03 | - | - |
9 | (S)-(−)-limonene | 1174 | Turpentine, wood | MS/RI | ND | 0.200 ± 0.045 | - | - |
10 | (+)-limonene | 1176 | Citrus, mint | MS/RI/O/STD | 13.2 ± 0.34 | 10.0 ± 0.388 | 81 | 27 |
11 | β-phellandrene | 1184 | Mint, terpentine | MS/RI/O | 0.809 ± 0.023 | 6.51 ± 0.303 | - | 1 |
12 | γ-terpinene | 1223 | Gasoline, turpentine | MS/RI/O | 0.342 ± 0.023 | 4.26 ± 0.215 | - | 1 |
13 | β-ocimene | Citrus, green | MS/RI/O | 0.087 ± 0.01 | 0.033 ± 0.007 | - | - | |
14 | p-cymene | 1244 | Solvent, gasoline, citrus | MS/RI/O/STD | 0.371 ± 0.034 | 0.081 ± 0.008 | 81 | 9 |
15 | δ-terpinene | 1260 | Pine, plastic | MS/RI | 0.122 ± 0.016 | ND | - | - |
16 | β-caryophyllene | 1580 | Wood, spice | MS/RI/O/STD | 0.456 ± 0.033 | 0.384 ± 0.026 | 27 | 9 |
17 | α-humulene | 1649 | Wood | MS/RI/O/STD | 0.159 ± 0.009 | 0.950 ± 0.040 | 3 | 9 |
18 | germacrene D | 1686 | Wood, spice | MS/RI/O | 0.502 ± 0.075 | 2.96 ± 0.048 | - | 1 |
19 | δ-elemene | 1711 | Wood | MS/RI | 0.111 ± 0.012 | 0.088 ± 0.003 | - | - |
20 | δ-cadinene | 1733 | Thyme, medicine, wood | MS/RI | 0.103 ± 0.01 | 0.590 ± 0.036 | - | - |
10 | (+)-limonene | 1176 | Citrus, mint | MS/RI/O/STD | 13.2 ± 0.360 | 10.0 ± 0.388 | 81 | 27 |
21 | β-sesquip-hellandrene | 1743 | Wood | MS/RI | 0.016 ± 0.001 | 0.055 ± 0.005 | - | - |
22 | 2,6-di-tert-butyl-p-methylphenol | 1876 | Mild phenolic camphor | MS/RI | 29.3 ± 0.203 | 13.4 ± 0.086 | - | - |
23 | α-copaene | 1481 | Wood, spice | MS/RI/O | ND | 2.33 ± 0.633 | - | 1 |
24 | α-zingiberene | 1695 | Spice, fresh, sharp | MS/RI | ND | 1.48 ± 0.029 | - | - |
26 | isocaryophyllene | 1953 | wood | MS/RI | ND | 0.042 ± 0.018 | - | - |
Total | 128.4 ± 7.62 | 187.5 ± 9.52 | ||||||
Aldehydes | ||||||||
27 | methylbutanal | 860 | Cocoa, almond | MS/RI/O | 0.137 ± 0.011 | ND | 1 | - |
28 | octanal | 1262 | Fat, soap, lemon | MS/RI/O | 0.011 ± 0.003 | 0.061 ± 0.003 | - | 1 |
29 | decanal | 1472 | Soap, orange | MS/RI/O | 0.024 ± 0.002 | 0.038 ± 0.004 | 1 | 1 |
30 | benzaldehyde | 1492 | Burnt sugar | MS/RI/O | 0.114 ± 0.014 | 0.106 ± 0.038 | 1 | 1 |
Aldehydes | ||||||||
31 | trans-2-nonenal | 1507 | Cucumber, fat, green | MS/RI/O/STD | 0.497 ± 0.026 | 2.44 ± 0.113 | 27 | 81 |
32 | myrtenal | 1599 | Spice | MS/RI/O | 0.018 ± 0.002 | 0.356 ± 0.008 | - | 1 |
33 | methional | 1681 | Cooked potato | MS/RI/O/STD | - | 0.053 ± 0.004 | - | 243 |
34 | trans-2-octenal | Green, nut, fat | MS/RI/O/STD | 0.059 ± 0.005 | 0.837 ± 0.028 | 27 | 243 | |
35 | 2-phenyl propionaldehyde | 1851 | Hyacinth | MS/RI | 0.014 ± 0.001 | ND | - | - |
36 | p-anisaldehyde | 1980 | Mint, sweet | MS/RI | 0.091 ± 0.006 | 0.222 ± 0.015 | - | - |
37 | nonanal | 1390 | Fat, citrus, green | MS/RI/O/STD | 0.005 ± 0.001 | 0.093 ± 0.004 | 9 | 81 |
38 | phenylethanal | 1608 | Hawthorne, honey, sweet | MS/RI/O/STD | 0.013 ± 0.001 | 0.106 ± 0.010 | 3 | 27 |
Total | 0.983 ± 0.081 | 4.31 ± 0.223 | ||||||
Alcohols | ||||||||
39 | pentanol | 1179 | Balsamic | MS/RI | 0.098 ± 0.009 | 0.101 ± 0.014 | - | - |
40 | 1,8-cineole | 1186 | Mint, sweet | MS/RI/O/STD | 5.16 ± 0.190 | 4.15 ± 0.255 | 9 | 3 |
41 | (E)-furan linalool oxide | 1445 | Flower | MS/RI/O | ND | 0.125 ± 0.025 | - | 1 |
42 | linalool | 1516 | Flower, lavender | MS/RI/O/STD | 88.8 ± 2.59 | 58.7 ± 0.905 | 27 | 243 |
43 | 1-terpinen-4-ol | 1575 | Turpentine, nutmeg, must | MS/RI/O | 0.767 ± 0.112 | 3.87 ± 0.194 | - | 1 |
44 | furfuryl alcohol | 1626 | Burnt | MS/RI/O | 0.042 ± 0.005 | 0.209 ± 0.018 | - | 1 |
45 | α-terpineol | 1664 | Oil, anise, mint | MS/RI/O/STD | 0.300 ± 0.022 | 0.162 ± 0.018 | 3 | 1 |
46 | methyl eugenol | clove, spice | MS/RI/O/STD | 0.272 ± 0.018 | 0.039 ± 0.003 | 9 | 1 | |
47 | 2-phenyl-2-propanol | 1723 | Mild green sweet earthy | MS/RI | 0.917 ± 0.036 | 0.290 ± 0.008 | - | - |
48 | p-cymenol | 1811 | Citrus, must | MS/RI/O | ND | 0.095 ± 0.004 | - | 1 |
49 | phenethyl alcohol | 1873 | Flower, rose | MS/RI | 0.112 ± 0.007 | 0.046 ± 0.043 | - | - |
50 | elemol | 2036 | Green, wood | MS/RI | ND | 0.054 ± 0.007 | - | - |
51 | limonene glycol | 2219 | Cool minty | MS/RI | 0.016 ± 0.004 | ND | - | - |
52 | 4-methyl-5-hydroxyethyl-thiazole | 2275 | Sulfur | MS/RI/O/STD | 0.099 ± 0.009 | 0.578 ± 0.035 | 1 | 9 |
Total | 96.5 ± 3.01 | 68.4 ± 1.53 | ||||||
Acids | ||||||||
53 | butanoic acid | 1614 | Rancid, cheese | MS/RI/O/STD | 0.046 ± 0.004 | 0.018 ± 0.002 | 3 | 1 |
54 | acetic acid | sour | MS/RI/O/STD | 0.130 ± 0.011 | 0.039 ± 0.004 | 3 | 1 | |
Acids | ||||||||
55 | pentanoic acid | 1703 | Sweat | MS/RI/O | ND | 0.026 ± 0.000 | - | 1 |
56 | octanoic acid | 2017 | Sweat, cheese | MS/RI/O | 0.019 ± 0.001 | 0.055 ± 0.004 | - | 1 |
57 | nonanoic acid | 2118 | Green, fat | MS/RI | 0.018 ± 0.002 | 0.059 ± 0.005 | - | - |
58 | decanoic acid | 2221 | Rancid, fat | MS/RI | 0.010 ± 0.001 | ND | - | - |
Total | 0.222 ± 0.019 | 0.198 ± 0.015 | ||||||
Esters | ||||||||
59 | ethyl octanoate | 1412 | Fruit, fatty | MS/RI/O/STD | 0.045 ± 0.005 | 0.063 ± 0.009 | 3 | 9 |
60 | linalyl acetate | 2176 | Sweet, fruit | MS/RI/O/STD | 4.24 ± 0.223 | 4.92 ± 0.241 | 3 | 3 |
61 | isobutyl acetate | 1029 | Fruit, apple, banana | MS/RI | ND | 0.139 ± 0.001 | - | - |
Total | 4.28 ± 0.228 | 5.12 ± 0.249 | ||||||
Ketones | ||||||||
62 | 6-methyl-5-hepten-2-one | 1311 | Pepper, mushroom | MS/RI/O | ND | 0.006 ± 0.002 | - | 1 |
63 | 4-undecanone | 1358 | Fruit | MS/RI/O | ND | 0.071 ± 0.003 | - | 1 |
64 | β-thujone | 1397 | Cedarleaf | MS/RI/O | ND | 0.389 ± 0.048 | - | 1 |
65 | α-thujone | 1416 | Cedarleaf, thujonic | MS/RI/O/STD | 0.014 ± 0.001 | 0.014 ± 0.001 | 9 | 27 |
66 | acetophenone | 1617 | Must, flower | MS/RI/O/STD | 1.20 ± 0.094 | 3.17 ± 0.206 | 27 | 81 |
67 | 4-isopropyl-2-cyclohexenone | 1642 | Spice, caraway | MS/RI | 0.021 ± 0.002 | 0.077 ± 0.009 | - | - |
68 | piperitone | 1696 | Mint, fresh | MS/RI/O | ND | 0.102 ± 0.007 | - | - |
Total | 1.24 ± 0.097 | 3.83 ± 0.277 | ||||||
Phenols | ||||||||
69 | estragole | 1637 | Licorice, anise | MS/RI/O | 0.674 ± 0.103 | 4.10 ± 0.073 | - | 1 |
70 | methyl eugenol | 1968 | Spice | MS/RI/O | 0.039 ± 0.05 | 0.256 ± 0.015 | - | 1 |
71 | ethyl maltol | 1976 | Sweet, caramel | MS/RI | 2.27 ± 0.680 | 3.55 ± 0.293 | - | - |
72 | 2,4-di-tert-butylphenol | 2254 | Phenolic | MS/RI | 0.260 ± 0.061 | 0.415 ± 0.065 | - | - |
Total | 3.24 ± 0.849 | 8.33 ± 0.466 | ||||||
Ethers | ||||||||
73 | diethyl sulfide | 843 | Ethereal, sulfurous | MS/RI/O | 0.799 ± 0.128 | ND | 1 | - |
74 | diethyl disulfide | 1185 | Onion | MS/RI/O | 0.090 ± 0.015 | 0.067 ± 0.002 | 1 | 1 |
Ethers | ||||||||
75 | allyl disulfide | 1451 | Onion | MS/RI/O/STD | 0.126 ± 0.010 | 0.059 ± 0.005 | 9 | 3 |
76 | safrole | 1838 | Spice | MS/RI/O | 0.026 ± 0.003 | 0.170 ± 0.015 | - | 1 |
77 | myristicin | 2213 | Spice | MS/RI/O | 0.233 ± 0.033 | 0.639 ± 0.091 | - | 1 |
78 | anethol | 1971 | Sweet, licorice | MS/RI/O | 15.3 ± 0.032 | 7.29 ± 0.296 | 1 | - |
Total | 16.6 ± 0.222 | 8.23 ± 0.509 | ||||||
Heterocyclics | ||||||||
79 | 2-acetylfuran | 1474 | Balsamic | MS/RI/O | 0.031 ± 0.006 | 0.042 ± 0.002 | 1 | 1 |
80 | 2-acetylpyrrole | 1926 | Nutty | MS/RI/O | 0.080 ± 0.052 | 0.169 ± 0.015 | - | 1 |
Total | 0.111 ± 0.058 | 0.211 ± 0.017 |
No. | Compounds a | Quota Selected Ion (m/z) b | Odor Threshold (ng/g) c | Concentration (μg/g) d | OAV e | ||
---|---|---|---|---|---|---|---|
HS f | HSBL g | HS f | HSBL g | ||||
1 | butanoic acid | 88 (60, 73) | 50 | 0.076 ± 0.012 | 0.018 ± 0.008 | <1 | <1 |
2 | thujone | 152 (110, 95) | 0.5 | 0.014 ± 0.001 | 0.014 ± 0.001 | 28 | 27 |
3 | methional | 104 (48, 76) | 0.2 | ND | 0.053 ± 0.004 | <1 | 266 |
4 | nonanal | 149 (121, 98) | 1 | 0.005 ± 0.0005 | 0.093 ± 0.004 | 3 | 93 |
5 | phenylethanal | 120 (91, 92) | 4 | 0.013 ± 0.001 | 0.106 ± 0.010 | 3 | 26 |
6 | methyleugenol | 178 (163, 147) | 68 | 0.272 ± 0.018 | 0.039 ± 0.003 | 4 | <1 |
7 | p-cymene | 206 (119, 134) | 11.4 | 0.371 ± 0.034 | 0.081 ± 0.008 | 32 | 7 |
8 | ethyl caprylate | 172 (88, 127) | 15 | 0.045 ± 0.005 | 0.063 ± 0.007 | 3 | 4 |
9 | 4-methyl-5-thiazoleethanol | 143 (112, 113) | 100 | 0.099 ± 0.009 | 0.578 ± 0.035 | <1 | 6 |
10 | diallyl disulphide | 146 (41, 81) | 30 | 0.126 ± 0.010 | 0.059 ± 0.005 | 4 | 2 |
11 | (E)-2-octenal | 126 (83, 70) | 3 | 0.059 ± 0.005 | 0.837 ± 0.028 | 19 | 279 |
12 | humulene | 204 (93, 121) | 160 | 0.159 ± 0.009 | 0.950 ± 0.040 | 1 | 6 |
13 | α-terpineol | 206 (93, 105) | 280 | 0.300 ± 0.023 | 0.162 ± 0.018 | 1 | <1 |
14 | α-pinene | 281 (93, 77) | 190 | 0.394 ± 0.024 | 0.371 ± 0.013 | 2 | 2 |
15 | (E)-2-heptenal | 112 (41, 83) | 13 | 0.497 ± 0.026 | 2.44 ± 0.113 | 38 | 187 |
16 | β-caryophyllene | 204 (93, 133) | 64 | 0.456 ± 0.033 | 0.384 ± 0.026 | 7 | 6 |
17 | acetophenone | 120 (105, 77) | 36 | 1.20 ± 0.094 | 3.17 ± 0.206 | 33 | 88 |
18 | β-myrcene | 267 (93, 69) | 915 | 1.90 ± 0.051 | 0.945 ± 0.037 | 2 | 1 |
19 | linalyl acetate | 196 (93, 121) | 1000 | 4.24 ± 0.223 | 4.92 ± 0.241 | 4 | 5 |
20 | 1,8-cineole | 154 (139, 111) | 1000 | 5.16 ± 0.190 | 4.15 ± 0.255 | 5 | 4 |
21 | D-limonene | 170 (93, 79) | 1200 | 13.2 ± 0.340 | 10.01 ± 0.388 | 10 | 8 |
22 | linalool | 154 (93, 71) | 1082 | 8.88 ± 2.59 | 5.87 ± 0.905 | 42 | 82 |
23 | acetic acid | 60 (43, 45) | 50 | 0.130 ± 0.019 | 0.039 ± 0.04 | 2 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wan, S.; Song, H.; Zhang, Y.; Wang, C.; Wang, H.; Wang, H. Sensory-Based Identification of Aroma-Active Compounds in Hotpot Seasoning before and after Boiling. Molecules 2021, 26, 5727. https://doi.org/10.3390/molecules26195727
Yu M, Wan S, Song H, Zhang Y, Wang C, Wang H, Wang H. Sensory-Based Identification of Aroma-Active Compounds in Hotpot Seasoning before and after Boiling. Molecules. 2021; 26(19):5727. https://doi.org/10.3390/molecules26195727
Chicago/Turabian StyleYu, Mingguang, Suyan Wan, Huanlu Song, Yu Zhang, Chuanming Wang, Hongqiang Wang, and Haowen Wang. 2021. "Sensory-Based Identification of Aroma-Active Compounds in Hotpot Seasoning before and after Boiling" Molecules 26, no. 19: 5727. https://doi.org/10.3390/molecules26195727
APA StyleYu, M., Wan, S., Song, H., Zhang, Y., Wang, C., Wang, H., & Wang, H. (2021). Sensory-Based Identification of Aroma-Active Compounds in Hotpot Seasoning before and after Boiling. Molecules, 26(19), 5727. https://doi.org/10.3390/molecules26195727