Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America
Abstract
:1. Introduction
2. Mushrooms Native to North America
3. Medicinal Properties of Mushrooms Native to North America
3.1. Anti-Bacterial and Anti-Viral Activities
3.2. Anti-Proliferative Activity
3.2.1. Anti-Proliferative Activity In-Vitro
3.2.2. Anti-Proliferative/Anti-Cancer Activity in Animal Models
3.2.3. Anti-Proliferative/Anti-Cancer Activity in Humans
3.3. Anti-Inflammatory Activity
3.3.1. Anti-Inflammatory Activity In-Vitro
3.3.2. Anti-Inflammatory Activity in Animal Models
3.3.3. Anti-Inflammatory Activity in Clinical Studies
3.4. Immuno-Stimulatory Activity
3.4.1. Immuno-Stimulatory Activity In-Vitro
3.4.2. Immuno-Stimulatory Activity in Animal Models
3.4.3. Immuno-Stimulatory Activity in Clinical Studies
3.5. Anti-Oxidant Activity
3.5.1. Anti-Oxidant Activity In-Vitro
3.5.2. Anti-Oxidant Activity in Animal Models
3.6. Anti-Fungal Activity
3.7. Other Bioactivities
4. Bioactive Compounds from Mushrooms Native to North America
4.1. Large Molecular Weight Compounds
4.2. Small Molecules
5. Mushrooms from North America as a Source for Drug Discovery
6. Edibility of Mushrooms Native to North America
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, S.T.; Hayes, W.A. (Eds.) The Biology and Cultivation of Edible Mushrooms; Academic Press Inc.: New York, NY, USA, 1978; p. 19. [Google Scholar]
- Hawksworth, D.L.; Lücking, R. Chapter 4, Fungal diversity revisited: 2.2 to 3.8 million species. In The Fungal Kingdom; Heitman, J., Howlett, B.J., Eds.; ASM Press: Washington, DC, USA, 2017; pp. 79–95. [Google Scholar]
- Hawksworth, D.L. Mushrooms: The extent of the unexplored potential. Int. J. Med. Mushrooms. 2001, 3, 1–5. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, 37, 345–356. [Google Scholar] [CrossRef]
- Chang, S.T. Global impact of edible and medicinal mushrooms on human welfare in the 21st century: Non green revolution. Int. J. Med. Mushrooms 1999, 1, 1–7. [Google Scholar] [CrossRef]
- Reshetnikov, S.V.; Tan, K.K. Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. Int. J. Med. Mushrooms 2001, 3, 1–34. [Google Scholar] [CrossRef]
- Van Griensven, L.J. Culinary-medicinal mushrooms: Must action be taken? Int. J. Med. Mushrooms 2009, 11, 281–286. [Google Scholar] [CrossRef]
- Wasser, S.P.; Weis, A.L. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: Current perspectives. Int. J. Med. Mushrooms 1999, 1, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Wasser, S.P. Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mushrooms 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Zheng, W.; Miao, K.; Liu, Y.; Zhao, Y.; Zhang, M.; Pan, S.; Dai, Y. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl. Microbiol. Biotechnol. 2010, 87, 1237–1254. [Google Scholar] [CrossRef]
- Blagodatski, A.; Yatsunskaya, M.; Mikhailova, V.; Tiasto, V.; Kagansky, A.; Katanaev, V.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018, 9, 29259–29274. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, T.S.; Krupodorova, T.A.; Barshteyn, V.Y.; Artamonova, A.B.; Shlyakhovenko, V.A. Anticancer substances of mushroom origin. Exp. Oncol. 2014, 36, 58–66. [Google Scholar]
- Panda, M.K.; Paul, M.; Singdevsachan, S.K.; Tayung, K.; Das, S.K.; Thatoi, H. Promising anticancer therapeutics from mushrooms: Current findings and future perceptions. Curr. Pharm. Biotechnol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ejike, U.C.; Chan, C.J.; Okechukwu, P.N.; Lim, R.L.Y. New advances and potentials of fungal immunomodulatory proteins for therapeutic purposes. Crit. Rev. Biotechnol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Burk, W.R. Puffball usages among North American Indians. J. Ethnobiol. 1983, 3, 55–62. [Google Scholar]
- Blanchette, R.A.; Compton, B.D.; Turner, N.J.; Gilbertson, R.L. Nineteenth century shaman grave guardians are carved Fomitopsis officinalis sporophores. Mycologia 1992, 84, 119–124. [Google Scholar] [CrossRef]
- Song, X.; Gaascht, F.; Schmidt-Dannert, C.; Salomon, C.E. Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus. Molecules 2020, 25, 963. [Google Scholar] [CrossRef] [Green Version]
- Javed, S.; Li, W.M.; Zeb, M.; Yaqoob, A.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Cheung, P.C.K.; Payne, G.W.; Lee, C.H. Anti-inflammatory activity of the wild mushroom, Echinodontium tinctorium, in RAW264. 7 macrophage cells and mouse microcirculation. Molecules 2019, 24, 3509. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.; Tang, S.; Healy, R.A.; Imerman, P.M.; Schrunk, D.E.; Rumbeiha, W.K. A novel orellanine containing mushroom Cortinarius armillatus. Toxicon 2016, 114, 65–74. [Google Scholar] [CrossRef]
- Buvall, L.; Hedman, H.; Khramova, A.; Najar, D.; Bergwall, L.; Ebefors, K.; Sihlbom, C.; Lundstam, S.; Herrmann, A.; Wallentin, H.; et al. Orellanine specifically targets renal clear cell carcinoma. Oncotarget 2017, 8, 91085–91098. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.T.; Winkler, A.L.; Schwan, W.R.; Volk, T.J.; Rott, M.A.; Monte, A. Antibacterial compounds from mushrooms I: A lanostane-type triterpene and prenylphenol derivatives from Jahnoporus hirtus and Albatrellus flettii and their activities against Bacillus cereus and Enterococcus faecalis. Planta Med. 2010, 76, 182–185. [Google Scholar] [CrossRef]
- Yaqoob, A.; Li, W.M.; Liu, V.; Wang, C.; Mackedenski, S.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Lee, C.H. Grifolin, neogrifolin and confluentin from the terricolous polypore Albatrellus flettii suppress KRAS expression in human colon cancer cells. PLoS ONE 2020, 15, e0231948. [Google Scholar] [CrossRef]
- Deo, G.S.; Khatra, J.; Buttar, S.; Li, W.M.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Lee, C.H. Antiproliferative, immuno-stimulatory, and anti-inflammatory activities of extracts derived from mushrooms collected in Haida Gwaii, British Columbia (Canada). Int. J. Med. Mushrooms 2019, 21, 629–643. [Google Scholar] [CrossRef]
- Smith, A.; Javed, S.; Barad, A.; Myhre, V.; Li, W.M.; Reimer, K.; Massicotte, H.B.; Tackaberry, L.E.; Payne, G.W.; Egger, K.N.; et al. Growth-inhibitory and immunomodulatory activities of wild mushrooms from North-Central British Columbia (Canada). Int. J. Med. Mushrooms 2017, 19, 485–497. [Google Scholar] [CrossRef]
- Stanikunaite, R.; Trappe, J.M.; Khan, S.I.; Ross, S.A. Evaluation of therapeutic activity of hypogeous ascomycetes and basidiomycetes from North America. Int. J. Med. Mushrooms 2007, 9, 7–14. [Google Scholar] [CrossRef]
- Hassan, F.; Ni, S.; Becker, T.L.; Kinstedt, C.M.; Abdul-Samad, J.L.; Actis, L.A.; Kennedy, M.A. Evaluation of the antibacterial activity of 75 mushrooms collected in the vicinity of Oxford, Ohio (USA). Int. J. Med. Mushrooms 2019, 21, 131–141. [Google Scholar] [CrossRef]
- Gu, Y.H.; Leonard, J. In vitro effects on proliferation, apoptosis and colony inhibition in ER-dependent and ER-independent human breast cancer cells by selected mushroom species. Oncol. Rep. 2006, 15, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, K.; Yang, G.; Xia, C.; Polston, J.E.; Li, G.; Li, S.; Lin, Z.; Yang, L.J.; Bruner, S.D.; et al. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Proc. Natl. Acad. Sci. USA 2017, 114, 8980–8985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanikunaite, R.; Khan, S.I.; Trappe, J.M.; Ross, S.A. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus. Phytother. Res. 2009, 23, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.T.; Winkler, A.L.; Schwan, W.R.; Volk, T.J.; Rott, M.; Monte, A. Antibacterial compounds from mushrooms II: Lanostane triterpenoids and an ergostane steroid with activity against Bacillus cereus isolated from Fomitopsis pinicola. Planta Med. 2010, 76, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Sanchez, M.; Boutin, Y.; Angers, P.; Gosselin, A.; Tweddell, R.J. A bioactive (1→3)-, (1→4)-β-d-glucan from Collybia dryophila and other mushrooms. Mycologia 2006, 98, 180–185. [Google Scholar] [CrossRef]
- Pacheco-Sánchez, M.; Boutin, Y.; Angers, P.; Gosselin, A.; Tweddell, R.J. Inhibitory effect of CDP, a polysaccharide extracted from the mushroom Collybia dryophila, on nitric oxide synthase expression and nitric oxide production in macrophages. Eur. J. Pharmacol. 2007, 555, 61–66. [Google Scholar] [CrossRef]
- Shideler, S.; Reckseidler-Zenteno, S.; Treu, R.; Lewenza, S. Membrane damage-responsive biosensors for the discovery of antimicrobials from Lenzites betulina and Haploporus odorus. In Proceedings of the 2017 URSCA, Calgary, Alberta, 7–8 April 2017; Volume 3. [Google Scholar]
- Javed, S.; Mitchell, K.; Sidsworth, D.; Sellers, S.L.; Reutens-Hernandez, J.; Massicotte, H.B.; Egger, K.N.; Payne, G.W.; Lee, C.H. Inonotus obliquus attenuates histamine-induced microvascular inflammation. PLoS ONE 2019, 14, e0220776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, Q.; Nayak, B.N.; Reimer, M.; Jones, P.J.H.; Fulcher, R.G.; Rempel, C.B. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 2009, 125, 487–493. [Google Scholar] [CrossRef]
- Schwan, W.R.; Dunek, C.; Gebhardt, M.; Engelbrecht, K.; Klett, T.; Monte, A.; Toce, J.; Rott, M.; Volk, T.J.; Lipuma, J.L.; et al. Screening a mushroom extract library for activity against Acinetobacter baumannii and Burkholderia cepacia and the identification of a compound with anti-Burkholderia activity. Annals Clin. Microbiol. Antimicrob. 2010, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barad, A.; Mackedenski, S.; Li, W.M.; Li, X.J.; Lim, B.C.C.; Rashid, F.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; et al. Anti-proliferative activity of a purified polysaccharide isolated from the basidiomycete fungus Paxillus involutus. Carbohydr. Polym. 2018, 181, 923–930. [Google Scholar] [CrossRef]
- Pineda-Alegría, J.A.; Sánchez-Vázquez, J.E.; González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Cuevas-Padilla, E.J.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L. The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J. Med. Food 2017, 20, 1184–1192. [Google Scholar] [CrossRef]
- Adebayo, E.A.; Martínez-Carrera, D.; Morales, P.; Sobal, M.; Escudero, H.; Meneses, M.E.; Avila-Nava, A.; Castillo, I.; Bonilla, M. Comparative study of antioxidant and antibacterial properties of the edible mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. Int. J. Food Sci. 2018, 53, 1316–1330. [Google Scholar] [CrossRef]
- Zhang, B.B.; Cheung, P.C. Use of stimulatory agents to enhance the production of bioactive exopolysaccharide from Pleurotus tuber-regium by submerged fermentation. J. Agric. Food Chem. 2011, 59, 1210–1216. [Google Scholar] [CrossRef]
- Liu, X.T.; Schwan, W.R.; Volk, T.J.; Rott, M.; Liu, M.; Huang, P.; Liu, Z.; Wang, Y.; Zitomer, N.C.; Sleger, C.; et al. Antibacterial spirobisnaphthalenes from the North American cup fungus Urnula craterium. J. Nat. Prod. 2012, 75, 1534–1538. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: A review. Int. J. Med. Mushrooms 2017, 19, 279–317. [Google Scholar] [CrossRef]
- Council of Canadian Academies. When Antibiotics Fail: The Expert Panel on the Potential Socio-Economic Impacts of Antimicrobial Resistance in Canada; Council of Canadian Academies: Ottawa, ON, USA, 2019. [Google Scholar]
- Strachan, C.R.; Davies, J. The whys and wherefores of antibiotic resistance. Cold Spring Harb. Perspect. Med. 2017, 7, a025171. [Google Scholar] [CrossRef]
- Gould, I.M.; Gunasekara, C.; Khan, A. Antibacterials in the pipeline and perspectives for the near future. Curr. Opin. Pharmacol. 2019, 48, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.J.; Ferreira, I.C.; Dias, J.F.; Teixeira, V.; Martins, A.; Pintado, M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 2012, 78, 1707–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, N.K.; Fukushi, Y.; Yamaji, K.; Tahara, S.; Takahashi, K. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of flammulina v elutipes. J. Nat. Prod. 2001, 64, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.D.; Rouf, R.; Gander, L.; May, T.W.; Ratkowsky, D.; Donner, C.D.; Gill, M.; Tiralongo, E. Antibacterial metabolites from Australian macrofungi from the genus Cortinarius. Phytochemistry 2010, 71, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.; Dumitrache-Anghel, C.N.; Backhaus, J.; Christie, G.; Cross, R.F.; Lonergan, G.T.; Baker, W.L. A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal Shiitake mushroom [Lentinus edodes (Berk.) Singer] (Agaricomycetideae). Int. J. Med. Mushrooms 2003, 5, 1–6. [Google Scholar] [CrossRef]
- Centko, R.M.; Ramon-Garcia, S.; Taylor, T.; Patrick, B.O.; Thompson, C.J.; Miao, V.P.; Andersen, R.J. Ramariolides A-D, antimycobacterial butenolides isolated from the mushroom Ramaria cystidiophora. J. Nat. Prod. 2012, 75, 2178–2182. [Google Scholar] [CrossRef]
- Stamets, P.E.; Naeger, N.L.; Evans, J.D.; Han, J.O.; Hopkins, B.K.; Lopez, D.; Moershel, H.M.; Naily, R.; Sumerlin, D.; Taylor, A.W.; et al. Extracts from polypore mushroom mycelia reduce viruses in honey bees. Sci. Rep. 2018, 8, 13936. [Google Scholar] [CrossRef]
- Maness, L.; Sneed, N.; Hardy, B.; Yu, J.; Ahmedna, M.; Goktepe, I. Anti-proliferative effect of Pleurotus tuberregium against colon and cervical cancer cells. J. Med. Plants Res. 2011, 5, 6650–6655. [Google Scholar] [CrossRef]
- Roda, E.; De Luca, F.; Di Iorio, C.; Ratto, D.; Siciliani, S.; Ferrari, B.; Cobelli, F.; Borsci, G.; Priori, E.C.; Chinosi, S.; et al. Novel medicinal mushroom blend as a promising supplement in integrative oncology: A multi-tiered study using 4T1 triple-negative mouse breast cancer model. Int. J. Mol. Sci. 2020, 21, 3479. [Google Scholar] [CrossRef]
- Chen, S.N.; Chang, C.S.; Hung, M.H.; Chen, S.; Wang, W.; Tai, C.J.; Lu, C.L. The effect of mushroom beta-glucans from solid culture of Ganoderma lucidum on inhibition of the primary tumor metastasis. Evid. Based Complementary Altern. Med. 2014, 2014, 1–7. [Google Scholar]
- Masuda, Y.; Inoue, M.; Miyata, A.; Mizuno, S.; Nanba, H. Maitake β-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice. Int. Immunopharmacol. 2009, 9, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.T.; Lu, F.H.; Su, Y.C.; Ou, H.Y.; Hung, H.C.; Wu, J.S.; Yang, Y.C.; Chang, C.J. In vivo and in vitro anti-tumor effects of fungal extracts. Molecules 2014, 19, 2546–2556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Yu, K.; Li, F.; Xu, K.; Li, J.; He, S.; Cao, S.; Tan, G. Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers. J. Ethnopharmacol. 2014, 153, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.P.; Nam, S.H.; Friedman, M. Hericium erinaceus (Lion’s Mane) mushroom extracts inhibit metastasis of cancer cells to the lung in CT-26 colon cancer-transplanted mice. J. Agric. Food Chem. 2013, 61, 4898–4904. [Google Scholar] [CrossRef]
- Lu, C.C.; Huang, W.S.; Lee, K.F.; Lee, K.C.; Hsieh, M.C.; Huang, C.Y.; Lee, L.Y.; Lee, B.O.; Teng, C.C.; Shen, C.H.; et al. Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. J. Funct. Foods 2016, 21, 474–484. [Google Scholar] [CrossRef]
- Diling, C.; Chaoqun, Z.; Jian, Y.; Jian, L.; Jiyan, S.; Yishen, X.; Guoxiao, L. Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota. Front. Immunol. 2017, 8, 666. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.G.; Ji, D.F.; Zhong, S.; Zhu, J.X.; Chen, S.; Hu, G.Y. Anti-tumor effects of proteoglycan from Phellinus linteus by immunomodulating and inhibiting Reg IV/EGFR/Akt signaling pathway in colorectal carcinoma. Int. J. Biol. Macromol. 2011, 48, 511–517. [Google Scholar] [CrossRef]
- Youn, M.J.; Kim, J.K.; Park, S.Y.; Kim, Y.; Park, C.; Kim, E.S.; Park, K.I.; So, H.S.; Park, R. Potential anticancer properties of the water extract of Inonotus obliquus by induction of apoptosis in melanoma B16-F10 cells. J. Ethnopharmacol. 2009, 121, 221–228. [Google Scholar] [CrossRef]
- Chung, M.J.; Chung, C.K.; Jeong, Y.; Ham, S.S. Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr. Res. Pract. 2010, 4, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Nakata, T.; Yamada, T.; Taji, S.; Ohishi, H.; Wada, S.; Tokuda, H.; Sakuma, K.; Tanaka, R. Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg. Med. Chem. 2007, 15, 257–264. [Google Scholar] [CrossRef]
- Nomura, M.; Takahashi, T.; Uesugi, A.; Tanaka, R.; Kobayashi, S. Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res. 2008, 28, 2691–2696. [Google Scholar] [PubMed]
- Awadasseid, A.; Hou, J.; Gamallat, Y.; Xueqi, S.; Eugene, K.D.; Musa Hago, A.; Bamba, D.; Meyiah, A.; Gift, C.; Xin, Y. Purification, characterization and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor. PLoS ONE 2017, 12, e0171270. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Dai, X.; Chen, G.; Ye, J.; Zhou, S. A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W. Curt.: Fr.) Lloyd (Aphyllophoromycetideae) polysaccharides (Ganopoly®) in patients with advanced lung cancer. Int. J. Med. Mushrooms 2003, 5, 1–4. [Google Scholar] [CrossRef]
- Huang, M.; Gao, Y.; Tang, W.; Dai, X.; Gao, H.; Chen, G.; Ye, J.; Chan, E.; Zhou, S. Immune responses to water-soluble Ling Zhi mushroom Ganoderma lucidum (W. Curt.: Fr.) P. Karst. polysaccharides in patients with advanced colorectal cancer. Int. J. Med. Mushrooms 2005, 7, 525–538. [Google Scholar] [CrossRef]
- Deng, G.; Smith-Jones, H.L.; Seidman, A.D.; Fornier, M.; D’Andrea, G.; Wesa, K.; Cunningham-Rundles, S.; Yeung, K.S.; Vickers, A.; Cassileth, B.R. A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients. J. Clin. Oncol. 2008, 26, 3024. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Xie, X.; Holman, C.D.A.J. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int. J. Cancer 2009, 124, 1404–1408. [Google Scholar] [CrossRef]
- Hara, M.; Hanaoka, T.; Kobayashi, M.; Otani, T.; Adachi, H.Y.; Montani, A.; Natsukawa, S.; Shaura, K.; Koizumi, Y.; Kasuga, Y.; et al. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr. Cancer 2003, 46, 138–147. [Google Scholar] [CrossRef]
- Hazama, S.; Watanabe, S.; Ohashi, M.; Yagi, M.; Suzuki, M.; Matsuda, K.; Yamamoto, T.; Suga, Y.; Suga, T.; Nakazawa, S.; et al. Efficacy of orally administered superfine dispersed lentinan (β-1, 3-glucan) for the treatment of advanced colorectal cancer. Anticancer Res. 2009, 29, 2611–2617. [Google Scholar]
- Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013, 139, 503–508. [Google Scholar] [CrossRef]
- Du, B.; Zhu, F.; Xu, B. An insight into the anti-inflammatory properties of edible and medicinal mushrooms. J. Func. Foods 2018, 47, 334–342. [Google Scholar] [CrossRef]
- Ooi, V.E.; Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 2000, 7, 715–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enshasy, H.A.E.; Hatti-Kaul, R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Biotech. 2014, 31, 668–677. [Google Scholar] [CrossRef]
- Giavasis, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotech. 2014, 26, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Persin, Z.; Stana-Kleinschek, K.; Foster, T.J.; van Dam, J.E.G.; Boeriu, C.G.; Navard, P. Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr. Polym. 2011, 84, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.B.; Zhang, H.N. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol. Sinica 2004, 25, 1387–1395. [Google Scholar]
- Jakopovic, B.; Oršolić, N.; Kraljević Pavelić, S. Antitumor, Immunomodulatory and Antiangiogenic Efficacy of Medicinal Mushroom Extract Mixtures in Advanced Colorectal Cancer Animal Model. Molecules 2020, 25, 5005. [Google Scholar] [CrossRef]
- Ullah, M.I.; Akhtar, M.; Awais, M.M.; Anwar, M.I.; Khaliq, K. Evaluation of immunostimulatory and immunotherapeutic effects of tropical mushroom (Lentinus edodes) against eimeriasis in chicken. Trop. Anim. Health Prod. 2018, 50, 97–104. [Google Scholar] [CrossRef]
- Deng, G.; Lin, H.; Seidman, A.; Fornier, M.; D’Andrea, G.; Wesa, K.; Yeung, S.; Cunningham-Rundles, S.; Vickers, A.J.; Cassileth, B. A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: Immunological effects. J. Cancer Res. Clin. Oncol. 2009, 135, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Yurkiv, B.; Wasser, S.P.; Nevo, E.D.; Sybirna, N.O. Antioxidant effects of medicinal mushrooms Agaricus brasiliensis and Ganoderma lucidum (higher Basidiomycetes): Evidence from animal studies. Int. J. Med. Mushrooms 2015, 17, 943–955. [Google Scholar] [CrossRef]
- Vitak, T.Y.; Wasser, S.P.; Nevo, E.D.; Sybirna, N.O. Enzymatic system of antioxidant protection of erythrocytes in diabetic rats treated with medicinal mushrooms Agaricus brasiliensis and Ganoderma lucidum (Agaricomycetes). Int. J. Med. Mushrooms 2017, 19, 697–708. [Google Scholar] [CrossRef]
- Yeh, M.Y.; Ko, W.C.; Lin, L.Y. Hypolipidemic and antioxidant activity of enoki mushrooms (Flammulina velutipes). Biomed. Res. Int. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.J.; Ferreira, I.C.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr. Top. Med. Chem. 2013, 13, 2648–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.C.F.R.; Vaz, J.A.; Vasconcelos, M.H.; Martins, A. Compounds from wild mushrooms with antitumor potential. Anti-Cancer Agents Med. Chem. 2010, 10, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.M.; Qiao, Y.; Ang, E.L.; Zhao, H. Using natural products for drug discovery: The impact of the genomics era. Expert Opin. Drug Disc. 2017, 12, 475–487. [Google Scholar] [CrossRef]
- Skinnider, M.A.; Dejong, C.A.; Rees, P.N.; Johnstone, C.W.; Li, H.; Webster, A.L.; Wyatt, M.A.; Magarvey, N.A. Genomes to natural products: Prediction Informatics for secondary metabolomes (PRISM). Nucleic Acids Res. 2015, 43, 9645–9662. [Google Scholar] [CrossRef] [Green Version]
- Skellam, E. Strategies for engineering natural product biosynthesis in fungi. Trends Biotech. 2019, 37, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Almeida, H.; Tsang, A.; Diallo, A.B. Towards accurate identification of biosynthetic gene clusters in fungi. F1000 Research. In Proceedings of the ISMB/ECCB, Basel, Switzerland, 21–25 July 2019. [Google Scholar]
- California Fungi: Gymnopus dryophilus—MycoWeb. Available online: https://www.mykoweb.com/CAF/species/Gymnopus_dryophilus.html (accessed on 18 November 2020).
- Marasmius oreades (Bolton) Fr.—Fairy Ring Champignon. Available online: https://www.first-nature.com/fungi/marasmius-oreades.php (accessed on 18 November 2020).
- Ehlers, T.; Hobby, T. The chanterelle mushroom harvest on northern Vancouver Island, British Columbia: Factors relating to successful commercial development. BC J. Ecosyst. Manag. 2010, 11, 72–83. [Google Scholar]
- Kuo, M.; Dewsbury, D.R.; O’ Donnell, K.; Carter, A.M.; Rehner, S.A.; Moore, J.D.; Moncalvo, J.-M.; Canfield, S.A.; Stephenson, S.L.; Methven, A.S.; et al. Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 2012, 104, 1159–1177. [Google Scholar] [CrossRef] [Green Version]
- Laperriere, G.; Desgagne-Penix, I.; Germain, H. DNA distribution and metabolite profile of wild edible lobster mushroom (Hypomyces lactifluorum/Russula brevipes). Genome 2018, 61, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Antkowiak, W.Z.; Gessner, W.P. The structure of orellanine and orelline. Tetrahedon Lett. 1979, 20, 1931–1934. [Google Scholar] [CrossRef]
Mushroom Species | Origin | Bioactivity | Bioactive Component 1 or Extraction Solvent | Active Dose 2 |
---|---|---|---|---|
Albatrellus flettii | La Crosse, Wisconsin | Antimicrobial [21] | Grifolin (3) Neogrifolin (4) Confluentin (5) | MIC = 10 μg/mL (3), 20 μg/mL (4,5) on B. cereus. MIC = 0.5 μg/mL (3,4), 1 μg/mL (5) on E. faecalis |
Albatrellus flettii | Smithers, BC | Anti-proliferative [22] | Grifolin (3) Neogrifolin (4) Confluentin (5) | IC50 = 27.4 μM (3), 24.3 μM (4), 25.9 μM (5) on HeLa. IC50 = 35.4 μM (3), 34.6 μM (4), 33.5 μM (5) on SW480. IC50 = 30.7 μM (3), 30.1 μM (4), 25.8 μM (5) on HT29. |
Amanita augusta | Haida Gwaii, BC | Anti-proliferative [23] | 50% methanol (a) and 5% NaOH (b) | IC50 = 0.7 mg/mL (a), 0.55 mg/mL (b) |
Amanita augusta | Haida Gwaii, BC | Immuno-stimulatory [23] | Water | 1 mg/mL |
Amanita augusta | Haida Gwaii, BC | Anti-inflammatory [23] | 5% NaOH | 1 mg/mL |
Amanita muscaria | Prince George, BC | Anti-proliferative [24] | 80% ethanol (a) and 50% methanol (b) | IC50 = 0.2 mg/mL (a) (+++) IC50 = 0.6 mg/mL (b) (++) |
Amanita muscaria | Prince George, BC | Immuno-stimulatory [24] | 2% ammonium oxalate | 1 mg/mL (+) |
Astraeus pteridis | Linn County, Oregon | Antituberculosis [25] | 95% ethanol | IC50 = < 20 μg/mL (+++) |
Auricularia fuscosuccinea | Oxford, Ohio | Antimicrobial [26] | Water | Against B. subtilis (+++), P. aeruginosa, S. epidermidis (MIC = 1 mg/mL), P. fluorescens, M. luteus (++) |
Barssia oregonensis | Clackamas, Oregon | Antituberculosis [25] | 95% ethanol | IC50 = 20–50 μg/mL (++) |
Cantharellus cibarius | Haida Gwaii, BC | Anti-proliferative [23] | 80% ethanol | 0.1 mg/mL |
Cantharellus cibarius | Haida Gwaii, BC | Weak immuno-stimulatory [23] | Water | 1 mg/mL |
Cantharellus cibarius | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol, 50% methanol, water and 5% NaOH | 1 mg/mL |
Chroogomphus tomentosus | Haida Gwaii, BC | Anti-proliferative (a), immuno-stimulatory (b) [23] | 80% ethanol (a) and water (b) | 0.2 mg/mL (a) (++), 1 mg/mL (b) (++) |
Chroogomphus tomentosus | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a) and 50% methanol (b) | 1 mg/mL (a,b) (+++) |
Clavulina cinerea | Haida Gwaii, BC | Anti-proliferative [23] | 80% ethanol | (++) |
Coprinellus sp. | Seattle, WA, USA | Anti-proliferative [27] | Water | IC50 = 40 μg/mL on MDA-MB-231 cells (+++), 120 μg/mL on MCF-7 cells (+), 150 μg/mL on BT-20 cells (+) |
Coprinus comatus | Seattle, WA, USA | Anti-proliferative | Water (a) [27], Protein (b) [28] | IC50 = 400 μg/mL on MDA-MB-231 cells (a), 450 μg/mL on MCF-7 cells (a), 10 μM (b) |
Cortinarius armillatus | Massachusetts | Anti-proliferative [19] | Orellanine | 20 μg/mL clear cell RCC (a), 40 μM (10 mg/L) intraperitoneal injection via PD solution (b) |
Echinodontium tinctorium | Smithers and Terrace, BC | Anti-inflammatory [18] | Polysaccharide AIPetinc | 1 mg/mL |
Elaphomyces granulatus | Oregon and Bonner County, Idaho | Anti-inflammatory [25,29] | Syringaldehyde (1), Syringic acid (2), and 95% ethanol (a) | IC50 = 3.5 μg/mL (1) (19.23 μM) (+) IC50 = 0.4 μg/mL (2) (2.02 μM) (+++) 50 μg/mL (a) (+++) |
Elaphomyces granulatus | Oregon and Bonner County, Idaho | Antioxidant [29] | Syringic acid (2) and 95% ethanol | IC50 = 0.7 μg/mL (2) (+++) Extract IC50 = 41 μg/mL |
Elaphomyces muricatus | Benton County, Oregon | Anti-inflammatory (a), antioxidant (b), antituberculosis (c) [25] | 95% ethanol (a,c), 70% ethanol (b) | 50 μg/mL (a) (++), IC50 ≥ 50 μg/mL (a) (+), IC50 ≥ 50 μg/mL (a) (+) |
Flammulina velutipes | Seattle, WA, USA | Anti-proliferative [27] | Water | IC50 = 30 μg/mL on BT-20 cells (+++), 75 μg/mL on MDA-MB-231 cells (++), 150 μg/mL on MCF-7 cells (+) |
Fomes fomentarius | Prince George, BC | Anti-proliferative [24] | 80% ethanol (a) and 50% methanol (b) | 0.5 mg/mL (a) (+++), 0.5 mg/mL (b) (+++) |
Fomes fomentarius | Prince George, BC | Immuno-stimulatory [24] | Water (a) and 2% ammonium oxalate (b) | 1 mg/mL (a) (+), 1 mg/mL (b) (++) |
Fomitopsis pinicola | Oregon, USA | Antimicrobial [30] | 3-Oxo-24-methyl-5α-lanost-8,25-dien-21-oic acid (30), pinicolic acid (31), polyporenic acid (32), 16α-hydroxy-24-methylene-3-oxo-5α-lanost-8-ene-21-oic acid (33), 16α-acetyloxy-24-methylene-3-oxo-5α-lanost-7,9(11)-dien-21-oic acid (34), 22E-5α-ergost-7,9(11),22-trien-3β-ol (35) | MIC = 32 μg/mL (30) (++), 16 μg/mL (31) (++), 32 μg/mL (32) (++), 32 μg/mL (33) (++), 128 μg/mL (34) (+), 64 μg/mL (35) (++) against B. cereus |
Ganoderma applanatum | Terrace, BC and Oxford, Ohio | Anti-proliferative [24] | 80% ethanol (a) and water (b) | 0.5 mg/mL (a) (++), 1 mg/mL (b) (+) |
Ganoderma applanatum | Terrace, BC and Oxford, Ohio | Anti-inflammatory [24] | 80% ethanol (a) and 50% methanol (b) | 1 mg/mL (a) (+++), 1 mg/mL (b) (+++) |
Ganoderma applanatum | Terrace, BC and Oxford, Ohio | Immuno-stimulatory [24] | Water(a), 5% NaOH (b), and 2% ammonium oxalate (c) | 1 mg/mL (a) (+++), 1 mg/mL (b) (+), 1 mg/mL (c) (+) |
Ganoderma applanatum | Terrace, BC and Oxford, Ohio | Antimicrobial [26] | Water | Against P. aeruginosa, P. fluorescens, B. subtilis, S. epidermidis, (MIC = 100 mg/mL (isolate 1), 10 mg/mL (isolate 2), and M. luteus (+++) |
Ganoderma lucidum | Oxford, Ohio | Antimicrobial [26] | Water | MIC = 0.1 mg/mL (+++) against S. epidermidis |
Ganoderma tsugae | Haida Gwaii, BC | Anti-proliferative (a), immuno-stimulatory (b) [23] | 80% ethanol (a) and water (b) | (a) (++),1 mg/mL (b) (+++) |
Ganoderma tsugae | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a) and 5% NaOH (b) | 1 mg/mL (a) (+++), 1 mg/mL (b) (++) |
Gautieria monticola | Benton County, Oregon | Antioxidant [25] | 70% ethanol | IC50 = > 50 μg/mL (+) |
Geopora clausa | Inyo Country, California | Antioxidant (a), anti-proliferative [25] | 70% ethanol | IC50 = 20–50 μg/mL (a) (++) |
Guepina helvelloides | Haida Gwaii, BC | Anti-proliferative (a), immuno-stimulatory (b) [23] | 80% ethanol (a) and water (b) | (a) (++),1 mg/mL (b) (+++) |
Guepina helvelloides | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a), 50% methanol (b), and 5% NaOH (c) | |
Gymnopus dryophilus | Quebec | Anti-inflammatory [31,32] | CDP polysaccharide | 400 and 800 μg/mL |
Gyromitra esculenta | Prince George, BC | Anti-proliferative [24] | 80% ethanol, 50% methanol | 1 mg/mL (+) |
Gyromitra esculenta | Prince George, BC | Immuno-stimulatory [24] | 80% ethanol, 50% methanol, water | 1 mg/mL (++) |
Haploporus odorus | Study conducted in Calgary, Canada | Antimicrobial [33] | Extracts | - |
Hericium corralloides | Prince George, BC | Immuno-stimulatory [24] | 50% methanol (a), water (b), 5% NaOH (c) | 1 mg/mL (a) (++), 1 mg/mL (b) (++), 1 mg/mL (c) (+) |
Hericium corralloides | Prince George, BC | Anti-inflammatory [24] | 80% ethanol | 1 mg/mL (+) |
Hericium sp. | Minnesota | Antifungal [17] | 2-chloro-1,3-dimethoxy-5-methyl benzene (10) | MIC = 31.3–62.5 μg/mL against C. albicans and C. neoformans |
Hericium sp. | Minnesota | Antifungal (a), antibacterial (b) [17] | Ethyl acetate, acetone, methanol | MIC = 250 μg/mL against C. albicans and C. neoformans (a), MIC > 500 μg/mL) against S. aureus (b) |
Hydnellum sp. | Prince George, BC | Anti-proliferative (a), immuno-stimulatory (b) [24] | 80% ethanol, 50% methanol, water | 1 mg/mL (a) (++), 1 mg/mL (b) (+) |
Hydnum repandum | Haida Gwaii, BC | Anti-proliferative (a), anti-inflammatory (b & c) [23] | 80% ethanol (a) (b) and 50% methanol (c) | 0.6 mg/mL (a) (++), 1 mg/mL (b) (+++), 1 mg/mL (c) (++) |
Hygrophoropsis aurantiaca | Haida Gwaii, BC | Anti-proliferative, [23] | 50% methanol, water and 5% NaOH | (+) |
Hygrophoropsis aurantiaca | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol, 50% methanol, and water | 1 mg/mL (+++) |
Hymenogaster subalpinus | Benton County, Oregon | Anti-inflammatory (a), antituberculosis (b) [25] | 95% ethanol | 50 μg/mL (a) (++), IC50 = < 20 μg/mL (b) (+++) |
Hymenopellis furfuracea | Oxford, Ohio | Antimicrobial [26] | Water | Against P. fluorescens, M. luteus (++), B. subtilis, S. episdermidis (+) |
Hypholoma fasciculare | Haida Gwaii, BC | Anti-proliferative [23] | 80% ethanol (a) and 50% methanol (b) | 0.2 mg/mL (a) (++), 0.1 mg/mL (b) (++) |
Hypholoma fasciculare | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol, 50% methanol, and water | 1 mg/mL (+++) |
Inocybe sp. | Haida Gwaii, BC | Anti-proliferative, [23] | 80% ethanol | (++) |
Inocybe sp. | Haida Gwaii, BC | Immuno-stimulatory [23] | 50% methanol and water | 1 mg/mL (++) |
Inocybe sp. | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a) and 5% NaOH (b) | 1 mg/mL (a) (+++), 1 mg/mL (b) (+) |
Inonotus obliquus | Manitoba & Prince George, BC | Anti-inflammatory [34,35] | 50% methanol | 0.25 μg/μL (a), 1 μg/μL in vivo (b) |
Jahnoporus hirtus | USA | Antimicrobial [21] | 3,11-Dioxolanosta-8,24(Z)-diene-26-oic acid (6) | 40 μg/mL (B. cereus), 32 μg/mL (E. faecalis) |
Laetiporus conifericola | Haida Gwaii, BC | Anti-proliferative (a), immuno-stimulatory (b), anti-inflammatory (c) [23] | 80% ethanol (a,c) and water (b) | (++), 1 mg/mL (b) (++), 1 mg/mL (c) (+++) |
Laetiporus sulphureus | Oxford, Ohio | Antimicrobial [26] | Water | MIC = 0.1 mg/mL (+++) against S. epidermidis |
Lentinellus subaustralis | Oxford, Ohio | Antimicrobial [26] | Water | Against P. aeruginosa, and B. subtilis (+), P. fluorescens, S. epidermidis (MIC = 10 mg/mL), and M. luteus |
Lentinus edodes | Quebec | Anti-inflammatory [31] | CDP-like polysaccharide | 50 μg/mL (++) |
Leucogaster rubescens | Pend Oreille County, Oregon | Antioxidant [25] | 95% ethanol | IC50 = 20–50 μg/mL (++) |
Leucocybe connata | Prince George, BC | Anti-proliferative (a), anti-inflammatory (b) [24] | 5% NaOH (a) and 80% ethanol (b) | 1 mg/mL (a) (++), 1 mg/mL (b) (+++) |
Leucocybe connata | Prince George, BC | Immuno-stimulatory [24] | Water, 5% NaOH | 1 mg/mL (++) |
Leucopaxillus albissimus | USA | Antimicrobial [36] | 2-Aminoquinoline | MIC = 8–65 μg/mL against multidrug resistant clinical isolates (++), 128 μg/mL against A. baumannio (+) |
Marasmius oreades | Quebec | Anti-inflammatory [31] | CDP-like polysaccharide | 50 μg/mL (++) |
Melanogaster tuberiformis | Lane County, Oregon | Antituberculosis (a), anti-inflammatory (b), antioxidant (c) [25] | 95% ethanol | IC50 = < 20 μg/mL (a) (+++), 50 μg/mL (b) (++), IC50 = > 50 μg/mL (c) (+) |
Paxillus involutus | Prince George, BC | Anti-proliferative [37] | GIPinv Polysaccharide | IC50 = 0.05 mg/mL (+++) on HeLa,0.04 mg/mL (++) on MCF-7 |
Phellinopsis conchata | Oxford, Ohio | Antimicrobial [26] | Water | MIC = 1 mg/mL against S. epidermidis (++) |
Phellinus conchatus | Oxford, Ohio | Antimicrobial [26] | Water | MIC = 100 mg/mL against S. epidermidis (+++) |
Phellinus igniarius | Terrace, BC | Anti-proliferative [24] | 80% ethanol (a), water (b) | 0.2 mg/mL (a) (+++), 1 mg/mL (b) (+) |
Phellinus igniarius | Terrace, BC | Anti-inflammatory [24] | 80% ethanol | 1 mg/mL (+++) |
Phellinus nigricans | Terrace, BC | Anti-proliferative [24] | 80% ethanol (a), water (b) | 1 mg/mL (a) (+), 1 mg/mL (b) (+) |
Phellinus nigricans | Terrace, BC | Immuno-stimulatory (a,b), anti-inflammatory (c) [24] | Water (a), 5% NaOH (b), and 50% methanol (c) | 1 mg/mL (a) (+), 1 mg/mL (b) (+++), 1 mg/mL (c) (+++) |
Phellodon atratus | Haida Gwaii, BC | Anti-proliferative, immuno-stimulatory (b & c) [23] | 80% ethanol (a), 50% methanol (b) and water (c) | (a) (+), 1 mg/mL (b,c) (+) |
Phellodon atratus | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a) and 5% NaOH (b) | 1 mg/mL (a) (+++), 1 mg/mL (b) (++) |
Pholiota terrestris | Oxford, Ohio | Antimicrobial [26] | Water | Against S. epidermidis, P. fluorescens, and M. luteus (++) |
Piptoporus betulinus | Prince George, BC | Anti-proliferative [24] | 80% ethanol (a) and water (b) | 0.1 mg/mL (a) (+++), 0.2 mg/mL (b) (+) |
Piptoporus betulinus | Prince George, BC | Anti-inflammatory [24] | 80% ethanol (a), 50% methanol (b) and water (c) | 1 mg/mL (a–c) |
Pleurotus djamor | Study from Mexico | Anthelmintic activity [38] | Hydro-alcoholic extracts, Pentadecanoic, hexadecanoic, octadecadienoic, octadecanoic acid | 40 mg/mL |
Pleurotus levis | Mexico | Antimicrobial (a) (+++), antioxidant (b) (+++) [39] | Water and alcohol | MIC = 3.33 μg/mL against B. subtilis, 13.32 μg/mL against S. agalactiae (a), 26.64 μg/mL against S. aureus, EC-50 = 0.52 μg/mL (b) (DPPH assay) |
Pleurotus ostreatus | USA & Haida Gwaii, BC | Anti-proliferative (a), anti-inflammatory (b) [23] | 80% ethanol, 50% methanol | (a) (++), 1 mg/mL (b) (+++) |
Pleurotus ostreatus | USA & Haida Gwaii, BC | Immuno-stimulatory [23] | Water | 1 mg/mL (++) |
Pleurotus ostreatus | USA & Haida Gwaii, BC | Antioxidant (a), Antimicrobial (b) [39] | Water and alcohol | EC50 = 1.05 μg/mL (a) (++) (DPPH assay), MIC = 7.83 μg/mL (b) (+) against S. agalactiae |
Pleurotus tuber-regium | Olympia, WA | Anti-proliferative (a) [40], antimicrobial (b) [39] | Polysaccharide (a), and water and alcohol (b) | MIC = 6.03 μg/mL (b) (++) against S. agalactiae |
Polyporus badius | Oxford, Ohio | Antimicrobial [26] | Water | (+) |
Polyporus squamosus | Oxford, Ohio | Antimicrobial [26] | Water | (MIC = 10 mg/mL (isolate 1&2), 100 mg/mL (isolate 3), and M. luteus |
Pseudoinonotus dryadeus | Oxford, Ohio | Antimicrobial [26] | 100% methanol | (++) |
Pyrofomes demidoffi | Oxford, Ohio | Antimicrobial [26] | Water | MIC = 1 mg/mL against S. epidermidis (+++) |
Ramaria cystidiophora | Haida Gwaii, BC | Anti-proliferative [23] | 80% ethanol (a), 50% methanol (b) | 0.1 mg/mL (a) (+++), 0.8 mg/mL (b) (++) |
Ramaria cystidiophora | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a), 50% methanol (b), water (c) and 5% NaOH (d) | 1 mg/mL (a-d) (+++) |
Ramaria cystidiophora | Vancouver, BC | Antimicrobial [26] | Ramariolide A (22) | MIC = 8 μg/mL against M. smegmatis, 64−128 μg/mL against M. tuberculosis |
Rhizopogon couchii | Lebanon State Forest, New Jersey | Anti-inflammatory, antioxidant, antituberculosis [25] | 95% ethanol | 50 g/mL (a) (++), IC50 = 20–50 μg/mL (b) (++), IC50 = 20–50 μg/mL (b) (++) |
Rhizopogon nigrescens | Lebanon State Forest, New Jersey | Anti-inflammatory (a), antioxidant (b) [25] | 95% ethanol | 50 g/mL (a) (+++), IC50 = > 50 μg/mL (b) (+) |
Rhizopogon pedicellus | Pend Oreille County, Oregon | Antioxidant (a), antituberculosis (b) [25] | 95% ethanol (a),70% ethanol (b) | IC50 = 20–50 μg/mL (a) (++), IC50 ≥ 50 μg/mL (b) (+) |
Rhizopogon subareolatus | Lewis County, Washington | Antimalarial [25] | 95% ethanol (+) | 15.9 μg/mL (+) |
Rhizopogon subaustralis | Lebanon State Forest, New Jersey | Anti-inflammatory (a), antioxidant (b) [25] | 95% ethanol | IC50 ≥ 50 μg/mL (a) (+), 50 μg/mL (b) (+++) |
Rhizopogon subgelatinosus | Jackson County, Oregon | Anti-inflammatory (a), anti-proliferative [25] | 95% ethanol | 50 μg/mL (a) |
Russula paludosa | Haida Gwaii, BC | Anti-proliferative [23] | 80% ethanol (a), 50% methanol (b), water (c), and 5% NaOH (d) | (a–d) (+) |
Russula paludosa | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a), 50% methanol (b), water (c) | 1 mg/mL (a–c) (+++) |
Scleroderma laeve | Lebanon State Forest, New Jersey | Anti-inflammatory (a), antioxidant(b), antituberculosis (c) [25] | 95% ethanol (+++) | 50 μg/mL (a), IC50 = < 20 μg/mL (b), IC50 = < 20 μg/mL (c) |
Stereum hirsutum | Oxford, Ohio | Antimicrobial [26] | Water | Against B. subtilis, S. epidermidis, and P. fluorescens (+) |
Trametes versicolor | Oxford, Ohio | Antimicrobial [26] | Water | MIC = 10 mg/mL against S. epidermidis (+++) |
Trichaptum abietinum | Prince George, BC | Anti-proliferative [24] | 80% ethanol (a) and water (b) | 0.2 mg/mL (a) (++), 0.2 mg/mL (b) (+) |
Trichaptum abietinum | Prince George, BC | Immuno-stimulatory (a), anti-inflammatory (b) [24] | 50% methanol (a) and 5% NaOH (b) | 1 mg/mL (a) (+++), 1 mg/mL (b) |
Tricholomopsis rutilans | Haida Gwaii, BC | Anti-proliferative [23] | 80% ethanol | (++) |
Tricholomopsis rutilans | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a), 50% methanol (b) and water (c) | 1 mg/mL (a–c) (+++) |
Tyromyces chioneus | Haida Gwaii, BC | Anti-proliferative (a), immuno-stimulatory (b) [23] | 80% ethanol (a) and water (b) | (a) (+), 1 mg/mL (b) (++) |
Tyromyces chioneus | Haida Gwaii, BC | Anti-inflammatory [23] | 80% ethanol (a) and m50% ethanol (b) | 1 mg/mL (a) (+++), 1 mg/mL (b) (++) |
Urnula craterium | La Crosse, Wisconsin | Antimicrobial [41] | Urnucratin A (27) Urnucratin B (28) (++) Urnucratin C (29) (+++) | (27) MIC = 2 μg/mL (+) (methicillin-resistant S aureus), 1 μg/mL (vancomycin-resistant E. faecium), 0.5 μg/mL (S. pyogenes) |
Types | Bioactive Compound | References | Mushrooms |
---|---|---|---|
Small molecules | Syringaldehyde (1) | [29] | E. granulatus |
Syringic acid (2) | [29] | E. granulatus | |
Grifolin (3) | [21,22] | A. flettii | |
Neogrifolin (4) | [21,22] | A. flettii | |
Confluentin (5) | [21,22] | A. flettii | |
3,11-Dioxolanosta-8,24(Z)-diene-26-oic acid 1 (6) | [21] | J. hirtus | |
Erinacerin V 1 (7) | [17] | Hericium sp. | |
4-Hydroxy-2,2-dimethylchromane-6-carbaldehyde 1 (8) | [17] | Hericium sp. | |
4-Chloro-3,5-dimethoxybenzaldehyde (9) | [17] | Hericium sp. | |
2-Chloro-1,3-dimethoxy-5-methyl benzene (10) | [17] | Hericium sp. | |
4-Chloro-3,5-dimethoxyphenylmethanol (11) | [17] | Hericium sp. | |
3,6-Bis(hydroxyl methyl)-2-methyl-4H-pyran-4-one (12) | [17] | Hericium sp. | |
4-Chloro-3,5-dimethoxybenzoic acid (13) | [17] | Hericium sp. | |
5-Hydroxy-6-(1-hydroxyethyl)isobenzofuran-1(3H)-one (14) | Hericium sp. | ||
Erinacine (15) | [17] | Hericium sp. | |
Pentadecanoic acid (16), Hexadecanoic acid (17), Octadecadienoic acid (18), Octadecanoic acid (19) | [38] | P. djamar | |
Orellanine (3,3′,4,4′-tetrahydroxy-2,2′-bipyridine-1,1′-dioxide) (20) | [19] | C. armillatus | |
Ramariolide A 1 (21) | [50] | R. cystidiophora | |
Ramariolide B 1 (22) | [50] | R. cystidiophora | |
Ramariolide C 1 (23) | [50] | R. cystidiophora | |
Ramariolide D 1 (24) | [50] | R. cystidiophora | |
2-Aminoquinoline (25) | [36] | L. albissimus | |
Urnucratin A 1 (26) | [41] | U. craterium | |
Urnucratin B 1 (27) | [41] | U. craterium | |
Urnucratin C 1 (28) | [41] | U. craterium | |
3-Oxo-24-methyl-5α-lanost-8,25-dien-21-oic acid 1 (29) | [30] | F. pinicola | |
Pinicolic acid (30) | [30] | F. pinicola | |
Polyporenic acid (31) | [30] | F. pinicola | |
16α-Hydroxy-24-methylene-3-oxo-5α-lanost-8-ene-21-oic acid (32) | [30] | F. pinicola | |
16α-Acetyloxy-24-methylene-3-oxo-5α-lanost-7,9(11)-dien-21-oic acid (33) | [30] | F. pinicola | |
22E-5α-Ergost-7,9(11),22-trien-3β-ol (34) | [30] | F. pinicola | |
Large molecules | GIPinv 1 | [37] | P. involutus |
CDP 1 | [31,32] | G. dryophilus | |
AlPetinc 1 | [18] | E. tinctorium | |
CDP-like polysaccharide 1 | [31] | L. edodes | |
CDP-like polysaccharide 1 | [31] | M. oreades | |
EPS 1 | [52] | P. tuber-regium | |
Y3 1 | [28] | C. comatus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeb, M.; Lee, C.H. Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules 2021, 26, 251. https://doi.org/10.3390/molecules26020251
Zeb M, Lee CH. Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules. 2021; 26(2):251. https://doi.org/10.3390/molecules26020251
Chicago/Turabian StyleZeb, Mehreen, and Chow H. Lee. 2021. "Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America" Molecules 26, no. 2: 251. https://doi.org/10.3390/molecules26020251
APA StyleZeb, M., & Lee, C. H. (2021). Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules, 26(2), 251. https://doi.org/10.3390/molecules26020251