Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis of Layered Precursor Zeolites
2.2. Synthesis of IEZ-ABC Zeolites
3. Physicochemical Characterizations
3.1. Investigation of Interlayer Expansion with XRD and N2 Adsorption
3.2. Investigation of Interlayer Expansion with Electron Microscopy
3.3. Investigation of Interlayer Expansion by Infrared Spectroscopy and Contact Angle
3.4. Investigation of Interlayer Expansion by 13C and 29Si NMR Spectroscopy
3.5. Investigation of Interlayer Expansion with UV-vis and X-ray Photoelectron Spectroscopy
4. Possible Mechanism
5. Catalytic Properties
5.1. Acidity Characterization
5.2. Catalytic Measurements
5.3. Adsorption of Metal Cations
6. The ADOR Synthesis of New Zeolites
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pfriem, N.; Hintermeier, P.H.; Eckstein, S.; Kim, S.; Liu, Q.; Shi, H.; Milakovic, L.; Liu, Y.; Haller, G.L.; Baráth, E.; et al. Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science 2021, 372, 952–957. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Wang, L.; Cui, X.; Liu, X.; Wong, S.S.; An, H.; Yan, N.; Xie, J.; Yu, C.; et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science 2021, 373, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nat. Cell Biol. 2021, 592, 551–557. [Google Scholar] [CrossRef]
- Shen, B.; Chen, X.; Wang, H.; Xiong, H.; Bosch, E.G.T.; Lazić, I.; Cai, D.; Qian, W.; Jin, S.; Liu, X.; et al. A single-molecule van der Waals compass. Nat. Cell Biol. 2021, 592, 541–544. [Google Scholar] [CrossRef]
- Lee, H.; Shin, J.; Lee, K.; Choi, H.J.; Mayoral, A.; Kang, N.Y.; Hong, S.B. Synthesis of thermally stable SBT and SBS/SBT intergrowth zeolites. Science 2021, 373, 104–107. [Google Scholar] [CrossRef]
- Davis, M.E. Ordered porous materials for emerging applications. Nat. Cell Biol. 2002, 417, 813–821. [Google Scholar] [CrossRef]
- Marler, B.; Ströter, N.; Gies, H. The structure of the new pure silica zeolite RUB-24, Si32O64, obtained by topotactic condensation of the intercalated layer silicate RUB-18. Microporous Mesoporous Mater. 2005, 83, 201–211. [Google Scholar] [CrossRef]
- Eliasova, P.; Opanasenko, M.; Wheatley, P.S.; Shamzhy, M.; Mazur, M.; Nachtigall, P.; Roth, W.J.; Morris, R.E.; Cejka, J. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015, 44, 7177–7206. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.E.; Lobo, R. Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4, 756–768. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Zhu, L.; Zhou, E.; Shen, C. Advances in the Synthesis of Ferrierite Zeolite. Molecules 2020, 25, 3722. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Meng, X. (Eds.) Green chemistry and sustainable technology. In Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Oumi, Y.; Takeoka, T.; Ikeda, T.; Yokoyama, T.; Sano, T. Convenient conversion of crystalline layered silicate octosilicate into RWR-type zeolite by acetic acid intercalation. New J. Chem. 2007, 31, 593–597. [Google Scholar] [CrossRef]
- Ren, L.; Guo, Q.; Orazov, M.; Xu, D.; Politi, D.; Kumar, P.; Alhassan, S.M.; Mkhoyan, K.; Sidiras, D.; Davis, M.E.; et al. Pillared Sn-MWW Prepared by a Solid-State-Exchange Method and its Use as a Lewis Acid Catalyst. ChemCatChem 2016, 8, 1274–1278. [Google Scholar] [CrossRef] [Green Version]
- Roth, W.J.; Čejka, J.; Millini, R.; Montanari, E.; Gil, B.; Kubu, M. Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chem. Mater. 2015, 27, 4620–4629. [Google Scholar] [CrossRef]
- Zanardi, S.; Alberti, A.; Cruciani, G.; Corma, A.; Fornes, V.; Brunelli, M. Crystal Structure Delamination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angew. Chem. Int. Ed. 2004, 43, 4933–4937. [Google Scholar] [CrossRef]
- Wu, P.; Nuntasri, D.; Ruan, J.; Liu, Y.; He, M.; Fan, W.; Terasaki, A.O.; Tatsumi, T. Delamination of Ti-MWW and High Efficiency in Epoxidation of Alkenes with Various Molecular Sizes. J. Phys. Chem. B 2004, 108, 19126–19131. [Google Scholar] [CrossRef]
- Wang, Y.X.; Gies, H.; Lin, J.H. Crystal Structure of the New Layer Silicate RUB-39 and Its Topotactic Condensation to a Microporous Zeolite with Framework Type RRO. Chem. Mater. 2007, 19, 4181–4188. [Google Scholar] [CrossRef]
- Wang, Y.X.; Gies, H.; Marler, B.; Müller, U. Synthesis and Crystal Structure of Zeolite RUB-41 Obtained as Calcination Product of a Layered Precursor: A Systematic Approach to a New Synthesis Route. Chem. Mater. 2005, 17, 43–49. [Google Scholar] [CrossRef]
- Gies, H.; Müller, U.; Yilmaz, B.; Tatsumi, T.; Xie, B.; Xiao, F.-S.; Bao, X.; Zhang, W.; De Vos, D. Interlayer Expansion of the Layered Zeolite Precursor RUB-39: A Universal Method To Synthesize Functionalized Microporous Silicates. Chem. Mater. 2011, 23, 2545–2554. [Google Scholar] [CrossRef]
- Kiba, S.; Itagaki, T.; Nakato, T.; Kuroda, K. Interlayer modification of a layered H-octosilicate (H-RUB-18) with methanol: Formation of a highly ordered organosilicate nanohybrid. J. Mater. Chem. 2010, 20, 3202–3210. [Google Scholar] [CrossRef]
- Corma, A.; Fornes, V.; Pergher, S.; Maesen, T.L.M.; Buglass, J.G. Delaminated zeolite precursors as selective acidic catalysts. Nat. Cell Biol. 1998, 396, 353–356. [Google Scholar] [CrossRef]
- Marler, B.; Gies, H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: A review. Eur. J. Miner. 2012, 24, 405–428. [Google Scholar] [CrossRef]
- Blake, A.J.; Franklin, K.R.; Lowe, B.M. Preparation and properties of piperazine silicate (EU-19) and s silica polymorph (EU-20). J. Chem. Soc. Dalton Trans. 1988, 2513–2517. [Google Scholar] [CrossRef]
- Dorset, D.L.; Kennedy, G.J. Crystal Structure of MCM-65: An Alternative Linkage of Ferrierite Layers. J. Phys. Chem. B 2004, 108, 15216–15222. [Google Scholar] [CrossRef]
- Ikeda, T.; Akiyama, Y.; Oumi, Y.; Kawai, A.; Mizukami, F. The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angew. Chem. Int. Ed. 2004, 43, 4892–4896. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.M.; Miller, M.A.; Koster, S.C.; Gatter, M.G.; Benin, A.I.; Willis, R.R.; Lewis, G.J.; Broach, R.W. UZM-13, UZM-17, UZM-19 and UZM-25: Synthesis and structure of new layered precursors and a zeolite discovered via combinatorial chemistry techniques. Stud. Surf. Sci. Catal. 2007, 170A, 338–346. [Google Scholar] [CrossRef]
- Marler, B.; Wang, Y.; Song, J.; Gies, H. RUB-36, a new layer silicate with ferrierite-type layers which can be condensated to form a highly ordered CDO-type zeolite. Book of Abstracts. In Proceedings of the 15th International Zeolite Conference, Beijing, China, 12–17 August 2007; pp. 599–600. [Google Scholar]
- Ikeda, T.; Kayamori, S.; Mizukami, F. Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. J. Mater. Chem. 2009, 19, 5518–5525. [Google Scholar] [CrossRef]
- Schreyeck, L.; Caullet, P.; Mougenel, J.; Guth, J.; Marler, B. PREFER: A new layered (alumino) silicate precursor of FER-type zeolite. Microporous Mater. 1996, 6, 259–271. [Google Scholar] [CrossRef]
- Leonowicz, M.E.; Lawton, J.A.; Lawton, S.L.; Rubin, M.K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science 1994, 264, 1910–1913. [Google Scholar] [CrossRef] [PubMed]
- Camblor, M.; Corma, A.; Díaz-Cabañas, M.-J.; Baerlocher, C. Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. J. Phys. Chem. B 1998, 102, 44–51. [Google Scholar] [CrossRef]
- Shamzhy, M.; Gil, B.; Opanasenko, M.; Roth, W.J.; Čejka, J. MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catal. 2021, 11, 2366–2396. [Google Scholar] [CrossRef]
- Moteki, T.; Chaikittisilp, W.; Shimojima, A.; Okubo, T. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precusor. J. Am. Chem. Soc. 2008, 130, 15780–15781. [Google Scholar] [CrossRef]
- Henkelis, S.E.; Mazur, M.; Rice, C.M.; Wheatley, P.S.; Ashbrook, S.E.; Morris, R.E. Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites. J. Am. Chem. Soc. 2019, 141, 4453–4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banno, S.; Komura, K. Large Crystals Synthesis of Siliceous Layered Zeolitic PLS-1 and CDS-1 Zeolite by Dry Gel Conversion. Method Cryst. Res. Technol. 2018, 53, 1800036. [Google Scholar] [CrossRef]
- Wu, P.; Ruan, J.; Wang, L.; Wu, L.; Wang, Y.; Liu, Y.; Fan, W.; He, M.; Terasaki, O.; Tatsumi, T. Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. J. Am. Chem. Soc. 2008, 130, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Roth, W.; Nachtigall, P.; Morris, R.; Čejka, J. Two-Dimensional Zeolites: Current Status and Perspectives. Chem. Rev. 2014, 114, 4807–4837. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wu, P.; Namba, S.; Tatsumi, T. A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angew. Chem. Int. Ed. 2003, 43, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, T.; Tatsumi, T. Interlayer Expansion of the Layered Zeolites. In Zeolites in Sustainable Chemistry; Springer: Berlin/Heidelberg, Germany, 2016; pp. 77–100. [Google Scholar]
- Bian, C.; Wu, Q.; Zhang, J.; Chen, F.; Pan, S.; Wang, L.; Meng, X.; Müller, U.; Feyen, M.; Yilmaz, B.; et al. A new zeolite formed from interlayer expansion of the precursor COK-5. Microporous Mesoporous Mater. 2015, 214, 204–209. [Google Scholar] [CrossRef]
- Martínez-Franco, R.; Paris, C.; Martínez-Triguero, J.; Moliner, M.; Corma, A. Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous Mesoporous Mater. 2017, 246, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Jiang, J.-G.; Zhang, K.; Wu, P. Synthesis of Novel Titanosilicate Catalysts by Simultaneous Isomorphous Substitution and Interlayer Expansion of Zeolitic Layered Silicates. Chem. Mater. 2016, 28, 5295–5303. [Google Scholar] [CrossRef]
- Kawai, A.; Urabe, Y.; Itoh, T.; Mizukami, F. Immobilization of lysozyme on the layered silicate RUB-15. Mater. Chem. Phys. 2010, 122, 269–272. [Google Scholar] [CrossRef]
- Schulman, E.; Wu, W.; Liu, D. Two-Dimensional Zeolite Materials: Structural and Acidity Properties. Materials 2020, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Millini, R.; Carluccio, L.C.; Carati, A.; Bellussi, G.; Perego, C.; Cruciani, G.; Zanardi, S. ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous Mesoporous Mater. 2004, 74, 59–71. [Google Scholar] [CrossRef]
- Juttu, G.G.; Lobo, R.F. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Microporous Mesoporous Mater. 2000, 40, 9–23. [Google Scholar] [CrossRef]
- Inagaki, S.; Yokoi, T.; Kubota, Y.; Tatsumi, T. Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moieties. Chem. Commun. 2007, 5188–5190. [Google Scholar] [CrossRef]
- Ruan, J.; Wu, P.; Slater, B.; Terasaki, O. Structure Elucidation of the Highly Active Titanosilicate Catalyst Ti-YNU-1. Angew. Chem. Int. Ed. 2005, 44, 6719–6723. [Google Scholar] [CrossRef]
- Bian, C.; Wang, X.; Yu, L.; Zhang, F.; Zhang, J.; Fei, Z.; Qiu, J.; Zhu, L. Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion. Crystals 2020, 10, 530. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Xie, B.; Zhang, H.; Wang, L.; Meng, X.; Zhang, W.; Bao, X.; Yilmaz, B.; Müller, U.; Gies, H.; et al. Interlayer-Expanded Microporous Titanosilicate Catalysts with Functionalized Hydroxyl Groups. ChemCatChem 2011, 3, 1442–1446. [Google Scholar] [CrossRef]
- Gies, H.; Feyen, M.; De Baerdemaeker, T.; De Vos, D.E.; Yilmaz, B.; Müller, U.; Meng, X.; Xiao, F.-S.; Zhang, W.; Yokoi, T.; et al. Interlayer expansion using metal-linker units: Crystalline microporous silicate zeolites with metal centers on specific framework sites. Microporous Mesoporous Mater. 2016, 222, 235–240. [Google Scholar] [CrossRef]
- Gies, H.; Müller, U.; Yilmaz, B.; Feyen, M.; Tatsumi, T.; Imai, H.; Zhang, H.; Xie, B.; Xiao, F.-S.; Bao, X.; et al. Interlayer Expansion of the Hydrous Layer Silicate RUB-36 to a Functionalized, Microporous Framework Silicate: Crystal Structure Analysis and Physical and Chemical Characterization. Chem. Mater. 2012, 24, 1536–1545. [Google Scholar] [CrossRef]
- Yilmaz, B.; Müller, U.; Feyen, M.; Zhang, H.; Xiao, F.-S.; De Baerdemaeker, T.; Tijsebaert, B.; Jacobs, P.; De Vos, D.; Zhang, W.; et al. New zeolite Al-COE-4: Reaching highly shape-selective catalytic performance through interlayer expansion. Chem. Commun. 2012, 48, 11549–11551. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-G.; Jia, L.; Yang, B.; Xu, H.; Wu, P. Preparation of Interlayer-Expanded Zeolite from Lamellar Precursor Nu-6(1) by Silylation. Chem. Mater. 2013, 25, 4710–4718. [Google Scholar] [CrossRef]
- Bian, C.; Wu, Q.; Zhang, J.; Pan, S.; Wang, L.; Meng, X.; Xiao, F.-S. Interlayer expansion of the layered zeolite precursor COK-5 with Sn(acac)2Cl2. J. Energy Chem. 2015, 24, 642–645. [Google Scholar] [CrossRef]
- Ruan, J.; Wu, P.; Slater, B.; Zhao, Z.; Wu, L.; Terasaki, O. Structural Characterization of Interlayer Expanded Zeolite Prepared From Ferrierite Lamellar Precursor. Chem. Mater. 2009, 21, 2904–2911. [Google Scholar] [CrossRef]
- Yang, B.-T.; Wu, P. Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8. Chin. Chem. Lett. 2014, 25, 1511–1514. [Google Scholar] [CrossRef]
- Liao, X.; Chen, G.; Liu, G.; Sun, L.; Huo, W.; Zhang, W.; Jia, M. Synthesis, characterization of COK-5 with different Si/Al ratios and their catalytic properties for the tert-butylation of phenol. Microporous Mesoporous Mater. 2009, 124, 210–217. [Google Scholar] [CrossRef]
- Kirschhock, C.; Bons, A.-J.; Mertens, M.; Ravishankar, R.; Mortier, W.; Jacobs, P.; Martens, J. Characterization of COK-5, Member of a New Family of Zeolite Material with Multiple Channel Systems. Chem. Mater. 2005, 17, 5618–5624. [Google Scholar] [CrossRef]
- Wu, P.; Tatsumi, T. A New Generation of Titanosilicate Catalyst: Preparation and Application to Liquid-Phase Epoxidation of Alkenes. Catal. Surv. Asia 2004, 8, 137–148. [Google Scholar] [CrossRef]
- Wu, P.; Tatsumi, T.; Komatsu, A.T.; Yashima, T. A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. J. Phys. Chem. B 2001, 105, 2897–2905. [Google Scholar] [CrossRef]
- Xu, L.; Sun, J. Recent Advances in the Synthesis and Application of Two-Dimensional Zeolites. Adv. Energy Mater. 2016, 6, 1600441. [Google Scholar] [CrossRef]
- Burton, A.; Accardi, R.J.; Lobo, R.F.; Falcioni, M.; Deem, M.W. MCM-47: A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chem. Mater. 2000, 12, 2936–2942. [Google Scholar] [CrossRef]
- Xu, H.; Yang, B.; Jiang, J.-G.; Jia, L.; He, M.; Wu, P. Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Microporous Mesoporous Mater. 2013, 169, 88–96. [Google Scholar] [CrossRef]
- De Baerdemaeker, T.; Gies, H.; Yilmaz, B.; Müller, U.; Feyen, M.; Xiao, F.-S.; Zhang, W.; Yokoi, T.; Bao, X.; De Vos, D.E. A new class of solid Lewis acid catalysts based on interlayer expansion of layered silicates of the RUB-36 type with heteroatoms. J. Mater. Chem. A 2014, 2, 9709–9717. [Google Scholar] [CrossRef]
- Fan, W.; Wu, P.; Namba, S.; Tatsumi, T. Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. J. Catal. 2006, 243, 183–191. [Google Scholar] [CrossRef]
- Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau-Corcos, C.; Hinterstein, M.; Taulelle, F.; et al. Design of zeolite by inverse sigma transformation. Nat. Mater. 2012, 11, 1059–1064. [Google Scholar] [CrossRef]
- Roth, W.; Nachtigall, P.; Morris, R.; Wheatley, P.S.; Seymour, V.R.; Ashbrook, S.; Chlubná, P.; Grajciar, L.; Položij, M.; Zukal, A.; et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013, 5, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Tijsebaert, B.; Henry, M.; Gies, H.; Xiao, F.-S.; Zhang, W.; Bao, X.; Imai, H.; Tatsumi, T.; Müller, U.; Yilmaz, B.; et al. Exploring the void structure and activity of RUB-39 based expanded materials using the hydroconversion of decane. J. Catal. 2011, 282, 47–53. [Google Scholar] [CrossRef]
- Mochizuki, D.; Shimojima, A.; Kuroda, K. Formation of a New Crystalline Silicate Structure by Grafting Dialkoxysilyl Groups on Layered Octosilicate. J. Am. Chem. Soc. 2002, 124, 12082–12083. [Google Scholar] [CrossRef] [PubMed]
- Lawton, S.L.; Fung, A.S.; Kennedy, G.J.; Alemany, L.B.; Chang, C.D.; Hatzikos, G.H.; Lissy, D.N.; Rubin, M.K.; Timken, H.-K.C.; Steuernagel, A.S.; et al. Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. J. Phys. Chem. 1996, 100, 3788–3798. [Google Scholar] [CrossRef]
- Joo, J.; Hyeon, T.; Hyeon-Lee, J. Fabrication of novel mesoporous dimethylsiloxane-incorporated silicas. Chem. Commun. 2000, 1487–1488. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nohara, Y.; Domon, Y.; Takahashi, Y.; Sakata, Y.; Plévert, J.; Tatsumi, T. Organic−Inorganic Hybrid Zeolites with Framework Organic Groups. Chem. Mater. 2005, 17, 3913–3920. [Google Scholar] [CrossRef]
- Inagaki, S.; Tatsumi, T. Vapourr-phase silylation for the construction of monomeric silica puncheons in the interlayer micropores of Al-MWW layered precusor. Chem. Commun. 2009, 2583–2585. [Google Scholar] [CrossRef]
- Fan, W.; Wei, S.; Yokoi, T.; Inagaki, S.; Li, J.; Wang, J.; Kondo, J.; Tatsumi, T. Synthesis, characterization, and catalytic properties of H-Al-YNU-1 and H-Al-MWW with different Si/Al ratios. J. Catal. 2009, 266, 268–278. [Google Scholar] [CrossRef]
- Vicente, G.; Melero, J.A.; Morales, G.; Paniagua, M.; Martín, E. Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chem. 2010, 12, 899–907. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Wang, X.; Zhang, B.; Ji, W.; Meng, X.; Li, J.; Su, D.S.; Bao, X.; Xiao, F.-S. Creation of Brønsted acid sites on Sn-based solid catalysts for the conversion of biomass. J. Mater. Chem. A 2014, 2, 3725–3729. [Google Scholar] [CrossRef] [Green Version]
- da Silva, C.X.A.; Goncalves, V.L.C.; Mota, C.J.A. Water-tolerant zeolite catalyst for the acetalisation of glycerol. Green Chem. 2009, 11, 38–41. [Google Scholar] [CrossRef]
- Zi, W.-W.; Zhang, J.; Cai, X.-S.; Jiao, F.; Du, H.-B. Synthesis and characterization of a layered aluminosilicate NUD-11 and its transformation to a 3D stable zeolite. Dalton Trans. 2020, 49, 11682–11688. [Google Scholar] [CrossRef]
- Woolery, G.; Alemany, L.; Dessau, R.; Chester, A. Spectroscopic evidence for the presence of internal silanols in highly siliceous ZSM-5. Zeolites 1986, 6, 14–16. [Google Scholar] [CrossRef]
- Yang, B.; Cui, T.; Chen, Y.; Wen, L. Preparation and catalytic properties of a novel aluminosilicate zeolite with intersecting 14*12-Ring pore sizes. Microporous Mesoporous Mater. 2020, 303, 110251. [Google Scholar] [CrossRef]
- Engelhardt, G.; Michel, D. High Resolution Solid State NMR of Silicates and Zeolites; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Zhao, Z.; Li, X.; Li, S.; Xu, S.; Bao, X.; Bilge, Y.; Andrei-Nicolae, P.; Ulrich, M.; Zhang, W. Structural investigation of interlayer-expanded zeolite by hyperpolarized 129Xe and 1H NMR spectroscopy. Microporous Mesoporous Mater. 2019, 288, 109555. [Google Scholar] [CrossRef]
- Leroy, C.; Bryce, D.L. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 160–199. [Google Scholar] [CrossRef] [PubMed]
- Umamaheswari, V.; Böhlmann, W.; Pöppl, A.; Vinu, A.; Hartmann, M. Spectroscopic characterization of iron-containing MCM-58. Microporous Mesoporous Mater. 2006, 89, 47–57. [Google Scholar] [CrossRef]
- Hensen, E.; Zhu, Q.; Janssen, R.; Magusin, P.; Kooyman, P.; van Santen, R. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites: 1. On the role of iron and aluminum. J. Catal. 2005, 233, 123–135. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Groen, J.; Brückner, A.; Kumar, M.; Bentrup, U.; Debbagh, M.; Villaescusa, L. Evolution of isomorphously substituted iron zeolites during activation: Comparison of Fe-beta and Fe-ZSM-5. J. Catal. 2005, 232, 318–334. [Google Scholar] [CrossRef]
- Bordiga, S.; Buzzoni, R.; Geobaldo, F.; Lamberti, C.; Giamello, E.; Zecchina, A.; Leofanti, G.; Petrini, G.; Tozzola, G.; Vlaic, G. Structure and Reactivity of Framework and Extraframework Iron in Fe-Silicalite as Investigated by Spectroscopic and Physicochemical Methods. J. Catal. 1996, 158, 486–501. [Google Scholar] [CrossRef]
- Kumar, M.S.; Schwidder, M.; Grunert, W.; Brückner, A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: New insights by a combined EPR and UV/VIS spectroscopic approach. J. Catal. 2004, 227, 384–397. [Google Scholar] [CrossRef]
- Tang, B.; Dai, W.; Wu, G.; Guan, N.; Li, L.; Hunger, M. Improved Postsynthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides. ACS Catal. 2014, 4, 2801–2810. [Google Scholar] [CrossRef]
- Pachamuthu, M.P.; Shanthi, K.; Luque, R.; Ramanathan, A. SnTUD-1: A solid acid catalyst for three component coupling reactions at room temperature. Green Chem. 2013, 15, 2158. [Google Scholar] [CrossRef]
- Luo, H.Y.; Bui, L.; Gunther, W.R.; Min, E.; Román-Leshkov, Y. Synthesis and Catalytic Activity of Sn-MFI Nanosheets for the Baeyer–Villiger Oxidation of Cyclic Ketones. ACS Catal. 2012, 2, 2695–2699. [Google Scholar] [CrossRef]
- Niphadkar, P.S.; Joshi, P.N. Oxyanion-Induced Hydrothermal Crystallization of Sn-Beta Molecular Sieve in Fluoride Medium from Unseeded Gel. Adv. Porous Mater. 2015, 2, 204–211. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Zhou, D.; Tian, D.; Shi, C.; Müller, U.; Feyen, M.; Gies, H.; Xiao, F.-S.; De Vos, D.; et al. Structural stability and Lewis acidity of tetravalent Ti, Sn, or Zr-linked interlayer-expanded zeolite COE-4: A DFT study. Microporous Mesoporous Mater. 2015, 218, 160–166. [Google Scholar] [CrossRef]
- Khandan, N.; Kazemeini, M.; Aghaziarati, M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether. Appl. Catal. A Gen. 2008, 349, 6–12. [Google Scholar] [CrossRef]
- Mallesham, B.; Sudarsanam, P.; Reddy, B.M. Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Catal. Sci. Technol. 2014, 4, 803–813. [Google Scholar] [CrossRef]
- De Baerdemaeker, T.; Vandebroeck, W.; Gies, H.; Yilmaz, B.; Müller, U.; Feyen, M.; De Vos, D. Shape-selective organic–inorganic zeolitic catalysts prepared via interlayer expansion. Catal. Today 2014, 235, 169–175. [Google Scholar] [CrossRef]
- Ge, P.; Luo, Y.; Huang, Q.; Chen, X.; Hu, H. Synthesis of ERB-1 by a steam-environment crystallization method and further application in the post-synthesis of Ti-MWW zeolite. Appl. Catal. A Gen. 2018, 564, 218–225. [Google Scholar] [CrossRef]
- Inagaki, S.; Imai, H.; Tsujiuchi, S.; Yakushiji, H.; Yokoi, T.; Tatsumi, T. Enhancement of catalytic properties of interlayer-expanded zeolite Al-MWW via the control of interlayer silylation conditions. Microporous Mesoporous Mater. 2011, 142, 354–362. [Google Scholar] [CrossRef]
- Yang, B.; Cui, T.; Zhou, Y. Preparation of an extra-large pore titanosilicate with 14 × 12-ring channels and its catalytic performance in epoxidation. J. Porous Mater. 2021, 28, 171–181. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, J.-G.; Xu, H.; Liu, Y.; Peng, H.; Wu, P. Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Appl. Catal. A Gen. 2013, 455, 107–113. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yang, S.-T.; Park, D.R.; Song, I.K.; Jung, K.-E.; Ahn, W.-S. Ti-MWW Synthesis and Catalytic Applications in Partial Oxidation Reactions. Top. Catal. 2010, 53, 470–478. [Google Scholar] [CrossRef]
- Yoshioka, M.; Yokoi, T.; Tatsumi, T. Effectiveness of the reversible structural conversion of MWW zeolite for preparation of interlayer-expanded Ti-MWW with high catalytic performance in olefin epoxidation. Microporous Mesoporous Mater. 2014, 200, 11–18. [Google Scholar] [CrossRef]
- Přech, J. Catalytic performance of advanced titanosilicate selective oxidation catalysts: A review. Catal. Rev. 2018, 60, 71–131. [Google Scholar] [CrossRef]
- Wu, P.; Kubota, Y.; Yokoi, T. A Career in Catalysis: Takashi Tatsumi. ACS Catal. 2013, 4, 23–30. [Google Scholar] [CrossRef]
- Roth, W.J.; Makowski, W.; Marszalek, B.; Michorczyk, P.; Skuza, W.; Gil, B. Activity enhancement of zeolite MCM-22 by interlayer expansion enabling higher Ce loading and room temperature CO oxidation. J. Mater. Chem. A 2014, 2, 15722–15725. [Google Scholar] [CrossRef] [Green Version]
- Mazur, M.; Arévalo-López, A.M.; Wheatley, P.S.; Bignami, G.P.M.; Ashbrook, S.E.; Morales-García, Á.; Nachtigall, P.; Attfield, J.P.; Čejka, J.; Morris, R.E. Pressure-induced chemistry for the 2D to 3D transformation of zeolites. J. Mater. Chem. A 2017, 6, 5255–5259. [Google Scholar] [CrossRef] [Green Version]
- Trachta, M.; Bludský, O.; Čejka, J.; Morris, R.E.; Nachtigall, P. From Double-Four-Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem 2014, 15, 2972–2976. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.; Bignami, G.P.M.; Tian, Y.; Navarro, M.; Firth, D.S.; Čejka, J.; Wheatley, P.S.; Dawson, D.; Slawinski, W.A.; Wragg, D.S.; et al. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nat. Chem. 2017, 9, 1012–1018. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, P.S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W.; Seymour, V.R.; Dawson, D.; Ashbrook, S.; Pinar, A.B.; McCusker, L.B.; Opanasenko, M.; et al. Zeolites with Continuously Tuneable Porosity. Angew. Chem. 2014, 126, 13426–13430. [Google Scholar] [CrossRef]
- Mazur, M.; Wheatley, P.S.; Navarro, M.; Roth, W.J.; Polozij, M.; Mayoral, A.; Eliasova, P.; Nachtigall, P.; Cejka, J.; Morris, R.E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016, 8, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Kasneryk, V.; Shamzhy, M.; Opanasenko, M.; Wheatley, P.S.; Morris, S.; Russell, S.E.; Mayoral, A.; Trachta, M.; Čejka, J.; Morris, R.E. Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angew. Chem. Int. Ed. 2017, 56, 4324–4327. [Google Scholar] [CrossRef] [Green Version]
- Kasneryk, V.; Opanasenko, M.; Shamzhy, M.; Musilová, Z.; Avadhut, Y.S.; Hartmann, M.; Čejka, J. Consecutive interlayer disassembly–reassembly during alumination of UOV zeolites: Insight into the mechanism. J. Mater. Chem. A 2017, 5, 22576–22587. [Google Scholar] [CrossRef]
- Firth, D.S.; Morris, S.A.; Wheatley, P.S.; Russell, S.E.; Slawin, A.M.Z.; Dawson, D.M.; Mayoral, A.; Opanasenko, M.; Polozij, M.; Cejka, J.; et al. Assembly-DisassemblyOrganization-Reassembly Synthesis of Zeolites Based on CFI-Type Layers. Chem. Mater. 2017, 29, 5605–5611. [Google Scholar] [CrossRef] [Green Version]
Layered Silicate | Zeolite | Zeolite Framework Type, Degree of Order | Reference |
---|---|---|---|
EU-19 | EU-20 | CAS, disordered | [23] |
MCM-65 (as made) | MCM-65 (calcined) | CDO, fair ordered | [24] |
PLS-1 | CDS-1 | [25] | |
UZM-13, UZM-17, UZM-19 | UZM-25 | CDO, well ordered | [26] |
RUB-36, RUB-38, RUB-48 | RUB-37 | [27] | |
PLS-4 | / | [28] | |
PREFER | Ferrierite | FER, well ordered | [29] |
PLS-3 | CDS-3 | [28] | |
MCM-22 precursor | MCM-22 | MWW, well ordered | [30] |
ITQ-1 | ITQ-1 (calcined) | [31] | |
EMM-10-p | EMM-10 | MWW, disordered | [32] |
NU-6(1) | Nu-6(2) | NSI, well ordered | [15] |
RUB-39 | RUB-41 | RRO, well ordered | [17,18,19] |
RUB-18 | RUB-24 | RWR, fair ordered | [7,20] |
RUB-15 | Silica-Sodalite | SOD, fairly ordered | [33] |
IPC-1P | IPC-4 | PCR, well ordered | [34] |
Layered Silicate | Zeolite Framework 1 | IEZ | Insertion Agent | Name in Refs. | Reference |
---|---|---|---|---|---|
RUB-36 | CDO | IEZ-CDO | DEDMS, DCDMS | COE-4 | [52] |
M-IEZ-CDO 2 | FeCl3, Metal-acetylacetone | M-COE-4 M-JHP-2 | [49,51] | ||
Ti-RUB-36 | IEZ-Ti-CDO | DHDMS | Ti-COE-4 | [50] | |
Al-RUB-36 | IEZ-Al-CDO | DEDMS, DCDMS | Al-COE-4 | [53] | |
Fe- IEZ-Al-CDO | FeCl3 | Al-COE-4/Fe | [51] | ||
PLS-1 | IEZ-CDS-1 | DCDMS | IEZ-2 | [47] | |
Nu-6(1) | NSI | IEZ-NSI | DEDMS | IEZ-Nu-6 | [54] |
COK-5 | MFS | IEZ-MFS | DCDMS | COE-6 | [40] |
M-IEZ-MFS | Metal-acetylacetone 2 | M-COE-6 2, | [55] | ||
Me-MWW precursor 3 | MWW | IEZ-Me-MWW | DEDMS | IEZ-MWW | [38] |
Ti-MWW precursor | IEZ-Ti-MWW | DEDMS | Ti-YNU-1 | [48] | |
PREFER | FER | IEZ-FER | DEDMS | IEZ-FER | [56] |
PLS-3 | Ti-IEZ-FER | TiCl4 | Ti-ECNU-8 | [57] |
Name | Chemical Composition | Surface Area (m2/g) | Micro Volume (cm3/g) | 2θ degree 1 | d Spacing 2 (Å2) | Reference |
---|---|---|---|---|---|---|
RUB-36 | (C6H16N)4(H4Si36O76) | 40 | <0.01 | 8.14 | 11.2 | [52] |
CDO | Si36O72 | 288 | 0.12 | 9.76 | 9.2 | [52] |
IEZ-RUB-36 | Si20O38(CH3) 4 | 238 | 0.063 | 7.53 | - | [52] |
IEZ-CDO | Si20O38(OH) 4 | 350 | 0.131 | 7.92 | 11. 74 | [52] |
Fe-IEZ-CDO | Si19.14Fe0.86O38(OH)4 | 423 | 0.156 | 7.90 | 11.7 | [51] |
Sn-IEZ-CDO | Si38.6Sn1.4O76(OH)8 | 362 | 0.17 | 7.90 | 11.7 | [51] |
Al-CDO | - | 231 | 0.09 | 8.14 | 9.2 | [65] |
IEZ-Al-CDO | - | 364 | 0.135 | 7.90 | 11.74 | [65] |
Fe-IEZ-Al-CDO | - | 389 | 0.136 | 7.89 | 11.7 | [65] |
Ti-CDO | - | 189 | 0.09 | 8.13 | - | [50] |
IEZ-Ti-CDO | - | 294 | 0.13 | 7.90 | - | [50] |
Structure Type | d Spacing (Å) | ||
---|---|---|---|
hkl | 3D Zeolites | IEZ Samples | |
MWW | 100 | 12.3 | 12.7 |
001 | 25.3 | 28.2 | |
FER | 200 | 9.8 | 12.1 |
020 | 7.3 | 7.2 |
Zeolite | DCMDS 1 (g/g of COK-5) | Si/Al Ratio 2 | Contact Angle 3 | Contact Angle before Calcination4 |
---|---|---|---|---|
MFS | -- | 24 | 27° | 28° |
IEZ-MFS-0 | 0 | 74 | 27° | 56° |
IEZ-MFS-0.185 | 0.185 | 40 | 13° | 109° |
IEZ-MFS-0.375 | 0.375 | 36 | 41° | 120° |
IEZ-MFS-0.830 | 0.830 | 40 | 31° | 69° |
Catalyst | Conversion | TOF (h−1) | Selectivity | Reference | |
---|---|---|---|---|---|
Epoxide | Others | ||||
Ti-MWW 1 | 8.1 | / | 35.0 | 65.0 | [26] |
IEZ-Ti-MWW 1 | 21.2 | / | 90.8 | 9.2 | |
Ti-CDO 2 | 4.2 | 19.1 | / | / | [40] |
IEZ-Ti-CDO 2 | 14 | 63.9 | / | / |
Zeolite | Si/Al, XRF | BET, m2g−1 | Ce(La), wt% | BAS 1 μmol g−1 | LAS 2 μmol g−1 |
---|---|---|---|---|---|
MCM-22 | 13 | 436 | - | 664 | 46 |
IEZ-MWW | 13 | 531 | - | 621 | 112 |
Ce/MCM-22 3 | 13 | - | 0.40 | 714 | 95 |
Ce/IEZ-MWW 3 | 13 | - | 0.88 | 357 | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; Yang, Y.; Luo, X.; Zhang, W.; Zhang, J.; Zhu, L.; Qiu, J. Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules 2021, 26, 5916. https://doi.org/10.3390/molecules26195916
Bian C, Yang Y, Luo X, Zhang W, Zhang J, Zhu L, Qiu J. Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules. 2021; 26(19):5916. https://doi.org/10.3390/molecules26195916
Chicago/Turabian StyleBian, Chaoqun, Yichang Yang, Xiaohui Luo, Wenxia Zhang, Jie Zhang, Longfeng Zhu, and Jianping Qiu. 2021. "Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion" Molecules 26, no. 19: 5916. https://doi.org/10.3390/molecules26195916
APA StyleBian, C., Yang, Y., Luo, X., Zhang, W., Zhang, J., Zhu, L., & Qiu, J. (2021). Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules, 26(19), 5916. https://doi.org/10.3390/molecules26195916