Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dispersion Test
2.2. Morphology Observations
2.3. Water Contact Angle
2.4. Thermomechanical Properties
2.5. Mechanical Properties
2.6. Hydrolytic Degradation Behaviour
2.6.1. Macroscopic Observations
2.6.2. Ion Release Measurements
2.6.3. Composite Morphology and Characterization of Degradation Products
2.6.4. Mechanical Characterization
2.7. Protein Adsorption
2.8. Culture of Human Adult Mesenchymal Stem Cells on PLA-Based Films
2.8.1. Stem Cells Proliferation and Viability
2.8.2. Mesenchymal Stem Cell Shape on PLA-Based Films
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Poly(ethylene oxide-b-L,L-lactide) Diblock Copolymer (PEO-b-PLLA)
3.3. Preparation of PLA/Mg Microcomposites
3.4. Hydrogen Release Assessment
3.5. Hydrolytic Degradation Behaviour
3.6. Characterizations
3.6.1. H1 NMR
3.6.2. Water Contact Angle (WCA)
3.6.3. Dynamic Mechanical Thermal Analysis (DMTA)
3.6.4. Gel Permeation Chromatography (GPC)
3.6.5. Differential Scanning Calorimetry (DSC)
3.6.6. Mass Variation
3.6.7. pH Assessment
3.6.8. Inductively Coupled Plasma (ICP)
3.6.9. Scanning Electronic Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis
3.6.10. X-ray Diffraction (XRD)
3.6.11. Compression Test
3.6.12. Protein Adsorption
3.6.13. Human Adult Mesenchymal Stem Cells In Vitro Culture
3.6.14. Culture of Human Adult Mesenchymal Stem Cells on PLA-Based Films
Stem Cell Proliferation on PLA-Based Films
Stem Cell Viability on PLA-Based Films
Immunofluorescence
3.6.15. Statistical Analysis
4. Conclusions
- The affinity between the matrix and fillers was enhanced. Therefore, an increase of the PLA/Mg interfacial adhesion was observed in SEM analysis with the different amounts of fillers. This behaviour was also confirmed by a decrease in the damping factor.
- A decrease in the WCA measurements was shown. Indeed, an increase of the composite hydrophilicity by selective surface localization of the hydrophilic PEO present in the surfactant was proven. This behaviour has a significant effect on the protein adsorption, which is an interesting finding.
- During the degradation in SBF, hydroxyapatite, the major component of natural bone, has been formed in bulk after 8 weeks of immersion, which could induce good biocompatibility and osteoconductivity.
- Viability test showed that the PLA, PLA/10 Mg and PLA/10 Copo/10 Mg were suitable for mesenchymal stem cell cultures. Moreover, cell morphology observations confirmed a maintenance of the monolayer fibroblast-like morphology. Therefore, the stem cells are still alive following the copolymer addition. This finding showed that these films could serve as implants for biomedical applications.
- However, a slight decrease in the mechanical was revealed due to the PEO plasticizing effect. In this regard, further work is in progress the optimize these promising PLA/Mg bioresorbable design by preparing novel co(polymer).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cifuentes, S.C.; Benavente, R.; Lieblich, M.; González-Carrasco, J.L. Biodegradable and bioabsorbable materials for osteosyn-thesis applications: State-of-the-art and future perspectives. In Handbook of Composites from Renewable Materials; Wiley: Hoboken, NJ, USA, 2017; Volume 5, pp. 109–143. ISBN 9781119441632. [Google Scholar]
- Athanasiou, K.A.; Agrawal, C.M.; Barber, F.A.; Burkhart, S.S. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 1998, 14, 726–737. [Google Scholar] [CrossRef]
- Maurus, P.B.; Kaeding, C.C. Bioabsorbable implant material review. Oper. Tech. Sports Med. 2004, 12, 158–160. [Google Scholar] [CrossRef]
- Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 2000, 21, 117–132. [Google Scholar] [CrossRef]
- Webb, A.R.; Yang, J.; Ameer, G.A. Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 2004, 4, 801–812. [Google Scholar] [CrossRef]
- Raquez, J.M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Jain, A.; Khan, W.; Kyzioł, A. Particulate Systems of PLA and Its Copolymers; Elsevier: Amsterdam, The Netherlands, 2019; Volume 10, pp. 349–380. ISBN 9780128168745. [Google Scholar]
- Loiola, L.M.D.; Fasce, L.A.; da Silva, L.C.E.; Gonçalves, M.C.; Frontini, P.M.; Felisberti, M.I. Thermal and mechanical proper-ties of nanocomposites based on a PLLA-b-PEO-b-PLLA triblock copolymer and nanohydroxyapatite. J. Appl. Polym. Sci. 2016, 133, 1–12. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, H.; Ni, J.; Zhang, S.; Zhang, X. Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization. Compos. Sci. Technol. 2017, 147, 8–15. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Dai, J.; Xepapadeas, A.B.; Schweizer, E.; Alexander, D.; Scheideler, L.; Zhou, C.; Zhang, H.; Wan, G.; et al. Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Mater. Sci. Eng. C 2019, 103, 109826. [Google Scholar] [CrossRef] [PubMed]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Osgouei, M.; Li, Y.; Wen, C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact. Mater. 2019, 4, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, H.; Sarraf Mamoory, R.; Svend Le, D.Q.; Bünger, C.E. Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Mater. Chem. Phys. 2020, 239, 122305. [Google Scholar] [CrossRef]
- Carey, L.E.; Xu, H.H.K.; Simon, C.G.; Takagi, S.; Chow, L.C. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005, 26, 5002–5014. [Google Scholar] [CrossRef] [Green Version]
- Kokubo, T. Bioactive glass ceramics: Properties and applications. Biomaterials 1991, 12, 155–163. [Google Scholar] [CrossRef]
- Forni, M.; Bernardini, C.; Zamparini, F.; Zannoni, A.; Salaroli, R.; Ventrella, D.; Parchi, G.; Esposti, M.D.; Polimeni, A.; Fabbri, P.; et al. Vascular wall–mesenchymal stem cells differentiation on 3d biodegradable highly porous casi-dcpd doped poly (α-hydroxy) acids scaffolds for bone regeneration. Nanomaterials 2020, 10, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatullo, M.; Spagnuolo, G.; Codispoti, B.; Zamparini, F.; Zhang, A.; Esposti, M.D.; Aparicio, C.; Rengo, C.; Nuzzolese, M.; Manzoli, L.; et al. PLA-Based Mineral-Doped Scaffolds Seeded with Human Periapical Cyst-Derived MSCs: A Promising Tool for Regenerative Healing in Dentistry. Materials 2019, 12, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, M.G.; Gardin, C.; Zamparini, F.; Ferroni, L.; Esposti, M.D.; Parchi, G.; Ercan, B.; Manzoli, L.; Fava, F.; Fabbri, P.; et al. Mineral-doped poly(L-lactide) acid scaffolds enriched with exosomes improve osteogenic commitment of human adipose-derived mesenchymal stem cells. Nanomaterials 2020, 10, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhou, J.; Pavanram, P.; Leeflang, M.A.; Fockaert, L.I.; Pouran, B.; Tümer, N.; Schröder, K.U.; Mol, J.M.C.; Weinans, H.; et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018, 67, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Mehboob, A.; Han, M.G.; Chang, S.H. Experimental study on degradation of mechanical properties of biodegradable magnesium alloy (AZ31) wires/poly(lactic acid) composite for bone fracture healing applications. Compos. Struct. 2019, 210, 914–921. [Google Scholar] [CrossRef]
- Sankar, M.; Vishnu, J.; Gupta, M.; Manivasagam, G. Magnesium-based alloys and nanocomposites for biomedical application. In Applications of Nanocomposite Materials in Orthopedics; Woodhead Publishing: Kidlington, UK, 2019; Volume 4, pp. 83–109. ISBN 9780128137406. [Google Scholar]
- Kiani, F.; Wen, C.; Li, Y. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review. Acta Biomater. 2020, 103, 1–23. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.C.; Romero-Guzmán, D.; Ferrández-Montero, A.; Pérez-Giraldo, C.; González-Carrasco, J.L.; Lieblich, M.; Benavente, R.; Ferrari, B.; González-Martín, M.L.; Gallardo-Moreno, A.M. Impact of PLA/Mg films degradation on surface physical properties and biofilm survival. Colloids Surf. B Biointerfaces 2019, 181, 110617. [Google Scholar] [CrossRef]
- Luque-Agudo, V.; Romero-Guzmán, D.; Fernández-Grajera, M.; González-Martín, M.L.; Gallardo-Moreno, A.M. Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability. Coatings 2019, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes, S.C.; Gavilán, R.; Lieblich, M.; Benavente, R.; González-Carrasco, J.L. In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape. Acta Biomater. 2016, 32, 348–357. [Google Scholar] [CrossRef]
- Ferrandez-Montero, A.; Lieblich, M.; Benavente, R.; González-Carrasco, J.L.; Ferrari, B. New approach to improve polymer-Mg interface in biodegradable PLA/Mg composites through particle surface modification. Surf. Coatings Technol. 2020, 383, 125285. [Google Scholar] [CrossRef]
- Carette, X.; Mincheva, R.; Gonon, M.F.; Raquez, J. A simple approach for a PEG-b-PLA-compatibilized interface in PLA/HAp nanocomposite. From the design of the material to the improvement of thermal/mechanical properties and bioactivity. J. Bio-Med. Mater. Res. Part A 2021. submitted. [Google Scholar]
- Raquez, J.M.; Barone, D.T.J.; Luklinska, Z.; Persenaire, O.; Belayew, A.; Eyckmans, J.; Schrooten, J.; Dubois, P. Osteoconductive and bioresorbable composites based on poly- (L,L-lactide) and pseudowollastonite: From synthesis and interfacial compatibilization to in vitro bioactivity and in vivo osseointegration studies. Biomacromolecules 2011, 12, 692–700. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, H.; Wang, J.; Li, Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J. Control. Release 2009, 139, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Arenaza, D.; Coto, B.; Meyer, F.; Raquez, J.; Verge, P.; Marti, I.; Van Der Voort, P.; Meaurio, E.; Dervaux, B.; Sarasua, J.; et al. Poly(ethylene oxide)-b-poly(L-lactide) Diblock Copolymer/Carbon Nanotube-Based Nanocomposites: LiCl as Supramolecular Structure- Directing Agent. Biomacromolecules 2011, 12, 4086–4094. [Google Scholar]
- Díaz, M.F.; Barbosa, S.E.; Capiati, N.J. Reactive compatibilization of PE/PS blends. Effect of copolymer chain length on interfacial adhesion and mechanical behavior. Polymer 2007, 48, 1058–1065. [Google Scholar] [CrossRef]
- Serra, T.; Ortiz-hernandez, M.; Engel, E.; Planell, J.A.; Navarro, M. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater. Sci. Eng. C 2014, 38, 55–62. [Google Scholar] [CrossRef]
- Serra, T.; Mateos-timoneda, M.A.; Planell, J.A.; Navarro, M. 3D printed PLA-based scaffolds. Organogenesis 2013, 9, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirkaya, Z.D.; Sengul, B. Comprehensive characterization of polylactide-layered double hydroxides nanocomposites as packaging materials. J. Polym. Res. 2015, 22, 1–13. [Google Scholar] [CrossRef]
- Ferrández-montero, A.; Lieblich, M.; Benavente, R.; González-carrasco, J.L.; Ferrari, B.; Cerámica, I. De Study of the matrix-filler interface in PLA / Mg composites manufactured by Material Extrusion using a colloidal feedstock. Addit. Manuf. 2020, 33, 101142. [Google Scholar] [CrossRef]
- Loiola, L.M.D.; Cortez Tornello, P.R.; Abraham, G.A.; Felisberti, M.I. Amphiphilic electrospun scaffolds of PLLA-PEO-PPO block copolymers: Preparation, characterization and drug-release behaviour. RSC Adv. 2017, 7, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Brocks, T.; Cioffi, M.O.H.; Voorwald, H.J.C. Effects of interfacial adhesion on thermal and mechanical properties. In Proceedings of the ECCM 2012—Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012; pp. 1–8. [Google Scholar]
- Ko, Y.S.; Forsman, W.C.; Dziemianowicz, T.S. Carbon fiber-reinforced composites: Effect of fiber surface on polymer properties. Polym. Eng. Sci. 1982, 22, 805–814. [Google Scholar] [CrossRef]
- Cifuentes, S.C.; Lieblich, M.; López, F.A.; Benavente, R.; González-Carrasco, J.L. Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. Mater. Sci. Eng. C 2017, 72, 18–25. [Google Scholar] [CrossRef]
- Aswini Kumar Mohapatra, S. Mohanty, S.K.N. Effect of PEG on PLA/PEG Blend and Its Nanocomposites: A Study of Thermo-Mechanical and Morphological Characterization. Polym. Compos. 2014, 35, 283–293. [Google Scholar] [CrossRef]
- Paul, M.A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym. Degrad. Stab. 2005, 87, 535–542. [Google Scholar] [CrossRef]
- Benali, S.; Aouadi, S.; Dechief, A.L.; Murariu, M.; Dubois, P. Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 2015, 1, 51–61. [Google Scholar] [CrossRef]
- Boudaoud, N.; Benali, S.; Mincheva, R.; Satha, H.; Raquez, J.M.; Dubois, P. Hydrolytic degradation of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polym. Int. 2018, 67, 1393–1400. [Google Scholar] [CrossRef]
- Cai, H.; Meng, J.; Li, X.; Xue, F.; Chu, C.; Guo, C.; Bai, J. In vitro degradation behavior of Mg wire/poly(lactic acid) composite rods prepared by hot pressing and hot drawing. Acta Biomater. 2019, 98, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Heise, S.; Virtanen, S.; Boccaccini, A.R. Review Article Tackling Mg alloy corrosion by natural polymer coatings—A review. J. Biomed. Mater. Res. 2016, 104, 2628–2641. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, J.; Kong, P.; Zhang, Z.; Jing, Y. Enhancing the performance of Mg-based implant. J. Mater. Chem. B 2015, 3, 7386–7400. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Wen, J.; Xiong, Y.; Lu, Y.; Ren, F.; Cao, W. Extrusion temperature impacts on biometallic Mg-2.0Zn-0.5Zr-3.0Gd (wt%) solid-solution alloy. J. Alloys Compd. 2018, 739, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Niu, L.; Lu, Y.; Lian, J.; Li, G. Preparation and corrosion behavior of calcium phosphate and hydroxyapatite conversion coatings on AM60 magnesium alloy. J. Electrochem. Soc. 2013, 160, 536–541. [Google Scholar] [CrossRef]
- Zeng, R.C.; Li, X.T.; Liu, L.J.; Li, S.Q.; Zhang, F. In vitro Degradation of Pure Mg for Esophageal Stent in Artificial Saliva. J. Mater. Sci. Technol. 2016, 32, 437–444. [Google Scholar] [CrossRef]
- Kamrani, S.; Fleck, C. Biodegradable magnesium alloys as temporary orthopaedic implants: A review. BioMetals 2019, 32, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.A.; Tariq, F.; Noori, M. Crystallinity, Mechanical, and Antimicrobial properties of Polylactic acid/microcrystalline cellulose/Silver Nanocomposites. Int. J. Appl. Innov. Eng. Manag. 2014, 3, 77–81. [Google Scholar]
- Jia, S.; Yu, D.; Zhu, Y.; Wang, Z.; Chen, L.; Fu, L. Morphology, crystallization and thermal behaviors of PLA-based composites: Wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers 2017, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Johnson, I.; Akari, K.; Liu, H. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid. Nanotechnology 2013, 24, 1–16. [Google Scholar] [CrossRef]
- Gerhardt, L.C.; Boccaccini, A.R. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 2010, 3, 3867–3910. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Ye, X.; Wei, D.; Zhong, J.; Chen, Y.; Xu, G.; He, D. 3D Artificial Bones for Bone Repair Prepared by Computed Tomography-Guided Fused Deposition Modeling for Bone Repair. ACS Appl. Mater. Interfaces 2014, 6, 14952–14963. [Google Scholar] [CrossRef]
- Mow, V.C.; Huiskes, R.; Abreu, E. Review of “Basic Orthopaedic Biomechanics and Mechano-Biology ”. J. Bone Jt. Surg. 2005, 87, 2369–2370. [Google Scholar] [CrossRef] [Green Version]
- Argentati, C.; Morena, F.; Montanucci, P.; Rallini, M.; Basta, G.; Calabrese, N.; Calafiore, R.; Cordellini, M.; Emiliani, C.; Armentano, I.; et al. Surface hydrophilicity of poly(L-lactide) acid polymer film changes the human adult adipose stem cell architecture. Polymers 2018, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Luzi, F.; Tortorella, I.; Di Michele, A.; Dominici, F.; Argentati, C.; Morena, F.; Torre, L.; Puglia, D.; Martino, S. Novel nanocomposite PLA films with lignin/zinc oxide hybrids: Design, characterization, interaction with mesenchymal stem cells. Nanomaterials 2020, 10, 2176. [Google Scholar] [CrossRef] [PubMed]
- Morena, F.; Armentano, I.; Montanucci, P.; Argentati, C.; Fortunati, E.; Montesano, S.; Bicchi, I.; Pescara, T.; Pennoni, I.; Mattioli, S.; et al. Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials 2017, 144, 211–229. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, F.; Armentano, I.; Cacciotti, I.; Tiribuzi, R.; Quattrocelli, M.; Del Gaudio, C.; Fortunati, E.; Saino, E.; Caraffa, A.; Cerulli, G.G.; et al. Tuning multi/pluri-potent stem cell fate by electrospun poly(l-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules 2012, 13, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Morena, F.; Argentati, C.; Calzoni, E.; Cordellini, M.; Emiliani, C.; D’Angelo, F.; Martino, S. Ex-vivo tissues engineering modeling for reconstructive surgery using human adult adipose stem cells and polymeric nanostructured matrix. Nanomaterials 2016, 6, 57. [Google Scholar] [CrossRef]
- Cells, B.M.S.; Morena, F.; Argentati, C.; Soccio, M.; Bicchi, I.; Lotti, N.; Armentano, I.; Martino, S. Unpatterned Bioactive Poly(Butylene 1,4-Cyclohexanedicarboxylate)-Based Film Fast Induced Neuronal-Like Differentiation of Human Bone Marrow-Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21, 9274. [Google Scholar]
- Heo, J.S.; Choi, S.M.; Kim, H.O.; Kim, E.H.; You, J.; Park, T.; Kim, E.; Kim, H.S. Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience 2013, 238, 305–318. [Google Scholar] [CrossRef]
- Argentati, C.; Morena, F.; Bazzucchi, M.; Armentano, I.; Emiliani, C.; Martino, S. Adipose stem cell translational applications: From bench-to-bedside. Int. J. Mol. Sci. 2018, 19, 3475. [Google Scholar] [CrossRef] [Green Version]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 22, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Sohn, J.; Shen, H.; Langhans, M.T.; Tuan, R.S. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019, 203, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, E.M.; Kubelick, K.P.; Dumani, D.S.; Emelianov, S.Y. Photoacoustic Image-Guided Delivery of Plasmonic-Nanoparticle-Labeled Mesenchymal Stem Cells to the Spinal Cord. Nano Lett. 2018, 18, 6625–6632. [Google Scholar] [CrossRef] [PubMed]
- Tham, A.Y.; Gandhimathi, C.; Praveena, J.; Venugopal, J.R.; Ramakrishna, S.; Dinesh Kumar, S. Minocycline loaded hybrid composites nanoparticles for mesenchymal stem cells differentiation into osteogenesis. Int. J. Mol. Sci. 2016, 17, 1222. [Google Scholar] [CrossRef] [Green Version]
- Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Shirley, K.; Motaung, C.M. Advances in Regenerative Medicine and Tissue Engineering:Innovation and Transformation of Medicine. Stem Cells Int. 2018, 2018, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Martino, S.; D’Angelo, F.; Armentano, I.; Kenny, J.M.; Orlacchio, A. Stem cell-biomaterial interactions for regenerative medicine. Biotechnol. Adv. 2012, 30, 338–351. [Google Scholar] [CrossRef]
- Argentati, C.; Morena, F.; Tortorella, I.; Bazzucchi, M.; Porcellati, S.; Emiliani, C.; Martino, S. Insight into mechanobiology: How stem cells feel mechanical forces and orchestrate biological functions. Int. J. Mol. Sci. 2019, 20, 5337. [Google Scholar] [CrossRef] [Green Version]
- Argentati, C.; Morena, F.; Fontana, C.; Tortorella, I.; Emiliani, C.; Latterini, L.; Zampini, G.; Martino, S. Functionalized silica star-shaped nanoparticles and human mesenchymal stem cells: An in vitro model. Nanomaterials 2021, 11, 779. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Tsuji, H.; Tsuruno, T. Accelerated hydrolytic degradation of Poly(l-lactide)/Poly(d-lactide) stereocomplex up to late stage. Polym. Degrad. Stab. 2010, 95, 477–484. [Google Scholar] [CrossRef]
- Emami Bistgani, Z.; Siadat, S.A.; Bakhshandeh, A.; Ghasemi Pirbalouti, A.; Hashemi, M. A rapid and sensitive method for the quantitation of microgram quantaties of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 5, 248–254. [Google Scholar] [CrossRef]
Samples | Mg (wt.%) | PEO-b-PLLA (wt.%) | PLA (wt.%) |
---|---|---|---|
PLA | 100 | ||
PLA/5 Mg | 5 | 95 | |
PLA/10 Mg | 10 | 90 | |
PLA/15 Mg | 15 | 85 | |
PLA/10 Copo | 10 | 90 | |
PLA/10 Copo/5 Mg | 5 | 10 | 85 |
PLA/10 Copo/10 Mg | 10 | 10 | 80 |
PLA/10 Copo/15 Mg | 15 | 10 | 75 |
(A) Elem. Wt.% | O | Mg | Ca | P | Y * | Ca/P |
---|---|---|---|---|---|---|
PLA/10 Mg-4w | 40.60 | 2.00 | 5.40 | 4.90 | 47.10 | 1.10 |
PLA/10 Mg-6w | 45.42 | 1.60 | 3.00 | 1.90 | 48.10 | 1.57 |
PLA/10 Mg-8w | 49.98 | 0.39 | 0.84 | 0.50 | 48.29 | 1.67 |
(B) Elem. Wt.% | O | Mg | Ca | P | Y * | Ca/P |
PLA/10 Copo/10 Mg-4w | 47.40 | 3.20 | 4.00 | 7.70 | 37.70 | 0.51 |
PLA/10 Copo/10 Mg-6w | 53.70 | 0.70 | 0.50 | 1.60 | 43.50 | 0.31 |
PLA/10 Copo/10 Mg-8w | 60.60 | 0.50 | 0.70 | 0.70 | 37.50 | 1.00 |
(A) Elem. Wt.% | O | Mg | Ca | P | Y * | Ca/P |
---|---|---|---|---|---|---|
PLA/10 Mg-4w | 45.70 | 3.69 | 6.51 | - | 44.10 | - |
PLA/10 Mg-6w | 41.60 | 7.28 | 17.40 | - | 33.72 | - |
PLA/10 Mg-8w | 56.10 | 3.51 | 1.50 | 1.50 | 37.39 | 1.00 |
(B) Elem. Wt.% | O | Mg | Ca | P | Y * | Ca/P |
PLA/10 Copo/10 Mg-4w | 47.20 | 13.60 | 8.50 | - | 30.70 | - |
PLA/10 Copo/10 Mg-6w | 33.50 | 5.69 | 10.31 | 7.61 | 42.89 | 1.35 |
PLA/10 Copo/10 Mg-8w | 50.79 | 3.29 | 5.68 | 3.40 | 36.84 | 1.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Abdeljawad, M.; Carette, X.; Argentati, C.; Martino, S.; Gonon, M.-F.; Odent, J.; Morena, F.; Mincheva, R.; Raquez, J.-M. Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules 2021, 26, 5944. https://doi.org/10.3390/molecules26195944
Ben Abdeljawad M, Carette X, Argentati C, Martino S, Gonon M-F, Odent J, Morena F, Mincheva R, Raquez J-M. Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules. 2021; 26(19):5944. https://doi.org/10.3390/molecules26195944
Chicago/Turabian StyleBen Abdeljawad, Meriam, Xavier Carette, Chiara Argentati, Sabata Martino, Maurice-François Gonon, Jérémy Odent, Francesco Morena, Rosica Mincheva, and Jean-Marie Raquez. 2021. "Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion" Molecules 26, no. 19: 5944. https://doi.org/10.3390/molecules26195944
APA StyleBen Abdeljawad, M., Carette, X., Argentati, C., Martino, S., Gonon, M. -F., Odent, J., Morena, F., Mincheva, R., & Raquez, J. -M. (2021). Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules, 26(19), 5944. https://doi.org/10.3390/molecules26195944