Inflammation, It’s Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin
Abstract
:1. Introduction
2. Amygdalin
2.1. Chemistry of Amygdalin
2.2. Toxicity of Amygdalin
Treatment of Cyanide Toxicity
3. Elementary Processes in Inflammation
3.1. COX-1 and COX-2 Pathways
Selectivity between COX-1 and COX-2 and the Action of Nonselective Drugs
4. Inflammation Mediators
- Proinflammatory cytokines (interleukins and tumor necrosis factors)—glycoproteins mobilizing leukocytes and endothelial cells provide an acute-phase response.
- Eicosanoids—lipid metabolites of arachidonic acid.
- Chemokines—the stimulation of leukocyte chemotaxis.
- Vasoactive amines (histamine and serotonin)—the cause of vasoconstriction/vasodilation that may increase vascular permeability.
- Vasoactive peptides (bradykinin, kallikrein, and kinin)—an increase in the vascular permeability, pain, and stimulation of arachidonic acid metabolism.
- Proteolytic enzymes (elastase and matrix metalloproteinases)—cooperation in the killing of phagocytosed microbial parts and the recruitment of white blood cells.
- Parts of the complement (C3a and C5a)—activation of the mast cells, basophils, and platelets; they are chemotactically and anaphylatoxically active.
4.1. Inflammation Mediators: Eicosanoids Metabolites of Arachidonic Acid Pathway
4.1.1. Prostaglandins
- PGE2: This bioactive lipid elicits a wide range of biological effects, from cell proliferation, apoptosis, angiogenesis, inflammation, and cancer to immune surveillance [99]. However, its role in inflammatory conditions is not clear. This prostaglandin acts on neurons in the hypothalamic thermoregulatory network and causes an increase in body temperature and may promote the activation of inflammatory Th17 cells but, on the other hand, inhibits the production of IL-2 and IL-12 in other subsets of T cells. This difference appears to be due to the dependence on the expression of different receptors, as well as the cell type [100]. It is also known to regulate the activation, maturation, migration, and secretion of cytokines of several immune cells, primarily those involved in innate immunity—namely, macrophages, neutrophils, natural killing cells, and dendritic cells. PGE2 synthesis is increased by the expression of one of the cyclooxygenases [101].
- PGI2: Prostacyclin or PGI2 is the end product of AA metabolism first observed in 1976 with the participation of Moncada [102]. PGI2 has also been found to be essential for maintaining cardiovascular health because it inhibits platelet aggregation and has strong vasodilatory effects through smooth muscle relaxation [103]. By activating prostacyclin receptors (IP receptors), PGI2 has a positive cardiovascular effect, e.g., to inhibit vascular smooth muscle cell proliferation. However, these receptors are nonfunctional under pathological conditions and, thus, have deleterious effects that are in contrast to their physiological protective effects via thromboxane-prostanoid (TP) receptors [104]. In addition to various immunomodulatory effects on T cells, PGI2 also regulates B-cell functions [105]. It is involved in the transmission of pain sensation, mediates vascular permeability during the inflammatory process, and regulates the rate of vascular glomerular filtration. In the state of inflammation, the PGI2 signal promotes inflammatory pain [106]. The presence of receptors for this lipid mediator has also been found in the central nervous system [107]. The anti-inflammatory effects of prostacyclin are largely controlled by cAMP (cyclic adenosine monophosphate) and suppression of the NF-κB inflammatory signaling cascade [108].
- PGD2: PGD2 is an important prostanoid that is released primarily from mast cells but, also, from other immune cells, such as TH2 and dendritic cells. PGD2 performs its biological functions mainly through two G-protein coupled receptors, PGD2 receptors 1 (DP1) and 2 (DP2). The effect of DP1 is to inhibit platelet aggregation, vasorelaxation, bronchodilation, increased mucus production, and airway hyperresponsiveness. Through interaction with the latter, PGD2 stimulates the significant chemotaxis and degranulation of inflammatory cells [109]. PGD2 mediates several physiological effects in various tissues and organs, in addition to those mentioned; its functions include the induction of sleep or the secretion of mucus in the airways [110]. It is also a powerful inflammatory stimulant, but the time perspective plays an important role if it acts in the early or late phase of inflammation [111]. This prostanoid also acts gastroprotective by reducing acid secretion from parietal cells while increasing the blood flow and stimulating mucus secretion [112]. The presence of an allergen triggers the rapid production of PGD2 in sensitized individuals, e.g., in patients with asthma, where concentrations of this biologically active substance can increase up to 150-fold than before the allergen. Its amount also increases in allergic rhinitis and atopic dermatitis. So far, several studies are known to indicate that mast cells are the main source of prostanoid PGD2 at sites of allergy-associated inflammation [113]. It increases the migration, activation, and survival of leukocytes in various disorders associated with allergies. At the periphery, hematopoietic PGD synthase (hPGDS) acts on the arachidonic acid and COX pathways by isomerizing PGH2 to PGD2, which scientists seek to use in therapeutic procedures for allergic inflammation and to develop suitable hPGDS inhibitors [111].
- PGF2α: PGF2α is a key signaling mediator in childbirth because it is involved not only in stimulating uterine contraction but, also, in mediating uterine transition by regulating the expression of uterine activating proteins and amplifying proinflammatory cytokine and chemokine production [114]. PGF2α increases the intracellular calcium concentration by stimulating the release of stored calcium, leading to a phase contraction that allows blood to flow to the fetus between contractions and optimizes the ability of the uterus to expel the fetus [115]. It has also been shown that the concentration of PGF2α in maternal plasma is higher before childbirth compared to the first stage of labor, and there is no significant change even at the time of childbirth, which may mean that PGF2α has other roles during this period [116]. This prostaglandin can affect the luteal cell viability either by inducing proliferation or cell death through apoptosis or necrosis, depending on its local and systemic effects [117]. PGF2α has shown a positive effect on increasing decidual gelatinolytic activity by increasing matrix metalloproteinase (MMP)-2 and MMP-9 while decreasing the tissue inhibitor of MMP expression (TIMP) -1 [118]. PGF2α as a bone resorption agent also regulates the expression of fibroblast growth factor-2 and fibroblast growth factor receptor (FGFR) in osteoblasts [119].
4.1.2. Thromboxanes
- TXA2: It is an unstable metabolite AA with a half-life of about 30 s, is synthesized from prostaglandin H2 by thromboxane synthase, and is nonenzymatically degraded to biologically inactive TXB2 [121,122]. TXA2 is formed mainly in platelets (which express only COX-1), with its production increasing during their activation and thromboxane acting through its thromboxane receptor (TP)α receptor. It promotes platelet aggregation [123], vasoconstriction, smooth muscle proliferation, and the activation of endothelial inflammatory responses [124]. It is part of an essential repair mechanism for wound healing, including damaged vessel walls, and is responsible for early tissue regeneration through TP receptor signaling [125]. The thromboxane metabolite 12-Hydroxyheptadecatrenoic acid (12-HHT) is particularly important for skin regeneration [126]. TXA2 was originally described as being released from platelets but is known to be released by several other cells, including macrophages, neutrophils, monocytes, and endothelial cells [121].
4.1.3. Leukotrienes
- LTB4: Leukotriene B4 is one of the most effective chemoattractant mediators of inflammation. It stimulates neutrophil chemotaxis, chemokinesis, and adhesion to endothelial cells and activates neutrophils, leading to the release of enzymes, mediators, and degranulation [129]. It activates them especially for the production of reactive oxygen species and the release of lysosomal enzymes. LTB4 is also involved in inflammatory pain by lowering the nociceptive threshold through neutrophil-dependent processes [130]. High concentrations of this leukotriene are likely to be found in inflammatory secretions in patients with arthritis and cystic fibrosis. Its synthesis is inhibited by colchicine, an anti-inflammatory agent effective in the treatment of gout [53].
- LTC4: LTC4, together with LTD4 and LTE4, are considered known cysteinyl leukotrienes (CysLT) that accompany asthmatic conditions [131]. CysLTs act on vasoconstriction and increase the vascular permeability, allowing plasma macromolecules to be eliminated, leading to airway edema, which characterizes asthma. In addition, CysLT stimulates mucus secretion and inhibits mucociliary clearance. They are also characterized as active ingredients of “slow-reacting substances of anaphylaxis” [132]. LTC4 formation occurs by the conjugation of LTA4 and reduced glutathione, with eosinophils, basophils, mast cells, macrophages, and platelet-adherent granulocytes being the primary sources [133]. The cysteinyl leukotriene has been implicated in the induction of both oxidative stress and apoptosis [134] and is a potent bronchoconstrictor [135].
- LTD4 and LTE4: LTD4 is a member of the cysteinyl class, and its effects are mediated mainly by the leukotriene receptors CysLT1 and CysLT2. It has been implicated in a variety of inflammatory effects, including bronchoconstriction, vasoconstriction, increased postcapillary permeability with swelling, and smooth muscle contraction [136]. There is evidence that LTD4 and LTE4 are potent and specific chemoattractants for eosinophils that appear to be important in the pathophysiology of asthma [137].
4.1.4. Lipoxins
- LXA4: It is an endogenous eicosanoid mediator, which has not only a dual pro-resolution ability but also has anti-inflammatory properties. It is an inducer of prompt arterial dilatation. It suppresses leukocyte-mediated damage and promotes monocyte chemotaxis and the phagocytosis of apoptotic neutrophils [142], as well as the phlogistic uptake of apoptotic polymorphonuclear neutrophils [143].
- LXB4: LXB4 has a different structure than the rest of the lipoxin family, and its signaling pathway is different from LXA4. It is a neuroprotective mediator that acts locally to suppress inflammation by inhibiting the production of the T-cell-activated cytokine TNF-α. Its production is regulated by the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activity [144]. It also has strong effects on macrophages and noninflammatory monocyte activation [138]. It can stimulate Immunoglobulin G (IgG) secretion in memory B cells, and the study by Kim et al. [145] also provided evidence of its ability to increase IgG-secreting B cells.
4.2. Effect of Amygdalin on the COX-2 Pathway
5. Inflammation Mediators: Cytokines
5.1. Regulation of Cytokines
5.2. Effect of Amygdalin on Inflammation-Suppression of Proinflammatory Cytokine Release
5.3. Basic Principles of Signaling Pathways in Which Amygdalin Is Involved
5.3.1. Janus Kinase 2 and Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) Pathway
5.3.2. NF-κB Pathway
5.4. Molecular Mechanism of Amygdalin Action on Immune Function In Vitro
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Damjanov, I. Pathology Secrets, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; Available online: https://www.elsevier.com/books/pathology-secrets/damjanov/978-0-323-05594-9 (accessed on 27 May 2021).
- Sonnweber, T.; Pizzini, A.; Nairz, M.; Weiss, G.; Tancevski, I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int. J. Mol. Sci. 2018, 19, 3285. [Google Scholar] [CrossRef] [Green Version]
- Hanna, V.S.; Hafez, E.A.A. Synopsis of Arachidonic Acid Metabolism: A Review. J. Adv. Res. 2018, 11, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Garcés-Rimón, M.; Galán, M.; Salaices, M. Food Derived Peptides Reduced COX-2 Expression in 2 Angiotensin Ii-Stimulated Adventitial Fibroblasts 3. Preprints 2018. Available online: https://www.preprints.org/manuscript/201811.0013/v1 (accessed on 1 October 2021). [CrossRef]
- Juengel, E.; Afschar, M.; Makarevi, J.; Rutz, J.; Tsaur, I.; Mani, J.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Amygdalin Blocks the in Vitro Adhesion and Invasion of Renal Cell Carcinoma Cells by an Integrin-Dependent Mechanism. Int. J. Mol. Med. 2016, 37, 843–850. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Wu, L.J.; Wang, W.X.; Xie, P.J.; Chen, Y.H.; Wang, F. Amygdalin—A Pharmacological and Toxicological Review. J. Ethnopharmacol. 2020, 254, 112717. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.H.; Ramadan, A.E.R.G.; Alsanory, T.A.; Herdan, M.O.; Fathallah, O.M.; Alsanory, A.A. Experimental and Therapeutic Trials of Amygdalin. Int. J. Biochem. Pharmacol. 2019, 1, 21–26. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, Q.X.; Liu, R.J.; Shen, X.Q. Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy. Chin. J. Integr. Med. 2018, 24, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wang, Q.; Meng, Y.; Cao, L.; Feng, N.; Du, W.; Li, H.; Dong, X.; Ma, X.; Luo, L. Effects of Amygdalin on Type II Collagen-Induced Arthritis in Rats. Biologia 2020, 75, 423–430. [Google Scholar] [CrossRef]
- Mani, J.; Rutz, J.; Maxeiner, S.; Juengel, E.; Bon, D.; Roos, F.; Chun, F.K.-H.; Blaheta, R.A. Cyanide and Lactate Levels in Patients during Chronic Oral Amygdalin Intake Followed by Intravenous Amygdalin Administration. Complementary Ther. Med. 2019, 43, 295–299. [Google Scholar] [CrossRef]
- Jasar, D.; Filipovski, V.; Kubelka-Sabit, K.; Curcic-Trajkovska, B. Potential Benefits And Controversies Related To Use Of Amygdalin (Vitamin B17). J. Hyg. Eng. Des. 2018, 2, 577.164. [Google Scholar]
- Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent Updates and Future Perspectives about Amygdalin as a Potential Anticancer Agent: A Review. Cancer Med. 2019, 8, 3004–3011. [Google Scholar] [CrossRef]
- Qadir, M.; Fatima, K. Review on Pharmacological Activity of Amygdalin. Arch. Cancer Res. 2017, 5, 160. [Google Scholar] [CrossRef] [Green Version]
- Savic, I.M.; Nikolic, V.D.; Savic-Gajic, I.M.; Nikolic, L.B.; Ibric, S.R.; Gajic, D.G. Optimization of Technological Procedure for Amygdalin Isolation from Plum Seeds (Pruni Domesticae Semen). Front. Plant Sci. 2015, 6, 276. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.K.; Shin, M.S.; Yang, H.Y.; Lee, J.W.; Kim, Y.S.; Lee, M.H.; Kim, J.; Kim, K.H.; Kim, C.J. Amygdalin Induces Apoptosis through Regulation of Bax and Bcl-2 Expressions in Human DU145 and LNCaP Prostate Cancer Cells. Biol. Pharm. Bull. 2006, 29, 1597–1602. [Google Scholar] [CrossRef] [Green Version]
- Arshi, A.; Hosseini, S.M.; Hosseini, F.S.K.; Amiri, Z.Y.; Hosseini, F.S.; Sheikholia Lavasani, M.; Kerdarian, H.; Dehkordi, M.S. The Anti-Cancer Effect of Amygdalin on Human Cancer Cell Lines. Mol. Biol. Rep. 2019, 46, 2059–2066. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H. mygdalin as a Plant-Based Bioactive Constituent: A Mini-Review on Intervention with Gut Microbiota, Anticancer Mechanisms, Bioavailability, and Microencapsulation. Proceedings 2020, 61, 15. [Google Scholar] [CrossRef]
- El-Desouky, M.A.; Fahmi, A.A.; Abdelkader, I.Y.; Nasraldin, K.M. Anticancer Effect of Amygdalin (Vitamin B-17) on Hepatocellular Carcinoma Cell Line (HepG2) in the Presence and Absence of Zinc. Anti-Cancer Agents Med. Chem. 2020, 20, 486–494. [Google Scholar] [CrossRef]
- Liczbiński, P.; Bukowska, B. Molecular Mechanism of Amygdalin Action in Vitro: Review of the Latest Research. Immunopharmacol. Immunotoxicol. 2018, 40, 212–218. [Google Scholar] [CrossRef] [PubMed]
- File:Amygdalin (Chemical Structure).Svg—Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Amygdalin_(chemical_structure).svg (accessed on 14 June 2021).
- Jaswal, V.; Palanivelu, J.; Ramalingam, C. Effects of the Gut Microbiota on Amygdalin and Its Use as an Anti-Cancer Therapy: Substantial Review on the Key Components Involved in Altering Dose Efficacy and Toxicity. Biochem. Biophys. Rep. 2018, 14, 125–132. [Google Scholar] [CrossRef]
- Dang, T.; Nguyen, C.; Tran, P.N. Physician Beware: Severe Cyanide Toxicity from Amygdalin Tablets Ingestion. Case Rep. Emerg. Med. 2017, 2017, 4289527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cressey, P.; Reeve, J. Metabolism of Cyanogenic Glycosides: A Review. Food Chem. Toxicol. 2019, 125, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Opyd, P.M.; Jurgoński, A.; Juśkiewicz, J.; Milala, J.; Zduńczyk, Z.; Król, B. Nutritional and Health-Related Effects of a Diet Containing Apple Seed Meal in Rats: The Case of Amygdalin. Nutrients 2017, 9, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaszczak-Wilke, E.; Polkowska, Ż.; Koprowski, M.; Owsianik, K.; Mitchell, A.E.; Bałczewski, P. Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Molecules 2021, 26, 2253. [Google Scholar] [CrossRef]
- Go, M.R.; Kim, H.J.; Yu, J.; Choi, S.J. Toxicity and Toxicokinetics of Amygdalin in Maesil (Prunus Mume) Syrup: Protective Effect of Maesil against Amygdalin Toxicity. J. Agric. Food Chem. 2018, 66, 11432–11440. [Google Scholar] [CrossRef]
- García, M.C.; González-García, E.; Vásquez-Villanueva, R.; Marina, M.L. Apricot and Other Seed Stones: Amygdalin Content and the Potential to Obtain Antioxidant, Angiotensin i Converting Enzyme Inhibitor and Hypocholesterolemic Peptides. Food Funct. 2016, 7, 4693–4701. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Yang, H.; Mao, X.; Wang, J.; Gao, W. Effect of Natural β-Glucosidase Inhibitors in Reducing Toxicity of Amygdalin in Persicae Semen. Phytother. Res. 2017, 31, 771–777. [Google Scholar] [CrossRef]
- Grundy, M.M.L.; Lapsley, K.; Ellis, P.R. A Review of the Impact of Processing on Nutrient Bioaccessibility and Digestion of Almonds. Int. J. Food Sci. Technol. 2016, 51, 1937–1946. [Google Scholar] [CrossRef] [Green Version]
- Nyirenda, K.K. Toxicity Potential of Cyanogenic Glycosides in Edible Plants. In Medical Toxicology; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.M.; Kwon, H. Metabolites of Amygdalin under Simulated Human Digestive Fluids. Int. J. Food Sci. Nutr. 2010, 61, 770–779. [Google Scholar] [CrossRef]
- Albogami, S.; Hassan, A.; Ahmed, N.; Alnefaie, A.; Alattas, A.; Alquthami, L.; Alharbi, A. Evaluation of the Effective Dose of Amygdalin for the Improvement of Antioxidant Gene Expression and Suppression of Oxidative Damage in Mice. PeerJ 2020, 8, e9232. [Google Scholar] [CrossRef]
- Makarević, J.; Tsaur, I.; Juengel, E.; Borgmann, H.; Nelson, K.; Thomas, C.; Bartsch, G.; Haferkamp, A.; Blaheta, R.A. Amygdalin Delays Cell Cycle Progression and Blocks Growth of Prostate Cancer Cells in Vitro. Life Sci. 2016, 147, 137–142. [Google Scholar] [CrossRef]
- Halenar, M.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Zbynovska, K.; Tusimova, E.; Bartsch, G.; Kovacik, A.; Kolesarova, A. The evaluation of endocrine regulators after intramuscular and oral application of cyanogenic glycoside amygdalin in rabbits. Biologia, 2017; 72, 468–474. Available online: https://www.researchgate.net/publication/338069726_Experimental_and_Therapeutic_Trials_of_Amygdalin(accessed on 1 May 2021).
- Sauer, H.; Wollny, C.; Oster, I.; Tutdibi, E.; Gortner, L.; Gottschling, S.; Meyer, S. Severe Cyanide Poisoning from an Alternative Medicine Treatment with Amygdalin and Apricot Kernels in a 4-Year-Old Child. Wien. Med. Wochenschr. 2015, 165, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, T.M.; Grieshaber, M.K. Three Enzymatic Activities Catalyze the Oxidation of Sulfide to Thiosulfate in Mammalian and Invertebrate Mitochondria. FEBS J. 2008, 275, 3352–3361. [Google Scholar] [CrossRef]
- Graham, J.; Traylor, J. Toxicity, Cyanide; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Saidu, Y. Physicochemical Features of Rhodanese: A Review. Afr. J. Biotechnol. 2004, 3, 370–374. [Google Scholar]
- Borron, S.W.; Baud, F.J.; Mégarbane, B.; Bismuth, C. Hydroxocobalamin for Severe Acute Cyanide Poisoning by Ingestion or Inhalation. Am. J. Emerg. Med. 2007, 25, 551–558. [Google Scholar] [CrossRef]
- Mitchel, B.L.; Bhanda, R.K.; Bebarta, V.S.; Rockwood, G.A.; Bos, G.R.; Logue, B.A. Toxicokinetic Profiles of α-Ketoglutarate Cyanohydrin, a Cyanide Detoxification Product, Following Exposure to Potassium Cyanide. Toxicol. Lett. 2013, 222, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.Y.K. A Probable Case of Amygdalin-Induced Peripheral Neuropathy in a Vegetarian with Vitamin B12 Deficiency [3]. Ther. Drug Monit. 2006, 28, 140–141. [Google Scholar] [CrossRef]
- Hariharakrishnan, J.; Satpute, R.M.; Prasad, G.B.K.S.; Bhattacharya, R. Oxidative Stress Mediated Cytotoxicity of Cyanide in LLC-MK2 Cells and Its Attenuation by Alpha-Ketoglutarate and N-Acetyl Cysteine. Toxicol. Lett. 2009, 185, 132–141. [Google Scholar] [CrossRef]
- Brenner, M.; Kim, J.G.; Lee, J.; Mahon, S.B.; Lemor, D.; Ahdout, R.; Boss, G.R.; Blackledge, W.; Jann, L.; Nagasawa, H.T.; et al. Sulfanegen Sodium Treatment in a Rabbit Model of Sub-Lethal Cyanide Toxicity. Toxicol. Appl. Pharmacol. 2010, 248, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Vipperla, K.; O’Keefe, S.J. Intestinal Microbes, Diet, and Colorectal Cancer. Curr. Colorectal Cancer Rep. 2013, 9, 95–105. [Google Scholar] [CrossRef]
- Kuugbee, E.D.; Shang, X.; Gamallat, Y.; Bamba, D.; Awadasseid, A.; Suliman, M.A.; Zang, S.; Ma, Y.; Chiwala, G.; Xin, Y.; et al. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Dig. Dis. Sci. 2016, 61, 2908–2920. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Rao, P.V.L.; Vijayaraghavan, R. In Vitro and in Vivo Attenuation of Experimental Cyanide Poisoning by α-Ketoglutarate. Toxicol. Lett. 2002, 128, 185–195. [Google Scholar] [CrossRef]
- National Cancer Institute (US). Laetrile/Amygdalin (PDQ®): Health Professional Version. In PDQ Cancer Information Summaries; National Cancer Institute: Bethesda, MD, USA, 2021. [Google Scholar]
- Thompson, J.P.; Marrs, T.C. Hydroxocobalamin in Cyanide Poisoning. Clin. Toxicol. 2012, 50, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.M.; Al Awaida, W.; Alkhateeb, H.H.; Abu-Ayyad, A.N. Antitumor Action of Amygdalin on Human Breast Cancer Cells by Selective Sensitization to Oxidative Stress. Nutr. Cancer 2019, 71, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Kolesarova, A.; Baldovska, S.; Roychoudhury, S. The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals 2021, 14, 881. [Google Scholar] [CrossRef] [PubMed]
- Roe, K. An inflammation classification system using cytokine parameters. Scand. J. Immunol. 2021, 93, e12970. [Google Scholar] [CrossRef] [PubMed]
- Ferenčík, M.; et al. (Eds.) Zápal—Fundamentálny Princíp Vzniku Chorôb, 1st ed.; Balneotherma: Bratislava, Slovakia, 2009; ISBN 978-80-970156-1-9. [Google Scholar]
- Deretic, V.; Klionsky, D.J. Autophagy and Inflammation: A Special Review Issue. Autophagy 2018, 14, 179–180. [Google Scholar] [CrossRef] [Green Version]
- Harvard Health Publishing Understanding Acute and Chronic Inflammation. Available online: https://www.health.harvard.edu/staying-healthy/understanding-acute-and-chronic-inflammation (accessed on 13 September 2021).
- Si, Z.; Zhang, B. Amygdalin Attenuates Airway Epithelium Apoptosis, Inflammation, and Epithelial-Mesenchymal Transition through Restraining the TLR4/NF-κB Signaling Pathway on LPS-Treated BEAS-2B Bronchial Epithelial Cells. Int. Arch. Allergy Immunol. 2021, 182, 997–1007. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Kudo, I.; Murakami, M. Phospholipase A2 Enzymes. Prostaglandins Other Lipid Mediat. 2002, 68–69, 3–58. [Google Scholar] [CrossRef]
- Aïd, S.; Bosetti, F. Targeting Cyclooxygenases-1 and -2 in Neuroinflammation: Therapeutic Implications. Biochimie 2011, 93, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.M.; Hawkey, C.J. COX-2 Selective Nonsteroidal Anti-Inflammatory Drugs: Do They Really Offer Any Advantages? Drugs 2000, 59, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Laufer, S.; Lima, J.L.F.C.; Fernandes, E. Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation 2015, 38, 858–870. [Google Scholar] [CrossRef]
- Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in Health and Disease. J. Lipid Res. 2009, 50, S423–S428. [Google Scholar] [CrossRef] [Green Version]
- Di Costanzo, F.; di Dato, V.; Ianora, A.; Romano, G. Prostaglandins in Marine Organisms: A Review. Mar. Drugs 2019, 17, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.Y.; Xing, L.; Cui, P.F.; Qiao, J.B.; He, Y.J.; Chang, X.; Zhou, T.J.; Jin, Q.R.; Jiang, H.L.; Xiao, Y. Regulating the Golgi Apparatus by Co-Delivery of a COX-2 Inhibitor and Brefeldin A for Suppression of Tumor Metastasis. Biomater. Sci. 2018, 6, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Zarghi, A.; Arfaei, S. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships. Iran. J. Pharm. Res. 2011, 10, 655–683. [Google Scholar] [PubMed]
- Yam, M.F.; Loh, Y.C.; Tan, C.S.; Adam, S.K.; Manan, N.A.; Basir, R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int. J. Mol. Sci. 2018, 19, 2164. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Abellán, V.; Sepulcre, M.P. The Role of Prostaglandins in the Regulation of Fish Immunity. Mol. Immunol. 2016, 69, 139–145. [Google Scholar] [CrossRef]
- Yagami, T.; Koma, H.; Yamamoto, Y. Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System. Mol. Neurobiol. 2016, 53, 4754–4771. [Google Scholar] [CrossRef]
- Langenbach, R.; Loftin, C.; Lee, C.; Tiano, H. Cyclooxygenase Knockout Mice: Models for Elucidating Isoform-Specific Functions. Available online: https://reference.medscape.com/medline/abstract/10487525 (accessed on 28 May 2021).
- Lim, H.; Paria, B.C.; Das, S.K.; Dinchuk, J.E.; Langenbach, R.; Trzaskos, J.M.; Dey, S.K. Multiple Female Reproductive Failures in Cyclooxygenase 2-Deficient Mice. Available online: https://reference.medscape.com/medline/abstract/9346237 (accessed on 28 May 2021).
- Miyamoto, T.; Ogino, N.; Yamamoto, S.; Hayaishi, O. Purification of Prostaglandin Endoperoxide Synthetase from Bovine Vesicular Gland Microsome. J. Biol. Chem. 1976, 251, 2629–2636. [Google Scholar] [CrossRef]
- Williams, C.S.; Mann, M.; DuBois, R.N. The Role of Cyclooxygenases in Inflammation, Cancer, and Development. Oncogene 1999, 18, 7908–7916. [Google Scholar] [CrossRef] [Green Version]
- Ornelas, A.; Zacharias-Millward, N.; Menter, D.G.; Davis, J.S.; Lichtenberger, L.; Hawke, D.; Hawk, E.; Vilar, E.; Bhattacharya, P.; Millward, S. Beyond COX-1: The Effects of Aspirin on Platelet Biology and Potential Mechanisms of Chemoprevention. Cancer Metastasis Rev. 2017, 36, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, A.L.; Payan-Carreira, R.; Gärtner, F.; Santana, I.; Rêma, A.; Lourenço, L.M.; Pires, M.A. Immunohistochemical Expression of Cyclooxygenase-2 (COX-2) in Feline Endometrial Adenocarcinoma and in Normal and Hyperplastic Endometria. Reprod. Domest. Anim. 2015, 50, 333–340. [Google Scholar] [CrossRef]
- Félétou, M.; Huang, Y.; Vanhoutte, P.M. Endothelium-Mediated Control of Vascular Tone: COX-1 and COX-2 Products. Br. J. Pharmacol. 2011, 164, 894–912. [Google Scholar] [CrossRef] [Green Version]
- Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and Functional Insights. J. Lipid Res. 2009, 50, S29–S34. [Google Scholar] [CrossRef] [Green Version]
- Van Ryn, J.; Trummlitz, G.; Pairet, M. COX-2 Selectivity and Inflammatory Processes. Curr. Med. Chem. 2012, 7, 1145–1161. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, O.; Dua, A. COX Inhibitors. In Encyclopedia of Immunotoxicology; Springer: Berlin/Heidelberg, Germany, 2016; p. 218. [Google Scholar]
- Lucas, S.M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S232–S240. [Google Scholar] [CrossRef] [Green Version]
- McGettigan, P.; Henry, D. Cardiovascular Risk with Non-Steroidal Anti-Inflammatory Drugs: Systematic Review of Population-Based Controlled Observational Studies. PLoS Med. 2011, 8, e1001098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medzhitov, R. Recognition of Microorganisms and Activation of the Immune Response. Nature 2007, 449, 819–826. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huether, S.; McCance, K. Understanding Pathophysiology, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2018; Available online: https://www.elsevier.com/books/understanding-pathophysiology/huether/978-0323-35409-7 (accessed on 28 May 2021).
- Garcia, C.C.; Tavares, L.P.; Dias, A.C.F.; Kehdy, F.; Alvarado-Arnez, L.E.; Queiroz-Junior, C.M.; Galvão, I.; Lima, B.H.; Matos, A.R.; Gonçalves, A.P.F.; et al. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses during Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients. Front. Immunol. 2018, 9, 975. [Google Scholar] [CrossRef] [Green Version]
- Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial Proinflammatory Cytokines Mediate Exaggerated Pain States: Implications for Clinical Pain—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/12617561/ (accessed on 28 May 2021).
- Zhang, J.M.; An, J. Cytokines, Inflammation, and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, C.C. Cytosolic Phospholipase A2: Physiological Function and Role in Disease. J. Lipid Res. 2015, 56, 1386–1402. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Eicosanoids. Essays Biochem. 2020, 64, 423–441. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Reddy, G.V.; Reddanna, P. Eicosanoids in Inflammation and Cancer: The Role of COX-2. Expert Rev. Clin. Immunol. 2009, 5, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Norris, P.C.; Reichart, D.; Dumlao, D.S.; Glass, C.K.; Dennis, E.A. Specificity of Eicosanoid Production Depends on the TLR-4-Stimulated Macrophage Phenotype. J. Leukoc. Biol. 2011, 90, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Chopra, S.; Giovanelli, P.; Alvarado-Vazquez, P.A.; Alonso, S.; Song, M.; Sandoval, T.A.; Chae, C.S.; Tan, C.; Fonseca, M.M.; Gutierrez, S.; et al. IRE1α-XBP1 Signaling in Leukocytes Controls Prostaglandin Biosynthesis and Pain. Science 2019, 365, eaau6499. [Google Scholar] [CrossRef]
- Hammock, B.D.; Wang, W.; Gilligan, M.M.; Panigrahy, D. Eicosanoids: The Overlooked Storm in Coronavirus Disease 2019 (COVID-19)? Am. J. Pathol. 2020, 190, 1782–1788. [Google Scholar] [CrossRef]
- Dennis, E.A.; Norris, P.C. Eicosanoid Storm in Infection and Inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Biringer, R.G. The Role of Eicosanoids in Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 2560. [Google Scholar] [CrossRef] [Green Version]
- Chhonker, Y.S.; Kanvinde, S.; Ahmad, R.; Singh, A.B.; Oupický, D.; Murry, D.J. Simultaneous Quantitation of Lipid Biomarkers for Inflammatory Bowel Disease Using LC–MS/MS. Metabolites 2021, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Claar, D.; Hartert, T.V.; Peebles, R.S. The Role of Prostaglandins in Allergic Lung Inflammation and Asthma. Expert Rev. Respir. Med. 2015, 9, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Ricciotti, E.; Fitzgerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Xi, M.; Gerriets, V. Prostaglandin E2 (Dinoprostone); StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Agard, M.; Asakrah, S.; Morici, L.A. PGE2 Suppression of Innate Immunity during Mucosal Bacterial Infection. Front. Cell. Infect. Microbiol. 2013, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J.R. An Enzyme Isolated from Arteries Transforms Prostaglandin Endoperoxides to an Unstable Substance That Inhibits Platelet Aggregation. Nature 1976, 263, 663–665. [Google Scholar] [CrossRef]
- Dorris, S.L.; Peebles, R.S. PGI 2 as a Regulator of Inflammatory Diseases. Mediat. Inflamm. 2012, 2012, 926968. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Luo, W.; Fang, S.; Chen, X.; Lin, T.; Zhou, S.; Zhang, L.; Yang, W.; Li, Z.; Ye, J.; et al. Prostacyclin Facilitates Vascular Smooth Muscle Cell Phenotypic Transformation via Activating TP Receptors When IP Receptors Are Deficient. Acta Physiol. 2021, 231, e13555. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, C.-S.; Park, C.-H.; Jeoung, D.-I.; Kim, Y.-M.; Choe, J. Beraprost Enhances the APC Function of B Cells by Upregulating CD86 Expression Levels. J. Immunol. 2011, 186, 3866–3873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugita, R.; Kuwabara, H.; Kubota, K.; Sugimoto, K.; Kiho, T.; Tengeiji, A.; Kawakami, K.; Shimada, K. Simultaneous Inhibition of PGE2 and PGI2 Signals Is Necessary to Suppress Hyperalgesia in Rat Inflammatory Pain Models. Mediat. Inflamm. 2016, 2016, 9847840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobzar, G.; Mardla, V.; Järving, I.; Samel, N. Comparison of Anti-Aggregatory Effects of PGI 2, PGI 3 and Iloprost on Human and Rabbit Platelets. Cell. Physiol. Biochem. 2001, 11, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Oskolkova, O.v.; Sarich, N.; Tian, Y.; Sitikov, A.; Tulapurkar, M.E.; Son, S.; Birukova, A.A.; Birukov, K.G. Effects of Prostaglandin Lipid Mediators on Agonist-Induced Lung Endothelial Permeability and Inflammation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2017, 313, L710–L721. [Google Scholar] [CrossRef]
- Domingo, C.; Palomares, O.; Sandham, D.A.; Erpenbeck, V.J.; Altman, P. The Prostaglandin D2 Receptor 2 Pathway in Asthma: A Key Player in Airway Inflammation 11 Medical and Health Sciences 1107 Immunology 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology. Respir. Res. 2018, 19, 189. [Google Scholar] [CrossRef]
- Brightling, C.E.; Brusselle, G.; Altman, P. The Impact of the Prostaglandin D2 Receptor 2 and Its Downstream Effects on the Pathophysiology of Asthma. Allergy Eur. J. Allergy Clin. Immunol. 2020, 75, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Rittchen, S.; Heinemann, A. Therapeutic Potential of Hematopoietic Prostaglandin D2 Synthase in Allergic Inflammation. Cells 2019, 8, 619. [Google Scholar] [CrossRef] [Green Version]
- Dey, I.; Lejeune, M.; Chadee, K. Prostaglandin E 2 Receptor Distribution and Function in the Gastrointestinal Tract. Br. J. Pharmacol. 2006, 149, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Arima, M.; Fukuda, T. Prostaglandin D2 and TH2 Inflammation in the Pathogenesis of Bronchial Asthma. Korean J. Intern. Med. 2011, 26, 8–18. [Google Scholar] [CrossRef]
- Leimert, K.B.; Verstraeten, B.S.E.; Messer, A.; Nemati, R.; Blackadar, K.; Fang, X.; Robertson, S.A.; Chemtob, S.; Olson, D.M. Cooperative Effects of Sequential PGF2α and IL-1β on IL-6 and COX-2 Expression in Human Myometrial Cells. Biol. Reprod. 2019, 100, 1370–1385. [Google Scholar] [CrossRef]
- Xu, C.; Long, A.; Fang, X.; Wood, S.L.; Slater, D.M.; Ni, X.; Olson, D.M. Effects of PGF2αon the Expression of Uterine Activation Proteins in Pregnant Human Myometrial Cells from Upper and Lower Segment. J. Clin. Endocrinol. Metab. 2013, 98, 2975–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Liu, W.; You, X.; Leimert, K.; Popowycz, K.; Fang, X.; Wood, S.L.; Slater, D.M.; Sun, Q.; Gu, H.; et al. PGF2α Modulates the Output of Chemokines and Pro-Inflammatory Cytokines in Myometrial Cells from Term Pregnant Women through Divergent Signaling Pathways. Mol. Hum. Reprod. 2015, 21, 603–614. [Google Scholar] [CrossRef]
- Jonczyk, A.W.; Piotrowska-Tomala, K.K.; Skarzynski, D.J. Effects of Prostaglandin F2α (PGF2α) on Cell-Death Pathways in the Bovine Corpus Luteum (CL). BMC Vet. Res. 2019, 15, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, R.; Zheng, X.B.; Guo, L.L.; Zhao, Y.P.; Wang, Y.; Wu, J.; Yu, Ay.; Wang, J.J.; Bao, F.J.; Elsheikh, A. Biomechanical Effects of Two Forms of PGF2α on Ex-Vivo Rabbit Cornea. Curr. Eye Res. 2021, 46, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Sabbieti, M.G.; Agas, D.; Marchetti, L.; Santoni, G.; Amantini, C.; Xiao, L.; Menghi, G.; Hurley, M.M. Signaling Pathways Implicated in PGF2α Effects on Fgf2+/+ and Fgf2−/− Osteoblasts. J. Cell. Physiol. 2010, 224, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.C.; Huang, R.Y. The Cyclooxygenase-2/Thromboxane A2 Pathway: A Bridge from Rheumatoid Arthritis to Lung Cancer? Cancer Lett. 2014, 354, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Rucker, D.; Dhamoon, A.S. Physiology, Thromboxane A2; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Feletou, M.; Vanhoutte, P.M.; Verbeuren, T.J. The Thromboxane/Endoperoxide Receptor (TP): The Common Villain. J. Cardiovasc. Pharmacol. 2010, 55, 317–332. [Google Scholar] [CrossRef]
- Crescente, M.; Menke, L.; Chan, M. v.; Armstrong, P.C.; Warner, T.D. Eicosanoids in Platelets and the Effect of Their Modulation by Aspirin in the Cardiovascular System (and Beyond). Br. J. Pharmacol. 2019, 176, 988–999. [Google Scholar] [CrossRef]
- Nakahata, N. Thromboxane A2: Physiology/Pathophysiology, Cellular Signal Transduction and Pharmacology. Pharmacol. Ther. 2008, 118, 18–35. [Google Scholar] [CrossRef]
- Chen, H. Role of Thromboxane A2 Signaling in Endothelium-Dependent Contractions of Arteries. Prostaglandins Other Lipid Mediat. 2018, 134, 32–37. [Google Scholar] [CrossRef]
- Liu, M.; Saeki, K.; Matsunobu, T.; Okuno, T.; Koga, T.; Sugimoto, Y.; Yokoyama, C.; Nakamizo, S.; Kabashima, K.; Narumiya, S.; et al. 12-Hydroxyheptadecatrienoic Acid Promotes Epidermal Wound Healing by Accelerating Keratinocyte Migration via the BLT2 Receptor. J. Exp. Med. 2014, 211, 1063–1078. [Google Scholar] [CrossRef] [Green Version]
- Cuzzo, B.; Lappin, S.L. Physiology, Leukotrienes; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Singh, R.K.; Gupta, S.; Dastidar, S.; Ray, A. Cysteinyl Leukotrienes and Their Receptors: Molecular and Functional Characteristics. Pharmacology 2010, 85, 336–349. [Google Scholar] [CrossRef]
- Li, P.; Oh, D.Y.; Bandyopadhyay, G.; Lagakos, W.S.; Talukdar, S.; Osborn, O.; Johnson, A.; Chung, H.; Mayoral, R.; Maris, M.; et al. LTB4 Promotes Insulin Resistance in Obese Mice by Acting on Macrophages, Hepatocytes and Myocytes. Nat. Med. 2015, 21, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Brandt, S.L.; Serezani, C.H. Too Much of a Good Thing: How Modulating LTB4 Actions Restore Host Defense in Homeostasis or Disease. Semin. Immunol. 2017, 33, 37–43. [Google Scholar] [CrossRef]
- Colazzo, F.; Gelosa, P.; Tremoli, E.; Sironi, L.; Castiglioni, L. Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediat. Inflamm. 2017, 2017, 2432958. [Google Scholar] [CrossRef]
- Panettieri, R.A.; Tan, E.M.L.; Ciocca, V.; Luttmann, M.A.; Leonard, T.B.; Hey, D.W.P. Effects of LTD4 on Human Airway Smooth Muscle Cell Proliferation, Matrix Expression, and Contraction in Vitro: Differential Sensitivity to Cysteinyl Leukotriene Receptor Antagonists. Am. J. Respir. Cell Mol. Biol. 1998, 19, 453–461. [Google Scholar] [CrossRef]
- Austen, K.F.; Maekawa, A.; Kanaoka, Y.; Boyce, J.A. The Leukotriene E4 Puzzle: Finding the Missing Pieces and Revealing the Pathobiologic Implications. J. Allergy Clin. Immunol. 2009, 124, 406–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becher, U.M.; Ghanem, A.; Tiyerili, V.; Fürst, D.O.; Nickenig, G.; Mueller, C.F.H. Inhibition of Leukotriene C4 Action Reduces Oxidative Stress and Apoptosis in Cardiomyocytes and Impedes Remodeling after Myocardial Injury. J. Mol. Cell. Cardiol. 2011, 50, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Barrett, N.A.; Nagai, J.; Lai, J.; Feng, C.; Boyce, J.A. Leukotriene D4 Paradoxically Limits LTC4-Driven Platelet Activation and Lung Immunopathology. J. Allergy Clin. Immunol. 2021, 148, 195–208.e5. [Google Scholar] [CrossRef] [PubMed]
- Minigh, J. Leukotriene D4. In xPharm: The Comprehensive Pharmacology Reference; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 1–4. ISBN 9780080552323. [Google Scholar]
- Bisgaard, H. Leukotriene Modifiers in Pediatric Asthma Management. Pediatrics 2001, 107, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Livne-Bar, I.; Wei, J.; Liu, H.H.; Alqawlaq, S.; Won, G.J.; Tuccitto, A.; Gronert, K.; Flanagan, J.G.; Sivak, J.M. Astrocyte-Derived Lipoxins A 4 and B 4 Promote Neuroprotection from Acute and Chronic Injury. J. Clin. Investig. 2017, 127, 4403–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recchiuti, A.; Cianci, E.; Simiele, F.; Romano, M. Lipoxins, Resolvins, and the Resolution of Inflammation. In Lipoxygenases in Inflammation; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 211–239. [Google Scholar]
- Chandrasekharan, J.A.; Sharma-Wali, N. Lipoxins: Nature’s Way to Resolve Inflammation. J. Inflamm. Res. 2015, 8, 181–192. [Google Scholar]
- Andrews, D.; Godson, C. Lipoxins and Synthetic Lipoxin Mimetics: Therapeutic Potential in Renal Diseases. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2021, 1866, 158940. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Duan, X.; Poorun, D.; Xu, J.; Zhang, S.; Gan, L.; He, M.; Zhu, K.; Ming, Z.; et al. Lipoxin A4 and Its Analog Suppress Inflammation by Modulating HMGB1 Translocation and Expression in Psoriasis. Sci. Rep. 2017, 7, 7100. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Chiang, N. Endogenous Pro-Resolving and Anti-Inflammatory Lipid Mediators: A New Pharmacologic Genus. Br. J. Pharmacol. 2008, 153, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Nakahira, K.; Dalli, J.; Siempos, I.I.; Norris, P.C.; Colas, R.A.; Moon, J.S.; Shinohara, M.; Hisata, S.; Howrylak, J.A.; et al. NLRP3 Inflammasome Deficiency Protects against Microbial Sepsis via Increased Lipoxin B4 Synthesis. Am. J. Respir. Crit. Care Med. 2017, 196, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Lannan, K.L.; Thatcher, T.H.; Pollock, S.J.; Woeller, C.F.; Phipps, R.P. Lipoxin B 4 Enhances Human Memory B Cell Antibody Production via Upregulating Cyclooxygenase-2 Expression. J. Immunol. 2018, 201, 3343–3351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.Y.; Chang, H.K.; Lee, J.W.; Kim, Y.S.; Kim, H.; Lee, M.H.; Shin, M.S.; Ham, D.H.; Park, H.K.; Lee, H.; et al. Amygdalin Suppresses Lipopolysaccharide-Induced Expressions of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells. Neurol. Res. 2007, 29, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kung, Y.L.; Lu, C.Y.; Badrealam, K.F.; Kuo, W.W.; Shibu, M.A.; Day, C.H.; Chen, R.J.; Lu, S.Y.; Padma, V.V.; Huang, C.Y. Cardioprotective Potential of Amygdalin against Angiotensin II Induced Cardiac Hypertrophy, Oxidative Stress and Inflammatory Responses through Modulation of Nrf2 and NF-ΚB Activation. Environ. Toxicol. 2021, 36, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Třísková, A.; Rudá-Kučerová, J. Can Amygdalin Provide Any Benefit in Integrative Anticancer Treatment? Klin. Onkol. 2019, 32, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Fan, K.; Wang, K.; Bian, C. Amygdalin Attenuates Acute Liver Injury Induced by D-Galactosamine and Lipopolysaccharide by Regulating the NLRP3, NF-ΚB and Nrf2/NQO1 Signalling Pathways. Biomed. Pharmacother. 2019, 111, 527–536. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, D.; Tang, D.; Sun, K.; Peng, J.; Zhu, W.; Yin, S.; Wu, Y. Amygdalin Inhibits TGFβ1-Induced Activation of Hepatic Stellate Cells (HSCs) in Vitro and CCl4-Induced Hepatic Fibrosis in Rats in Vivo. Int. Immunopharmacol. 2021, 90, 107151. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [Green Version]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the Eye of the Cytokine Storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-Inflammatory and Immune-Regulatory Cytokines in Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chronic Inflammation—StatPearls—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493173/?report=classic (accessed on 3 June 2021).
- Markelova, E.; Zdor, V.; Romanchuk, A.; Birko, O. Matrix Metalloproteinases: Relationship with Cytokines System, Diagnostic and Prognostic Potential. Immunopathol. Allergol. Infectol. 2016, 2, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Biologic Basis for Interleukin-1 in Disease. Blood 1996, 87, 2095–2147. [Google Scholar] [CrossRef] [Green Version]
- Tayal, V.; Kalra, B.S. Cytokines and Anti-Cytokines as Therapeutics—An Update. Eur. J. Pharmacol. 2008, 579, 1–12. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the Pathogenesis and Treatment of Inflammatory Diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Overview of the IL-1 Family in Innate Inflammation and Acquired Immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.S.; Chen, Z.; Dong, G.; Sunwoo, J.B.; Bancroft, C.C. IL (Interleukin)-1alpha Promotes Nuclear Factor-KappaB and AP-1-Induced IL-8 Expression, Cell Survival, and Proliferation in Head and Neck Squamous Cell Carcinomas—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/11410524/ (accessed on 3 June 2021).
- Haidar, H.; Lauricella, M.; Jurjus, R.; Daouk, H.; Leone, A.; Capello, F.; Eid, A.; Jurjus, A. Amygdalin Improves Burn Wound Healing in Diabetic Rats. FASEB J. 2019, 33, 662. [Google Scholar] [CrossRef]
- Puhlmann, M.; Weinreich, D.M.; Farma, J.M.; Carroll, N.M.; Turner, E.M.; Alexander, H.R. Interleukin-1β Induced Vascular Permeability Is Dependent on Induction of Endothelial Tissue Factor (TF) Activity. J. Transl. Med. 2005, 3, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voronov, E.; Carmi, Y.; Apte, R.N. Role of IL-1-Mediated Inflammation in Tumor Angiogenesis. Adv. Exp. Med. Biol. 2007, 601, 265–270. [Google Scholar] [PubMed]
- Ahmad, R.; Sylvester, J.; Zafarullah, M. MyD88, IRAK1 and TRAF6 Knockdown in Human Chondrocytes Inhibits Interleukin-1-Induced Matrix Metalloproteinase-13 Gene Expression and Promoter Activity by Impairing MAP Kinase Activation. Cell. Signal. 2007, 19, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Castejon, G.; Brough, D. Understanding the Mechanism of IL-1β Secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Lee, H.-J.; Kim, C.-J.; Shim, I.; Hahm, D.-H. Inhibitory Effect of Amygdalin on Lipopolysaccharide-Inducible TNF-Alpha and IL-1beta MRNA Expression and Carrageenan-Induced Rat Arthritis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/18955812/ (accessed on 3 June 2021).
- McGeough, M.D.; Pena, C.A.; Mueller, J.L.; Pociask, D.A.; Broderick, L.; Hoffman, H.M.; Brydges, S.D. Cutting Edge: IL-6 Is a Marker of Inflammation with No Direct Role in Inflammasome-Mediated Mouse Models. J. Immunol. 2012, 189, 2707–2711. [Google Scholar] [CrossRef] [Green Version]
- Rincon, M. Interleukin-6: From an Inflammatory Marker to a Target for Inflammatory Diseases. Trends Immunol. 2012, 33, 571–577. [Google Scholar] [CrossRef]
- Chikuma, T.; Yoshimoto, T.; Ohba, M.; Sawada, M.; Kato, T.; Sakamoto, T.; Hiyama, Y.; Hojo, H. Interleukin-6 Induces Prostaglandin E2 Synthesis in Mouse Astrocytes. J. Mol. Neurosci. 2009, 39, 175–184. [Google Scholar] [CrossRef]
- Garbers, C.; Hermanns, H.M.; Schaper, F.; Müller-Newen, G.; Grötzinger, J.; Rose-John, S.; Scheller, J. Plasticity and Cross-Talk of Interleukin 6-Type Cytokines. Cytokine Growth Factor Rev. 2012, 23, 85–97. [Google Scholar] [CrossRef]
- Zhang, A.; Pan, W.; Lv, J.; Wu, H. Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-ΚB and NLRP3 Signaling Pathways. Inflammation 2017, 40, 745–751. [Google Scholar] [CrossRef]
- Gago-López, N.; Lagunas Arnal, C.; Perez, J.J.; Wagner, E.F. Topical Application of an Amygdalin Analogue Reduces Inflammation and Keratinocyte Proliferation in a Psoriasis Mouse Model. Exp. Dermatol. 2021. [Google Scholar] [CrossRef]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, N.; Patial, S. Tumor Necrosis Factor-a Signaling in Macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef]
- Hu, F.; Hu, Y.; Peng, F. Synergistic and Protective Effect of Atorvastatin and Amygdalin against Histopathological and Biochemical Alterations in Sprague-Dawley Rats with Experimental Endometriosis. AMB Express 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 2009, 29, 313–325. [Google Scholar] [CrossRef]
- Desai, A.; Miller, M.J.; Huang, X.; Warren, J.S. Nitric Oxide Modulates MCP-1 Expression in Endothelial Cells: Implications for the Pathogenesis of Pulmonary Granulomatous Vasculitis. Inflammation 2003, 27, 213–223. [Google Scholar] [CrossRef]
- Viedt, C.; Dechend, R.; Fei, J.; Hänsch, G.M.; Kreuzer, J.; Orth, S.R. MCP-1 Induces Inflammatory Activation of Human Tubular Epithelial Cells: Involvement of the Transcription Factors, Nuclear Factor-ΚB and Activating Protein-1. J. Am. Soc. Nephrol. 2002, 13, 1534–1547. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Saini, V.; Arora, S. MCP-1: Chemoattractant with a Role beyond Immunity: A Review. Clin. Chim. Acta 2010, 411, 1570–1579. [Google Scholar] [CrossRef]
- Stříž, I.; Holáň, V. Cytokiny v Klinické Medicíně; Maxdorf: Prague, Czech Republic, 2015. [Google Scholar]
- Lv, J.; Xiong, W.; Lei, T.; Wang, H.; Sun, M.; Hao, E.; Wang, Z.; Huang, X.; Deng, S.; Deng, J.; et al. Amygdalin Ameliorates the Progression of Atherosclerosis in LDL Receptor-Deficient Mice. Mol. Med. Rep. 2017, 16, 8171–8179. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Yang, Z. Amygdalin Attenuates Atherosclerosis Progress Through Inhibiting of Toll-Like Receptors Expression and Activity. J. Anim. Vet. Adv. 2012, 11, 1613–1621. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xu, J.; Xu, J.; Zheng, W.; Chen, Q.; Jiao, D. Study on the Mechanism of JAK2/STAT3 Signaling Pathway-Mediated Inflammatory Reaction after Cerebral Ischemia. Mol. Med. Rep. 2018, 17, 5007–5012. [Google Scholar] [CrossRef]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT Signaling Pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef] [Green Version]
- Zarnegar, B.; Yamazaki, S.; He, J.Q.; Cheng, G. Control of Canonical NF-ΚB Activation through the NIK-IKK Complex Pathway. Proc. Natl. Acad. Sci. USA 2008, 105, 3503–3508. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.A.; Timmis, J.; Qwarnstrom, E.E. Computational Models of the NF-ΚB Signalling Pathway. Computation 2014, 2, 131–158. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.J.; Liu, Z.G. Crosstalk of Reactive Oxygen Species and NF-ΚB Signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Janus, P.; Szołtysek, K.; Zając, G.; Stokowy, T.; Walaszczyk, A.; Widłak, W.; Wojtaś, B.; Gielniewski, B.; Iwanaszko, M.; Braun, R.; et al. Pro-Inflammatory Cytokine and High Doses of Ionizing Radiation Have Similar Effects on the Expression of NF-KappaB-Dependent Genes. Cell. Signal. 2018, 46, 23–31. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Serasanambati, M.; Chilakapati, S.R. Function of Nuclear Factor Kappa B (NF-KB) in Human Diseases-A Review. South Indian J. Biol. Sci. 2016, 2, 368. [Google Scholar] [CrossRef]
- Steen, B.M.; Gerstenfeld, L.C.; Einhorn, T.A. The Role of the Immune System in Fracture Healing. In Osteoimmunology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 343–367. [Google Scholar]
- Zhang, D.; Lin, J.; Han, J. Receptor-Interacting Protein (RIP) Kinase Family. Cell. Mol. Immunol. 2010, 7, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baroni, A.; Paoletti, I.; Greco, R.; Satriano, R.A.; Ruocco, E.; Tufano, M.A.; Perez, J.J. Immunomodulatory Effects of a Set of Amygdalin Analogues on Human Keratinocyte Cells. Exp. Dermatol. 2005, 14, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J.; Blain, S.W.; Lo, R.S. TGFβ Signaling in Growth Control, Cancer, and Heritable Disorders. Cell 2000, 103, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Letterio, J.J.; Roberts, A.B. Regulation of Immune Responses by TGF-β. Annu. Rev. Immunol. 1998, 16, 137–161. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhao, J.; Song, X.; Li, L.; Li, F.; Shang, J.; Wang, W.W. Amygdalin Reduces Lipopolysaccharide-Induced Chronic Liver Injury in Rats by down-Regulating PI3K/AKT, JAK2/STAT3 and NF-ΚB Signalling Pathways. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2688–2697. [Google Scholar] [CrossRef] [Green Version]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.U. An Overview of Inflammation: Mechanism and Consequences. Front. Biol. China 2011, 6, 274–281. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.K.; Yang, H.Y.; Lee, T.H.; Shin, M.C.; Lee, M.H.; Shin, M.S.; Kim, C.J.; Kim, O.J.; Hong, S.P.; Cho, S. Armeniacae Semen Extract Suppresses Lipopolysaccharide-Induced Expressions of Cycloosygenase-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells. Biol. Pharm. Bull. 2005, 28, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; et al. Cutting Edge: NF-ΚB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. J. Immunol. 2009, 183, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Van de Veerdonk, F.L.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A.B. Inflammasome Activation and IL-1β and IL-18 Processing during Infection. Trends Immunol. 2011, 32, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, Y.; Mou, X.; Wang, H.; Xie, Z. Amygdalin Alleviates Renal Injury by Suppressing Inflammation, Oxidative Stress and Fibrosis in Streptozotocin-Induced Diabetic Rats. Life Sci. 2021, 265, 118835. [Google Scholar] [CrossRef]
Metabolites | Benzaldehyde | [22,23] |
Mandelonitrile | [29] | |
Prunazine | [29] | |
Adverse effects | Nausea and vomiting | [48] |
Headache | ||
Dizziness | ||
Cyanosis | ||
Liver damage | ||
Hypotension | ||
Ptosis | ||
Ataxic neuropathies | ||
Fever | ||
Mental confusion | ||
Coma | ||
Death | ||
Treatment for overdose | Hydroxocobalamin | [49] |
Pharmacological function | Antitumor | [7,50] |
Antifibrotic | ||
Anti-inflammatory | ||
Analgesic | ||
Immunomodulatory | ||
Antiatherosclerosis | ||
Ameliorating digestive system | ||
Ameliorating reproductive system | ||
Improving neurodegeneration | ||
Improving myocardial hypertrophy | ||
Reducing blood glucose |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figurová, D.; Tokárová, K.; Greifová, H.; Knížatová, N.; Kolesárová, A.; Lukáč, N. Inflammation, It’s Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin. Molecules 2021, 26, 5972. https://doi.org/10.3390/molecules26195972
Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, Lukáč N. Inflammation, It’s Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin. Molecules. 2021; 26(19):5972. https://doi.org/10.3390/molecules26195972
Chicago/Turabian StyleFigurová, Daniela, Katarína Tokárová, Hana Greifová, Nikola Knížatová, Adriana Kolesárová, and Norbert Lukáč. 2021. "Inflammation, It’s Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin" Molecules 26, no. 19: 5972. https://doi.org/10.3390/molecules26195972
APA StyleFigurová, D., Tokárová, K., Greifová, H., Knížatová, N., Kolesárová, A., & Lukáč, N. (2021). Inflammation, It’s Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin. Molecules, 26(19), 5972. https://doi.org/10.3390/molecules26195972