Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Extracts
2.3. Solvents and Reagents
2.4. Animals
2.5. Determination of Total Phenolic Content
2.6. Determination of Total Flavonoid Content
2.7. Determination of Antioxidant Activity
2.7.1. DPPH Free Radical Scavenging Assay
2.7.2. Ferric Reducing Antioxidant Power (FRAP)
2.7.3. Hydrogen Peroxide (H2O2) Scavenging Activity
2.8. In Vitro Anti-Inflammatory Activity
2.8.1. Membrane Stabilization Assay (Heat Induced Hemolysis)
2.8.2. Egg Albumin Denaturation Assay
2.8.3. Bovine Serum Albumin Denaturation Assay
2.9. In Vivo Anti-Inflammatory Activity
2.9.1. Inhibition of Carrageenan-Induced Paw Edema in Wistar Rats
2.9.2. Inhibition of Formaldehyde-Induced Hind Paw Edema in Albino Mice
2.10. Acute and Subacute Toxicity Assessment
2.10.1. Acute Toxicological Study
2.10.2. Chronic Toxicological Study
2.10.3. Histopathological Examination
2.11. Liquid–Liquid Partitioning of Active Crude Extract
2.12. Method Optimization for Fractionation Using RP-HPLC
2.13. RP-HPLC Fractionation (Reversed Phase Chromatography)
2.14. LC-ESI-MS/MS Analysis
2.15. Quantification of Compounds Using HPLC
2.16. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Constituents and Antioxidant Activity
3.2. In Vitro Anti-Inflammatory Activity
3.2.1. Heat Induced Hemolysis (Membrane Stabilization)
3.2.2. Inhibition of Protein Denaturation (Serum and Egg Albumin)
3.3. In Vivo Anti-Inflammatory Activity of Sequential Crude Extracts
Carrageenan-Induced Paw Edema
3.4. Acute and Subacute Toxicity Assessment
3.4.1. Hematological and Serum Parameters
3.4.2. Histopathological Analysis
3.5. ESI-MS/MS Analysis
3.6. Quantification of Bioactive Compounds Using External Standards on HPLC
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Battu, G.R.; Ethadi, S.R.; Priya, G.V.; Priya, K.S.; Chandrika, K.; Rao, A.V.; Reddy, S.O. Evaluation of antioxidant and anti-inflammatory activity of Euphorbia heyneana Spreng. Asian Pac. J. Trop. Biomed. 2011, 1, 191–194. [Google Scholar] [CrossRef]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 1, 178–180. [Google Scholar] [CrossRef]
- Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B.; Menziwa, P.; Nkeh-Chungag, B.N.; Iputo, J.E. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res. 2010, 4, 789–795. [Google Scholar]
- Rodriguez, V.L.; Davoudian, T. Clinical Measurement of Pain, Opioid Addiction, and Functional Status. In Treating Comorbid Opioid Use Disorder in Chronic Pain; Springer: Cham, Switzerland, 2016; pp. 47–56. [Google Scholar]
- Kazemi, S.; Shirzad, H.; Rafieian-Kopaei, M. Recent findings in molecular basis of inflammation and anti-inflammatory plants. Curr. Pharm. Des. 2018, 24, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Mikaili, P.; Sharifi, M.; SHayegh, J.; Sarahroodi, S.H. Etymological review on chemical and pharmaceutical substances of the oriental origin. Int. J. Anim. Vet. Adv. 2012, 4, 40–44. [Google Scholar]
- Li, S.G.; Wang, K.B.; Gong, C.; Bao, Y.; Qin, N.B.; Li, D.H.; Hua, H.M. Cytotoxic quinazoline alkaloids from the seeds of Peganum harmala. Bioorgan. Med. Chem. Lett. 2018, 28, 103–106. [Google Scholar] [CrossRef]
- Kartal, M.; Altun, M.L.; Kurucu, S. HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L. J. Pharmaceut. Biomed. Anal. 2003, 3, 263–269. [Google Scholar] [CrossRef]
- Aziz, M.A.; Khan, A.H.; Adnan, M.; Izatullah, I. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas. Pak. J. Ethnopharmacol. 2017, 198, 268–281. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, M.R.; Shah, N.A.; Shah, S.A.; Majid, M.; Farooq, M.A. Ethnomedicinal plant use value in the Lakki Marwat District of Pakistan. J. Ethnopharmacol. 2014, 158, 412–422. [Google Scholar] [CrossRef]
- Ullah, M.; Khan, M.U.; Mahmood, A.; Malik, R.N.; Hussain, M.; Wazir, S.M.; Daud, M.; Shinwari, Z.K. An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan. J. Ethnopharmacol. 2003, 150, 918–924. [Google Scholar] [CrossRef]
- Bellakhdar, J. La Pharmacop′ee Marocaine Traditionnelle. Medecine Arabe Ancienne et Savoirs Populaires; Ibis Press: Paris, France, 1997; pp. 529–530. [Google Scholar]
- Baba Aissa, F. Encyclopédie des Plantes Utiles, Flore d’Algérie et du Maghreb, Substances Végétales d’Afrique, d’Orient et d’Occident; Ed Librairie Modern: Rouiba, Algeria, 2000; Volume 46, p. 46. [Google Scholar]
- Liu, L.; Zhao, T.; Cheng, X.M.; Wang, C.H.; Wang, Z.T. Characterization and determination of trace alkaloids in seeds extracts from Peganum harmala linn. using LC-ESI-MS and HPLC. Acta Chromatogr. 2013, 25, 21–240. [Google Scholar] [CrossRef] [Green Version]
- Bremner, P.; Rivera, D.; Calzado, M.A.; Obón, C.; Inocencio, C.; Fiebich, B.L.; Muñoz, E.; Heinrich, M. Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa Band otherpro-inflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Oodi, A.; Norouzi, H.; Amirizadeh, N.; Nikougoftar, M.; Vafaie, Z. Harmine, a novel DNA methyltransferase 1 inhibitor in the leukemia cell line. Indian. J. Hematol. Blood. Transfus. 2017, 33, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, Y.; Wang, Y.; Qi, S.; Wang, Y.; Ma, C.; Xuan, Z. Anti-amnesic effect of extract and alkaloid fraction from aerial parts of Peganum harmala on scopolamine-induced memory deficits in mice. J. Ethnopharmacol. 2017, 204, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Bensalem, S.; Soubhye, J.; Aldib, I.; Bournine, L.; Nguyen, A.T.; Vanhaeverbeek, M.; Nève, J. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). J. Ethnopharmacol. 2014, 154, 361–369. [Google Scholar] [CrossRef]
- Rezaee, M.; Hajighasemi, F. Sensitivity of hematopoietic malignant cells to Peganum harmala seed extract in vitro. J. Basic. Clin. Pathophysiol. 2019, 7, 21–26. [Google Scholar]
- Shaheen, H.A.; Issa, M.Y. In vitro and in vivo activity of Peganum harmala L. alkaloids against phytopathogenic bacteria. Sci. Hortic. 2020, 264, 108940. [Google Scholar] [CrossRef]
- Abderrahim, L.A.; Taïbi, K.; Abderrahim, C.A. Assessment of the antimicrobial and antioxidant activities of Ziziphus lotus and Peganum harmala. Iran. J. Sci. Technol. A Sci. 2019, 43, 409–414. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Al-Mana, F.A.; El-Shafei, A.A. Polyphenols of Frangula alnus and Peganum harmala leaves and associated biological activities. Plants 2020, 9, 1086. [Google Scholar] [CrossRef]
- Monsef, H.R.; Ghobadi, V.; Iranshahi, M.; Abdollahi, M. Antinociceptive effects of Peganum harmala L. alkaloid extract on mouse formalin test. J. Pharm. Pharm. Sci. 2004, 7, 65–69. [Google Scholar]
- Singhai, A.; Patil, U.K. Amelioration of oxidative and inflammatory changes by Peganum harmala seeds in experimental arthritis. Clin. Phytosci. 2021, 7, 13. [Google Scholar] [CrossRef]
- Selim, S.A.; Aziz, M.H.A.; Mashait, M.S.; Warrad, M.F. Antibacterial activities, chemical constitutes and acute toxicity of Egyptian Origanum majorana L., Peganum harmala L. and Salvia officinalis L. essential oils. Afr. J. Pharm. Pharmacol. 2013, 7, 725–735. [Google Scholar]
- Guergour, H.; Allouni, R.; Mahdeb, N.; Bouzidi, A. Acute and subacute toxicity evaluation of alkaloids of Peganum harmala L. in experimental mice. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Zhang, X.; Yuan, Y.; Zhang, Y.; Gao, J.; Kang, N.; Tan, P. The toxicity assessment of extract of Peganum harmala L. seeds in Caenorhabditis elegans. BMC Complement. Med. Ther. 2020, 20, 256. [Google Scholar] [CrossRef]
- Hossain, M.A.; Shah, M.D. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab. J. Chem. 2015, 8, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Oriakhi, K.; Oikeh, E.I.; Ezeugwu, N.; Anoliefo, O.; Aguebor, O.; Omoregie, E.S. Comparative antioxidant activities of extracts of Vernonia amygdalina and Ocimum gratissimum leaves. J. Agric. Sci. 2014, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Alara, O.R.; Abdurahman, N.H.; Mudalip, S.A.; Olalere, O.A. Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. J. King Saud Univ. Sci. 2019, 31, 495–499. [Google Scholar] [CrossRef]
- Zahin, M.; Aqil, F.; Ahmad, I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010, 703, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Sadique, J.; Al-Rqobahs, W.A.; Bughaith, E.I.; Gindi, A.R. The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia 1989, 60, 525–532. [Google Scholar]
- Sakat, S.; Juvekar, A.R.; Gambhire, M.N. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Yuan, Y.; Ahmad, N.; Tawab, A.; Ziora, Z.M. Syzygium cumini (L.), skeels fruit extracts: In vitro and in vivo anti-inflammatory properties. J. Ethnopharmacol. 2021, 271, 113805. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol. 1968, 20, 169–173. [Google Scholar] [CrossRef]
- Morris, C.J. Carrageenan-induced paw edema in the rat and mouse. Inflammat. Protocol. 2003, 225, 115–121. [Google Scholar]
- Ramadhan, U.H. Study the effect of Peganum harmala L. Alkaloids extract in-vivo as anti-inflammatory agent. Univ. Thi Qar J. Sci. 2013, 3, 58–64. [Google Scholar]
- Brownlee, G. Effect of deoxycortone and ascorbic acid on formaldehyde-induced arthritis in normal and adrenalectomised rats. Lancet 1950, 268, 157–159. [Google Scholar] [CrossRef]
- OECD. OECD Guideline for Testing of Chemicals. Repeated Dose 28-Day Oral Toxicity in Rodents, Test. No. 407; OECD: Paris, France, 2008. [Google Scholar]
- OECD. OECD Guidelines for Testing of Chemicals: Acute Oral Toxicity—Acute Toxic Class. Method. Test. No. 423, Adopted 22 March 1996, and Revised Method Adopted 17 December 2001; OECD: Paris, France, 2001. [Google Scholar]
- Cock, I.E. Problems of reproducibility and efficacy of bioassays using crude extracts, with reference to Aloe vera. Pharmacogn. Commun. 2011, 1, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant, analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Javed, M.; Rafique, G.; Saleem, T. A comparative study of total phenolic contents and antioxidant potential of seeds of Peganum harmala. Int. J. Biosci. 2019, 14, 121–127. [Google Scholar]
- Kumari, C.S.; Yasmin, N.; Hussain, M.R.; Babuselvam, M. In vitro anti-inflammatory and anti-arthritic property of Rhizopora mucronata leaves. Intern. J. Pharma. Sci. Res. 2015, 6, 482–485. [Google Scholar]
- Scanlon, V.V.; Sanders, T. Essentials of Anatomy and Physiology, 6th ed.; FA Davis: Philadelphia, PA, USA, 2010; p. 287. [Google Scholar]
- Khadhr, M.; Bousta, D.; El Mansouri, L.; Boukhira, S.; Lachkar, M.; Jamoussi, B.; Boukhchina, S. HPLC and GC–MS analysis of Tunisian Peganum harmala seeds oil and evaluation of some biological activities. Am. J. Ther. 2017, 24, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Moussaid, M.; Elamrani, A.E.; Bourhim, N.; Benaissa, M. In vivo anti-inflammatory and in vitro antioxidant activities of Moroccan medicinal plants, Nat. Prod. Commun. 2011, 6, 1441–1443. [Google Scholar]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef]
- Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med. 1962, 115, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.D.; O′Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.A.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West. Indian Med. J. 2008, 57, 327–331. [Google Scholar] [PubMed]
- Leelaprakash, G.; Dass, S.M. In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 2011, 3, 189–196. [Google Scholar]
- Wills, A.L. Release of Histamin, Kinin and Prostaglandins during Carrageenin Induced Inflammation of the Rats. Prostaglandins Pept. Amins 1969, 31–48. Available online: https://ci.nii.ac.jp/naid/10006158109/ (accessed on 6 October 2021).
- Edziri, H.; Marzouk, B.; Mabrouk, H.; Garreb, M.; Douki, W.; Mahjoub, A.; Verschaeve, L.; Najjar, F.; Mastouri, M. Phytochemical screening, butyrylcholinesterase inhibitory activity and anti-inflammatory effect of some Tunisian medicinal plants. S. Afr. J. Bot. 2018, 114, 84–88. [Google Scholar] [CrossRef]
- Kumar, M.P.; Joshi, S.D.; Kulkarni, V.H.; Savant, C. Phytochemical screening and evaluation of analgesic, anti-inflammatory activities of Peganum harmala Linn., seeds in rodents. Appl. Pharm. Sci. 2015, 5, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.; Rasool, N.; Iqbal, M.; Tawab, A.; E.-Hbib, F.; Khan, A.; Farhan, M. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis of Russelia equisetiformis extract. Bulg. Chem. Commun. 2017, 49, 354–359. [Google Scholar]
- Wang, Z.; Kang, D.; Jia, X.; Zhang, H.; Guo, J.; Liu, C.; Liu, W. Analysis of alkaloids from Peganum harmala L. sequential extracts by liquid chromatography coupled to ion mobility spectrometry. J. Chromatogr. B 2018, 1096, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, H.; Guillén, V.J. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol. 2010, 48, 839–845. [Google Scholar] [CrossRef]
- Herraiz, T.; Guillén, H.; Arán, V.J.; Salgado, A. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala. Food Chem. Toxicol. 2017, 103, 261–269. [Google Scholar] [CrossRef]
Parameter | DCM Extracts | Methanol Extracts | 70% Methanol Extracts | Fraction B (Methanolic Extract) | PHMF2 (Fraction B of Methanolic Extract) | Ascorbic Acid | Quercetin |
---|---|---|---|---|---|---|---|
Total phenolic contents (mg GAE/g) | 106.2 ± 0.31 | 371.4 ± 0.2 | 142.3 ± 0.1 | - | - | - | - |
Total flavonoid contents (mg QE/g) | 0.31 ± 0.5 | 1.3 ± 0.3 | 0.81 ± 0.02 | - | - | - | - |
FRAP (mmol/g) | 9.2 ± 0.6 | 39 ± 0.9 | 19.2 ± 0.2 | 42.9± 0.1 | 45.3 ± 0.2 | 51 ± 0.02 | 62 ± 0.02 |
DPPH (IC50 µg/mL) | 146 ± 2.0 | 49 ± 3.1 | 69 ± 1.4 | 44.6 ± 3.0 | 35.4 ± 1.1 | 29.1 ± 0.02 | 25.4 ± 0.01 |
H2O2 (%) | 25 ± 0.6 | 66 ± 0.9 | 43 ± 2.10 | 71 ± 2.0 | 75 ± 0.1 | 79 ± 0.02 | 84 ± 0.05 |
Treatment | Dose (µg/mL) | Membrane Stabilization | Egg Albumin Denaturation | Serum Albumin Denaturation | |||
---|---|---|---|---|---|---|---|
Absorbance | % Inhibition | Absorbance | % Inhibition | Absorbance | % Inhibition | ||
Control | - | 0.94 ± 0.1 | - | 0.91 ± 0.2 | - | 0.92 ± 0.1 | - |
MeOH extract (crude extract) | 100 | 0.75 ± 0.2 ns | 20.2 | 0.69 ± 1.3 ns | 24.1 | 0.63 ± 0.3 * | 31.5 |
200 | 0.69 ± 0.4 ns | 26.5 | 0.65 ± 1.1 ns | 28.5 | 0.58 ± 0.2 ** | 36.9 | |
300 | 0.58 ± 0.5 * | 38.2 | 0.56 ± 0.2 * | 38.4 | 0.51 ± 0.2 ** | 44.5 | |
400 | 0.43 ± 0.1 ** | 48.2 | 0.39 ± 0.2 ** | 57.1 | 0.34 ± 0.1 ** | 63.0 | |
Fraction B (liquid–liquid partitioned fraction) | 100 | 0.66 ± 0.2 * | 29.7 | 0.60 ± 0.2 * | 34.0 | 0.58 ± 0.1 * | 36.0 |
200 | 0.65 ± 0.3 * | 30.8 | 0.58 ± 0.2 * | 36.2 | 0.54 ± 0.2 ** | 41.3 | |
300 | 0.55 ± 0.2 ** | 41.7 | 0.50 ± 0.2 ** | 45.0 | 0.48 ± 0.4 ** | 47.8 | |
400 | 0.42 ± 1.1 ** | 55.3 | 0.37 ± 0.2 ** | 59.3 | 0.26 ± 0.1 *** | 71.7 | |
PHMF2 (RP-HPLC sub-fraction) | 100 | 0.63 ± 0.1 * | 32.9 | 0.59 ± 0.1 * | 35.1 | 0.56 ± 0.2 * | 39.1 |
200 | 0.57 ± 0.3 * | 39.3 | 0.54 ± 0.5 * | 40.6 | 0.51 ± 0.2 * | 44.5 | |
300 | 0.50 ± 0.2 ** | 46.8 | 0.49 ± 0.6 ** | 46.1 | 0.45 ± 0.1 ** | 51.0 | |
400 | 0.35 ± 0.2 ** | 62.7 | 0.29 ± 0.2 *** | 68.1 | 0.25 ± 0.4 *** | 72.9 | |
70% MeOH extract (crude extract) | 50 | 0.80 ± 0.4 ns | 14.8 | 0.76 ± 0.1 ns | 16.4 | 0.70 ± 0.3 ns | 23.9 |
100 | 0.76 ± 0.5 ns | 19.1 | 0.72 ± 0.1 ns | 20.8 | 0.69 ± 0.2 * | 25.0 | |
200 | 0.70 ± 0.4 * | 25.5 | 0.65 ± 1.2 * | 28.5 | 0.63 ± 0.2 * | 31.5 | |
300 | 0.59 ± 0.1 * | 37.3 | 0.55 ± 1.1 * | 39.5 | 0.52 ± 0.3 ** | 43.4 | |
DCM (crude extract) | 100 | 0.94 ± 0.1 | NA | 0.94 ± 0.1 | NA | 0.93 ± 0.3 | NA |
200 | 0.93 ± 0.1 | NA | 0.94 ± 0.2 | NA | 0.94 ± 0.2 | NA | |
300 | 0.93 ± 0.2 | NA | 0.93 ± 0.2 | NA | 0.94 ± 0.2 | NA | |
400 | 0.90 ± 0.2 | NA | 0.94 ± 0.1 | NA | 0.93 ± 0.3 | NA | |
Diclofenac sodium (Standard drug) | 100 | 0.19 ± 0.2 *** | 79.7 | 0.16 ± 0.1 *** | 82.4 | 0.05 ± 0.5 **** | 94.5 |
200 | 0.14 ± 0.2 **** | 85.1 | 0.11 ± 0.1 *** | 87.9 | 0.03 ± 0.1 **** | 96.5 | |
300 | 0.11 ± 0.1 **** | 88.2 | 0.09 ± 0.1 **** | 90.4 | 0.02 ± 0.1 **** | 97.0 | |
400 | 0.10 ± 0.2 **** | 89.3 | 0.09 ± 0.5 **** | 91.5 | 0.02 ± 0.5 **** | 97.8 |
Parameters | Control Group | Acute Toxicity (14-Day) | Subacute Toxicity (28-Day) | ||
---|---|---|---|---|---|
Normal Saline | 2000 mg/kg PHME | 3000 mg/kg PHME | 500 mg/kg PHME | 1000 mg/kg PHME | |
Body weight (g) | 206.00 ± 4.50 | 208.00 ± 5.50 | 205.50 ± 6.33 | 209.83 ± 5.92 | 208.50 ± 7.17 |
Organ Weight | |||||
Heart (g) | 0.60 ± 0.15 | 0.65 ± 0.04 | 0.80 ± 0.06 | 0.74 ± 0.05 | 0.70 ± 0.10 |
Paired Lungs (g) | 2.15 ± 1.15 | 2.53 ± 0.15 | 3.36 ± 0.47 | 3.14 ± 0.31 | 2.78 ± 0.81 |
Liver (g) | 7.93 ± 1.40 | 8.10 ± 0.65 | 7.95 ± 1.33 | 9.66 ± 0.99 | 9.33 ± 1.37 |
Spleen (g) | 0.45 ± 0.03 | 0.50 ± 0.03 | 0.47 ± 0.03 | 0.50 ± 0.03 | 0.67 ± 0.03 |
Hematological Parameters | |||||
WBCs (105/µL) | 3.40 ± 0.02 | 2.03 ± 0.03 | 2.73 ± 0.02 | 3.07 ± 0.02 | 3.15 ± 0.02 |
Neutrophils (%) | 40.20 ± 3.00 | 42.95 ± 4.50 | 43.55 ± 4.00 | 47.40 ± 4.25 | 48.40 ± 3.50 |
Lymphocytes (%) | 45.45 ± 4.30 | 49.05 ± 5.50 | 49.45 ± 5.20 | 53.77 ± 5.35 | 56.57 ± 4.75 |
Eosinophils (%) | 0.94 ± 0.10 | 0.96 ± 0.02 | 1.06 ± 0.05 | 1.09 ± 0.03 | 1.48 ± 0.07 |
RBCs (106/µL) | 9.05 ± 2.10 | 10.40 ± 0.50 | 11.35 ± 1.03 | 11.30 ± 0.77 | 12.27 ± 1.57 |
Hemoglobin (g/dL) | 14.55 ± 2.45 | 16.05 ± 1.00 | 16.95 ± 1.27 | 17.12 ± 1.13 | 17.85 ± 1.86 |
Hematocrit (%) | 45.60 ± 3.70 | 47.95 ± 3.50 | 48.75 ± 3.40 | 50.83 ± 3.45 | 56.43 ± 3.55 |
Mean corpuscular volume (MCV (f/L) | 57.60 ± 7.50 | 62.05 ± 5.00 | 64.70 ± 5.43 | 66.88 ± 5.22 | 71.45 ± 6.47 |
Mean corpuscular hemoglobin (MCH (pg) | 17.50 ± 1.65 | 18.80 ± 1.00 | 19.75 ± 1.03 | 19.72 ± 1.02 | 20.68 ± 1.34 |
MCHC (%) | 29.45 ± 1.50 | 31.00 ± 2.00 | 32.25 ± 2.03 | 32.93 ± 2.02 | 33.90 ± 1.77 |
Platelets(105/µL) | 6.65 ± 1.10 | 6.95 ± 0.25 | 7.55 ± 0.53 | 7.58 ± 0.39 | 8.05 ± 0.82 |
Serum Biological Parameters | |||||
Total Protein (g/dL) | 4.05 ± 0.65 | 4.39 ± 0.25 | 5.10 ± 0.23 | 4.74 ± 0.24 | 6.51 ± 0.44 |
Albumin (g/dL) | 1.88 ± 0.35 | 2.25 ± 0.20 | 2.45 ± 0.23 | 2.43 ± 0.22 | 2.69 ± 0.29 |
Albumin/Globulin ratio | 2.30 ± 0.26 | 2.67 ± 0.03 | 2.95 ± 0.02 | 2.66 ± 0.02 | 2.75 ± 0.14 |
Lactate Dehydrogenase (U/L) | 1732.00 ± 271.00 | 2088.50 ± 217.50 | 2266.50 ± 252.00 | 2281.00 ± 234.75 | 2379.00 ± 261.50 |
Asparate Transaminase (U/L) | 111.30 ± 10.10 | 121.00 ± 14.50 | 141.10 ± 12.73 | 137.20 ± 13.62 | 136.47 ± 11.42 |
Alanine Transaminase (U/L) | 29.85 ± 5.50 | 36.80 ± 4.50 | 39.35 ± 4.33 | 39.67 ± 4.42 | 43.33 ± 4.92 |
Alkaline Phosphatase (U/L) | 284.00 ± 15.00 | 298.00 ± 19.00 | 312.50 ± 18.33 | 316.50 ± 18.67 | 320.17± 16.67 |
Total bilirubin (mg/dL) | 0.25 ± 0.06 | 0.29 ± 0.01 | 0.36 ± 0.04 | 0.31 ± 0.03 | 0.29 ± 0.05 |
Creatinine (mg/dL) | 1.43 ± 0.07 | 1.84 ± 0.45 | 2.46 ± 0.33 | 2.00 ± 0.39 | 1.77 ± 0.20 |
Uric Acid (mg/dL) | 0.96 ± 0.06 | 1.15 ± 0.01 | 0.91 ± 0.04 | 1.04 ± 0.03 | 1.03± 0.05 |
Total Cholesterol (mg/dL) | 53.70 ± 5.00 | 55.65 ± 3.50 | 60.20 ± 4.13 | 60.65 ± 3.82 | 66.52 ± 4.57 |
Triglycerides (mg/dL) | 116.80 ± 9.40 | 121.95 ± 11.00 | 133.95 ± 8.77 | 133.00 ± 9.88 | 144.23 ± 9.08 |
Sodium (mmol/L) | 108.00 ± 18.00 | 124.50 ± 11.00 | 125.00 ± 13.67 | 132.83 ± 12.33 | 139.17 ± 15.83 |
Chloride (mmol/L) | 71.50 ± 20.00 | 91.50 ± 8.00 | 92.00 ± 12.33 | 97.33 ± 10.17 | 110.00 ± 16.17 |
Potassium (mmol/L) | 3.04 ± 0.06 | 3.70 ± 0.40 | 3.07 ± 0.30 | 3.64 ± 0.35 | 3.44 ± 0.18 |
Fractions | Average Mass | ESI-MS/MS (Ions) | Compound | Chemical Formula | References |
---|---|---|---|---|---|
PHMF2 | 191 | 191, 173.1 | Quinic acid | C7H12O6 | [58] |
198 | 198.08, 181, 171.08 | Harmol | C12H10N2O | ||
213 | 213.17, 198.08 | Harmine | C13H12N2O | ||
214 | 215, 200.17, 197.17, 171 | Harmaline | C13H14N2O | ||
204 | 205, 187, 161 | Pegamine | C11H12N2O2 | [59] |
Fractions | Compound Name | Wavelength | LOD | LOQ | r2 | Rt min | Concentration (µg/mg) |
---|---|---|---|---|---|---|---|
PHMF2 (Methanol extract) | Quinic acid | 280 | 1.1 | 3.2 | 0.9999 | 9.1 | 6.34 |
Peganine | 3.2 | 9.4 | 0.9989 | 10.1 | 19.2 | ||
Harmol | 0.2 | 0.5 | 0.9998 | 14.0 | 1.3 | ||
Harmaline | 0.4 | 0.9 | 0.9999 | 22.8 | 3.9 | ||
Harmine | 2.9 | 8.1 | 0.9997 | 23.3 | 53.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.W.; Hussain, M.; Qamar, M.; Ali, S.; Shafiq, Z.; Wilairatana, P.; Mubarak, M.S. Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules 2021, 26, 6084. https://doi.org/10.3390/molecules26196084
Abbas MW, Hussain M, Qamar M, Ali S, Shafiq Z, Wilairatana P, Mubarak MS. Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules. 2021; 26(19):6084. https://doi.org/10.3390/molecules26196084
Chicago/Turabian StyleAbbas, Malik Waseem, Mazhar Hussain, Muhammad Qamar, Sajed Ali, Zahid Shafiq, Polrat Wilairatana, and Mohammad S. Mubarak. 2021. "Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study" Molecules 26, no. 19: 6084. https://doi.org/10.3390/molecules26196084
APA StyleAbbas, M. W., Hussain, M., Qamar, M., Ali, S., Shafiq, Z., Wilairatana, P., & Mubarak, M. S. (2021). Antioxidant and Anti-Inflammatory Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules, 26(19), 6084. https://doi.org/10.3390/molecules26196084