Simultaneous Quantification of 25 Fentanyl Derivatives and Metabolites in Oral Fluid by Means of Microextraction on Packed Sorbent and LC–HRMS/MS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC–HRMS/MS
2.2. Sample Collection and Sample Preparation
2.3. Validation
2.4. Proficiency Samples Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation
3.3. LC–MS Experimental Conditions
3.4. Method Validation
3.5. Proficiency Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ciccarone, D. The rise of illicit fentanyls, stimulants and the fourth wave of the opioid overdose crisis. Curr. Opin. Psychiatry 2021, 34, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Pardo, B.; Taylor, J.; Caulkins, J.P.; Kilmer, B.; Reuter, P.; Stein, B.D. The Future of Fentanyl and Other Synthetic Opioids; RAND Corporation PP: Santa Monica, CA, USA, 2019; ISBN 9781977403384. [Google Scholar]
- Palmquist, K.B.; Swortwood, M.J. Quantification of fentanyl analogs in oral fluid using LC-QTOF-MS. J. Forensic Sci. 2021, 66, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.K.; D’Orazio, A.L.; Mohr, A.L.A.; Limoges, J.F.; Miles, A.K.; Scarneo, C.E.; Kerrigan, S.; Liddicoat, L.J.; Scott, K.S.; Huestis, M.A. Recommendations for toxicological investigation of drug-impaired driving and motor vehicle fatalities-2017 update. J. Anal. Toxicol. 2018, 42, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosker, W.M.; Huestis, M.A. Oral fluid testing for drugs of abuse. Clin. Chem. 2009, 55, 1910–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulter, C.A.; Moore, C.M. Analysis of Drugs in Oral Fluid Using LC-MS/MS. In LC-MS in Drug Analysis. Methods in Molecular Biology; Langman, L., Snozek, C., Eds.; Humana Press: New York, NY, USA, 2019; Volume 1872. [Google Scholar] [CrossRef]
- Palmer, K.L.; Krasowski, M.D. Alternate Matrices: Meconium, Cord Tissue, Hair, and Oral Fluid. In LC-MS in Drug Analysis. Methods in Molecular Biology; Langman, L., Snozek, C., Eds.; Humana Press: New York, NY, USA, 2019; Volume 1872. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Armenta, S.; de la Guardia, M. Sample preparation strategies for the determination of psychoactive substances in biological fluids. J. Chromatogr. A 2020, 1633, 461615. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, K.B.; Swortwood, M.J. Data-independent screening method for 14 fentanyl analogs in whole blood and oral fluid using LC-QTOF-MS. Forensic Sci. Int. 2019, 297, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Griswold, M.K.; Chai, P.R.; Krotulski, A.J.; Friscia, M.; Chapman, B.P.; Varma, N.; Boyer, E.W.; Logan, B.K.; Babu, K.M. A Novel Oral Fluid Assay (LC-QTOF-MS) for the Detection of Fentanyl and Clandestine Opioids in Oral Fluid After Reported Heroin Overdose. J. Med. Toxicol. 2017, 13, 287–292. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, K.F.; Oliveira, K.D.; Huestis, M.A.; Costa, J.L. Screening of 104 new psychoactive substances (NPS) and other drugs of abuse in oral fluid by LC–MS-MS. J. Anal. Toxicol. 2020, 44, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Di Trana, A.; Mannocchi, G.; Pirani, F.; La Maida, N.; Gottardi, M.; Pichini, S.; Busardò, F.P. A comprehensive HPLC–MS-MS screening method for 77 new psychoactive substances, 24 classic drugs and 18 related metabolites in blood, urine and oral fluid. J. Anal. Toxicol. 2020, 44, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Arantes, A.C.F.; da Cunha, K.F.; Cardoso, M.S.; Oliveira, K.D.; Costa, J.L. Development and validation of quantitative analytical method for 50 drugs of antidepressants, benzodiazepines and opioids in oral fluid samples by liquid chromatography–tandem mass spectrometry. Forensic Toxicol. 2021, 39, 179–197. [Google Scholar] [CrossRef]
- Ares, A.M.; Fernández, P.; Regenjo, M.; Fernández, A.M.; Carro, A.M.; Lorenzo, R.A. A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 2017, 174, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Agazzi, S.; Riboni, N.; Erdal, N.; Hakkarainen, M.; Ilag, L.L.; Anzillotti, L.; Andreoli, R.; Marezza, F.; Moroni, F.; et al. Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta 2019, 202, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, R.; Simeoni, M.C.; Montesano, C.; Vannutelli, G.; Curini, R.; Sergi, M.; Compagnone, D. Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography–tandem mass spectrometry. Drug Test. Anal. 2018, 10, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Montesano, C.; Simeoni, M.C.; Curini, R.; Sergi, M.; Lo Sterzo, C.; Compagnone, D. Determination of illicit drugs and metabolites in oral fluid by microextraction on packed sorbent coupled with LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 3647–3658. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group for Forensic Toxicology. Scientific Working Group for Forensic Toxicology SWGTOX Standard Practices for Method Validation in Forensic Toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Montesano, C.; Di Ottavio, F.; Gregori, A.; Compagnone, D.; Sergi, M.; Dorrestein, P. Molecular Networking: A Useful Tool for the Identification of New Psychoactive Substances in Seizures by LC–HRMS. Front. Chem. 2020, 8, 572952. [Google Scholar] [CrossRef] [PubMed]
- Montesano, C.; Vincenti, F.; Fanti, F.; Marti, M.; Bilel, S.; Togna, A.R.; Gregori, A.; Di Rosa, F.; Sergi, M. Untargeted metabolic profiling of 4-fluoro-furanylfentanyl and isobutyrylfentanyl in mouse hepatocytes and urine by means of LC-HRMS. Metabolites 2021, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Montesano, C.; Babino, P.; Carboni, S.; Napoletano, S.; De Sangro, G.; Di Rosa, F.; Gregori, A.; Curini, R.; Sergi, M. Finding evidence at a crime scene: Sensitive determination of benzodiazepine residues in drink and food paraphernalia by HPLC-HRMS/MS. Forensic Chem. 2021, 23, 100327. [Google Scholar] [CrossRef]
- Brcak, M.; Beck, O.; Bosch, T.; Carmichael, D.; Fucci, N.; George, C.; Piper, M.; Salomone, A.; Schielen, W.; Steinmeyer, S.; et al. European guidelines for workplace drug testing in oral fluid. Drug Test. Anal. 2018, 10, 402–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomone, A.; Palamar, J.J.; Vincenti, M. Should NPS be included in workplace drug testing? Drug Test. Anal. 2020, 12, 191–194. [Google Scholar] [CrossRef] [PubMed]
Analyte | LOD (ng/mL) | LOQ (ng/mL) | Equation | R2 |
---|---|---|---|---|
Methoxyacetyl Norfentanyl | 0.10 | 0.50 | y = −2.2 × 10−4 + 5.0 × 10−2x | 0.993 |
Acetylnorfentanyl | 0.20 | 1.0 | y = −1.0 × 10−4 + 6.2 × 10−2x | 0.996 |
Norfentanyl | 0.20 | 0.50 | y = −1.5 × 10−4 + 8.0 × 10−2x | 0.995 |
+/−trans-3-methylnorfentanyl | 0.10 | 0.20 | y = −7.1 × 10−4 + 2.0 × 10−1x | 0.996 |
Remifentanyl | 0.10 | 0.20 | y = −1.1 × 10−4 + 5.0 × 10−2x | 0.994 |
Butyrylfentanil Carboxy Metabolite | 0.50 | 1.0 | y = −9.0 × 10−5 + 6.0 × 10−2x | 0.994 |
Valerylfentanyl Carboxy Metabolite | 0.20 | 0.50 | y = −1.2 × 10−4 + 7.6 × 10−2x | 0.994 |
Acetylfentanyl | 0.10 | 0.50 | y = −7.3 × 10−4 + 1.4 × 10−1x | 0.995 |
Ocfentanyl | 0.10 | 0.50 | y = −5.8 × 10−4 + 1.4 × 10−1x | 0.995 |
Beta-hydroxyfentanyl | 0.10 | 0.50 | y = −8.6 × 10−6 + 4.0 × 10−2x | 0.996 |
Alfentanyl | 0.10 | 0.50 | y = −1.8 × 10−4 + 4.9 × 10−2x | 0.994 |
Acrylfentanyl | 0.05 | 0.20 | y = −3.2 × 10−4 + 9.8 × 10−2x | 0.997 |
alfa-methylthiofentanyl | 0.10 | 0.20 | y = −1.6 × 10−2 + 5.0 × 10−2x | 0.997 |
Fentanyl | 0.05 | 0.10 | y = −4.7 × 10−4 + 9.3 × 10−2x | 0.995 |
4-ANPP | 0.05 | 0.50 | y = −3.8 × 10−5 + 7.6 × 10−2x | 0.997 |
+/−cis-3-methylthiofentanyl | 0.05 | 0.50 | y = −1.4 × 10−2 + 4.5 × 10−2x | 0.998 |
Furanylfentanyl | 0.05 | 0.10 | y = −9.0 × 10−4 + 1.4 × 10−1x | 0.994 |
+/−cis-3-methylfentanyl | 0.10 | 0.50 | y = −1.1 × 10−3 + 5.2 × 10−2x | 0.997 |
para-Fluorofentanyl | 0.20 | 1.0 | y = −4.1 × 10−1 + 1.1 × 10−1x | 0.994 |
ortho-Fluorofentanyl | 0.20 | 1.0 | y = −2.0 × 10−1 + 7.3 × 10−2x | 0.994 |
Despropionyl para-Fluorofentanyl | 0.10 | 0.50 | y = −1.4 × 10−3 + 1.5 × 10−1x | 0.995 |
alfa-methylfentanyl | 0.10 | 0.50 | y = −5.2 × 10−4 + 6.6 × 10−2x | 0.997 |
Carfentanyl | 0.20 | 0.50 | y = −1.4 × 10−3 + 6.4 × 10−2x | 0.996 |
Butyrylfentanyl | 0.10 | 0.50 | y = −4.5 × 10−4 + 1.2 × 10−1x | 0.997 |
Sufentanyl | 0.20 | 0.50 | y = −3.5 × 10−4 + 2.9 × 10−2x | 0.994 |
Analyte | Concentration (ng/mL) | Intraday Precision (%) | Interday Precision (%) | Accuracy (%) | Matrix Effect (%) | Recovery (%) |
---|---|---|---|---|---|---|
Methoxyacetyl Norfentanyl | 0.5 | 2 | 7 | −3 | 119 | 57 |
25 | 1 | 6 | 4 | 87 | 55 | |
250 | 3 | 7 | −9 | 101 | 57 | |
Acetyl Norfentanyl | 0.5 | 4 | 12 | 5 | 99 | 46 |
25 | 1 | 10 | 3 | 83 | 55 | |
250 | 3 | 11 | −4 | 105 | 56 | |
Norfentanyl | 0.5 | 3 | 11 | 3 | 104 | 54 |
25 | 0 | 5 | −4 | 87 | 69 | |
250 | 3 | 12 | −4 | 107 | 57 | |
+/−trans-3-methyl Norfentanyl | 0.5 | 1 | 7 | −3 | 81 | 62 |
25 | 2 | 2 | −2 | 82 | 76 | |
250 | 3 | 10 | −6 | 88 | 56 | |
Remifentanyl | 0.5 | 13 | 6 | 12 | 95 | 68 |
25 | 11 | 2 | 6 | 94 | 75 | |
250 | 9 | 10 | 9 | 118 | 68 | |
Butyrylfentanil Carboxy Metabolite | 0.5 | 1 | 8 | −9 | 111 | 59 |
25 | 2 | 5 | −4 | 87 | 63 | |
250 | 5 | 9 | −11 | 106 | 58 | |
Valerylfentanyl Carboxy Metabolite | 0.5 | 1 | 8 | 13 | 116 | 43 |
25 | 2 | 10 | 2 | 83 | 71 | |
250 | 4 | 11 | −2 | 104 | 62 | |
Acetylfentanyl | 0.5 | 4 | 10 | −9 | 115 | 54 |
25 | 4 | 8 | −10 | 107 | 84 | |
250 | 5 | 8 | 3 | 127 | 78 | |
Ocfentanyl | 0.5 | 0 | 7 | 17 | 96 | 73 |
25 | 1 | 8 | 11 | 91 | 81 | |
250 | 3 | 11 | 6 | 115 | 77 | |
Beta-hydroxyfentanyl | 0.5 | 4 | 8 | 12 | 95 | 76 |
25 | 3 | 7 | 2 | 89 | 80 | |
250 | 4 | 5 | 4 | 110 | 78 | |
Alfentanyl | 0.5 | 5 | 7 | 16 | 87 | 71 |
25 | 1 | 7 | 4 | 85 | 87 | |
250 | 4 | 5 | 7 | 86 | 80 | |
Acrylfentanyl | 0.5 | 4 | 11 | 2 | 99 | 73 |
25 | 2 | 9 | −3 | 96 | 82 | |
250 | 3 | 4 | 3 | 121 | 75 | |
alfa-methylthiofentanyl | 0.5 | 4 | 8 | 2 | 98 | 82 |
25 | 1 | 6 | 1 | 98 | 79 | |
250 | 3 | 7 | −1 | 113 | 78 | |
Fentanyl | 0.5 | 5 | 9 | −8 | 106 | 63 |
25 | 3 | 3 | −5 | 97 | 85 | |
250 | 3 | 6 | −1 | 117 | 77 | |
4-ANPP | 0.5 | 9 | 6 | −2 | 117 | 71 |
25 | 4 | 3 | −13 | 85 | 89 | |
250 | 3 | 7 | −7 | 117 | 69 | |
+/−cis-3-methylthiofentanyl | 0.5 | 3 | 9 | 2 | 101 | 81 |
25 | 2 | 9 | −3 | 105 | 78 | |
250 | 2 | 8 | −3 | 117 | 76 | |
Furanylfentanyl | 0.5 | 3 | 7 | 18 | 117 | 69 |
25 | 1 | 2 | 9 | 101 | 82 | |
250 | 4 | 10 | −1 | 118 | 79 | |
+/−cis-3-methylfentanyl | 0.5 | 7 | 7 | −2 | 98 | 73 |
25 | 1 | 5 | 4 | 85 | 79 | |
250 | 3 | 5 | −4 | 99 | 79 | |
para-Fluorofentanyl | 0.5 | 9 | 10 | 11 | 95 | 81 |
25 | 9 | 5 | 8 | 96 | 80 | |
250 | 2 | 2 | 18 | 115 | 77 | |
ortho-Fluorofentanyl | 0.5 | 9 | 7 | 11 | 99 | 79 |
25 | 9 | 8 | 8 | 97 | 79 | |
250 | 7 | 2 | 18 | 117 | 78 | |
Despropionyl para-Fluorofentanyl | 0.5 | 2 | 7 | −5 | 119 | 69 |
25 | 1 | 3 | 4 | 80 | 92 | |
250 | 4 | 2 | −8 | 114 | 71 | |
alfa-methylfentanyl | 0.5 | 7 | 6 | 9 | 107 | 75 |
25 | 2 | 6 | 6 | 101 | 80 | |
250 | 3 | 8 | −4 | 117 | 78 | |
Carfentanyl | 0.5 | 4 | 8 | 19 | 113 | 67 |
25 | 1 | 9 | 4 | 95 | 87 | |
250 | 3 | 9 | 2 | 115 | 80 | |
Butyrylfentanyl | 0.5 | 7 | 11 | 2 | 120 | 61 |
25 | 1 | 4 | 5 | 93 | 86 | |
250 | 4 | 2 | −3 | 114 | 77 | |
Sufentanyl | 0.5 | 8 | 9 | −3 | 99 | 74 |
25 | 2 | 6 | 3 | 99 | 82 | |
250 | 2 | 5 | −5 | 120 | 77 |
Analyte | Population Mean | Standard Deviation of the Population | Measurement Result of Our Laboratory | Z-Score |
---|---|---|---|---|
Fentanyl | 38.10 | 12.99 | 42.45 | 0.33 |
Norfentanyl | 81.65 | 14.03 | 76.08 | −0.40 |
Acetylfentanyl | 31.44 | 14.52 | 38.95 | 0.52 |
Acetylnorfentanyl | 64.36 | 32.27 | 70.30 | 0.18 |
Carfentanyl | 39.69 | 17.10 | 45.35 | 0.33 |
Analyte | Formula | Precursor Ion (m/z) | Qualifier Ion (m/z) | Quantifier Ion (m/z) | tR (min) |
---|---|---|---|---|---|
Methoxyacetyl Norfentanyl | C14H20N2O2 | 249.1596 | 166.0862 | 84.0813 | 3.80 |
Acetylnorfentanyl | C13H18N2O | 219.1490 | 136.0756 | 84.0812 | 3.88 |
Norfentanyl | C14H20N2O | 233.1645 | 177.1384 | 84.0812 | 4.55 |
+/−trans-3-methylnorfentanyl | C15H22N2O | 247.1803 | 150.0913 | 98.0968 | 5.31 |
Remifentanyl | C20H28N2O5 | 377.2065 | 113.0599 | 228.1229 | 5.62 |
Butyrylfentanil Carboxy Metabolite | C23H28N2O3 | 381.2621 | 363.2886 | 345.2418 | 5.98 |
Valerylfentanyl Carboxy Metabolite | C24H30N2O3 | 395.2329 | 246.1487 | 335.2114 | 6.16 |
Acetylfentanyl | C21H26N2O | 323.2114 | 105.0700 | 188.1432 | 6.19 |
Ocfentanyl | C22H27FN2O2 | 371.2123 | 105.0700 | 188.1432 | 6.30 |
Beta-hydroxyfentanyl | C22H28N2O2 | 353.2220 | 335.2114 | 204.1382 | 6.35 |
Alfentanyl | C21H32N6O3 | 417.2607 | 268.1765 | 197.1283 | 7.15 |
Acrylfentanyl | C22H26N2O | 335.1833 | 105.0700 | 188.1432 | 7.16 |
alfa-methylthiofentanyl | C21H28N2OS | 357.1990 | 259.1802 | 208.1153 | 7.16 |
Fentanyl | C22H28N2O | 337.2269 | 105.0700 | 188.1432 | 7.41 |
4-ANPP | C19H24N2 | 281.2008 | 150.0266 | 188.1433 | 7.64 |
+/−cis-3-methylthiofentanyl | C21H28N2OS | 357.1990 | 259.1802 | 208.1153 | 7.74 |
Furanylfentanyl | C24H26N2O2 | 375.2061 | 105.0700 | 188.1431 | 8.03 |
+/−cis-3-methylfentanyl | C23H30N2O | 351.2427 | 105.0700 | 202.1588 | 8.07 |
para-Fluorofentanyl | C22H27FN2O | 355.2174 | 105.0700 | 188.1432 | 8.15 |
ortho-Fluorofentanyl | C22H27FN2O | 355.2174 | 105.0700 | 188.1432 | 8.35 |
Despropionyl para-Fluorofentanyl | C19H23FN2 | 299.1926 | 105.0700 | 188.1432 | 8.80 |
alfa-methylfentanyl | C23H30N2O | 351.2427 | 119.0857 | 202.1588 | 8.82 |
Carfentanyl | C24H30N2O3 | 393.2269 | 105.0700 | 188.1432 | 9.16 |
Butyrylfentanyl | C23H30N2O | 351.2427 | 105.0700 | 188.1432 | 9.34 |
Sufentanyl | C22H30N2O2S | 387.2093 | 238.1257 | 355.1833 | 9.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincenti, F.; Montesano, C.; Pirau, S.; Gregori, A.; Di Rosa, F.; Curini, R.; Sergi, M. Simultaneous Quantification of 25 Fentanyl Derivatives and Metabolites in Oral Fluid by Means of Microextraction on Packed Sorbent and LC–HRMS/MS Analysis. Molecules 2021, 26, 5870. https://doi.org/10.3390/molecules26195870
Vincenti F, Montesano C, Pirau S, Gregori A, Di Rosa F, Curini R, Sergi M. Simultaneous Quantification of 25 Fentanyl Derivatives and Metabolites in Oral Fluid by Means of Microextraction on Packed Sorbent and LC–HRMS/MS Analysis. Molecules. 2021; 26(19):5870. https://doi.org/10.3390/molecules26195870
Chicago/Turabian StyleVincenti, Flaminia, Camilla Montesano, Svetlana Pirau, Adolfo Gregori, Fabiana Di Rosa, Roberta Curini, and Manuel Sergi. 2021. "Simultaneous Quantification of 25 Fentanyl Derivatives and Metabolites in Oral Fluid by Means of Microextraction on Packed Sorbent and LC–HRMS/MS Analysis" Molecules 26, no. 19: 5870. https://doi.org/10.3390/molecules26195870
APA StyleVincenti, F., Montesano, C., Pirau, S., Gregori, A., Di Rosa, F., Curini, R., & Sergi, M. (2021). Simultaneous Quantification of 25 Fentanyl Derivatives and Metabolites in Oral Fluid by Means of Microextraction on Packed Sorbent and LC–HRMS/MS Analysis. Molecules, 26(19), 5870. https://doi.org/10.3390/molecules26195870