Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of N-Alkyl Phosphoranimines
2.2. Reactivity of N-Alkyl Phosphoranimines
2.3. Polymerization Studies
Bulk Polymerization with Addition of N-alkyl Phosphoranimines
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Monomer Synthesis
4.3. Synthesis of N-Alkyl Phosphoranimines
4.4. Bulk Polymerization of Monomer and N-Alkyl Phosphoranimines
4.5. Characterization of N-Alkyl Phosphoranimines and Polymers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Allcock, H.R. Developments at the Interface of Inorganic, Organic, and Polymer Chemistry. Chem. Eng. News 1985, 63, 22–36. [Google Scholar] [CrossRef]
- Allcock, H.R. Inorganic—Organic Polymers. Adv. Mater. 1994, 6, 106–115. [Google Scholar] [CrossRef]
- Manners, I. Polymers and the Periodic Table: Recent Developments in Inorganic Polymer Science. Angew. Chem. 1996, 35, 1602–1621. [Google Scholar] [CrossRef]
- Jutzi, P.; Schubert, U. Silicon Chemistry: From the Atom to Extended Systems; Wiley Publishing Co.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Chojnowski, J. Kinetically Controlled Siloxane Ring-Opening Polymerization. J. Inorg. Organomet. Polym. 1991, 1, 299–323. [Google Scholar] [CrossRef]
- Chojnowski, J.; Cypryk, M.; Fortuniak, W.; Ścibiorek, M.; Rózga-Wijas, K. Synthesis of Branched Polysiloxanes with Controlled Branching and Functionalization by Anionic Ring-Opening Polymerization. Macromolecules 2003, 36, 3890–3897. [Google Scholar] [CrossRef]
- Kazmierski, K.; Hurduc, N.; Sauvet, G.; Chojnowski, J. Polysiloxanes with Chlorobenzyl Groups as Precursors of New Organic-Silicone Materials. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 1682–1692. [Google Scholar] [CrossRef]
- Woźniak, L.; Chojnowski, J. Silyl Esters of Phosphorous-Common Intermediates in Synthesis. Tetrahedron 1989, 45, 2465–2524. [Google Scholar] [CrossRef]
- Cypryk, M.; Gupta, Y.; Matyjaszewski, K. Anionic Ring-Opening Polymerization of 1,2,3,4-Tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane. J. Am. Chem. Soc. 1991, 113, 1046–1047. [Google Scholar] [CrossRef]
- Kim, H.K.; Matyjaszewski, K. Sonochemical Synthesis of Polysilanes. Polym. Prepr. 1988, 29, 168–169. [Google Scholar]
- Matyjaszewski, K.; Hrkach, J.S. Modification of Polysilanes: Preparation of Comb-like Graft Copolymers. J. Inorg. Organomet. Polym. 1995, 5, 183–193. [Google Scholar] [CrossRef]
- Allcock, H.R. Polyphosphazenes as an Example of the Element-Blocks Approach to New Materials. In New Polymeric Materials Based on Element-Blocks; Springer Publishing Co.: New York, NY, USA, 2018; pp. 167–188. [Google Scholar]
- Allcock, H.R.; Crane, C.A.; Morrissey, C.T.; Nelson, J.M.; Reeves, S.D.; Honeyman, C.H.; Manners, I. “Living” Cationic Polymerization of Phosphoranimines as an Ambient Temperature Route to Polyphosphazenes with Controlled Molecular Weights. Macromolecules 1996, 29, 7740–7747. [Google Scholar] [CrossRef]
- Deng, M.; Laurencin, C.T.; Allcock, H.R.; Kumbar, S.G. Polyphosphazenes as Biomaterials. In Polymeric Biomaterials: Structure and Function; CRC Press: Boca Raton, FL, USA, 2013; Volume 1, pp. 84–126. [Google Scholar]
- Teasdale, I.; Bruggemann, O. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. Polymers 2013, 5, 161–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrianov, A.K. Polyphosphazenes for Biomedical Applications, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2009; p. 480. [Google Scholar]
- Summe Ullah, R.; Wang, L.; Yu, H.; Haroon, M.; Elshaarani, T.; Naveed, K.; Fahad, S.; Khan, A.; Nazir, A.; Xia, X.; et al. Synthesis of polyphosphazene and preparation of microspheres from polyphosphazene blends with PMMA for drug combination therapy. J. Mater. Sci. 2019, 54, 745–764. [Google Scholar] [CrossRef]
- Andrianov, A.K.; Svirkin, Y.Y.; LeGolvan, M.P. Synthesis and Biologically Relevant Properties of Polyphosphazene Polyacids. Biomacromolecules 2004, 5, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Honeyman, C.H.; Manners, I.; Morrissey, C.T.; Allcock, H.R. Ambient Temperature Synthesis of Poly(dichlorophosphazene) with Molecular Weight Control. J. Am. Chem. Soc. 1995, 117, 7035–7036. [Google Scholar] [CrossRef]
- Montague, R.A.; Green, J.B.; Matyjaszewski, K. The Conversion of Phosphoranimines to Polyphosphazenes in the Presence of Electrophiles. J. Macromol. Sci. Pure Appl. Chem. 1995, 32, 1497–1519. [Google Scholar] [CrossRef]
- Allcock, H.R.; Nelson, J.M.; Reeves, S.D.; Honeyman, C.H.; Manners, I. Ambient Temperature Direct Synthesis of Poly(organophosphazenes)via the “Living” Cationic Polymerization of Organo-Substituted Phosphoranimines. Macromolecules 1997, 30, 50–56. [Google Scholar] [CrossRef]
- Allcock, H.R.; Nelson, J.M.; Prange, R.; Crane, C.A.; de Denus, C.R. Synthesis of Telechelic Polyphosphazenes via the Ambient Temperature Living Cationic Polymerization of Amino Phosphoranimines. Macromolecules 1999, 32, 5736–5743. [Google Scholar] [CrossRef]
- Wilfert, S.; Henke, H.; Schoefberger, W.; Bruggemann, O.; Teasdale, I. Chain-End Functionalized Polyphosphazenes via a One-Pot Phosphine-Mediated Living Polymerization. Macromol. Rapid Commun. 2014, 35, 1135–1141. [Google Scholar] [CrossRef]
- Allcock, H.R.; de Denus, C.R.; Prange, R.; Nelson, J.M. Synthesis of Trifluoromethyl- and Methylphosphazene Polymers: Differences Between Polymerization and Initiator/TerminatorProperties. Macromolecules 1999, 32, 7999–8004. [Google Scholar] [CrossRef]
- Allcock, H.R.; Powell, E.S.; Maher, A.E.; Prange, R.L.; de Denus, C.R. Telechelic Polyphosphazenes: Reaction of Living Poly(dichlorophosphazene) Chains with Alkoxy and Aryloxy Phosphoranimines. Macromolecules 2004, 37, 3635–3641. [Google Scholar] [CrossRef]
- Allcock, H.R.; de Denus, C.R.; Prange, R.; Laredo, W.R. Synthesis of Norbornenyl Telechelic Polyphosphazenes and Ring-Opening Metathesis Polymerization Reactions. Macromolecules 2001, 34, 2757–2765. [Google Scholar] [CrossRef]
- Taylor, T.J.; Soto, A.P.; Huynh, K.; Lough, A.J.; Swain, A.C.; Norman, N.C.; Russell, C.A.; Manners, I. Synthesis of Poly(Alkyl/Arylphosphazenes) via Ambient Temperature Phosphite-Mediated Chain Growth Polycondensation of N-Silylbromophosphoranimines. Macromolecules 2010, 43, 7446–7452. [Google Scholar] [CrossRef]
- Allcock, H.R.; Reeves, S.D.; Nelson, J.M.; Crane, C.A.; Manners, I. Polyphosphazene Block Copolymers via the Controlled Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules 1997, 30, 2213–2215. [Google Scholar] [CrossRef]
- Allcock, H.R.; Prange, R. Properties of Poly(phosphazene-siloxane) Block Copolymers Synthesized via Telechelic Polyphosphazenes and Polysiloxane Phosphoranimines. Macromolecules 2001, 34, 6858–6865. [Google Scholar] [CrossRef]
- Krogman, N.R.; Steely, L.; Hindenlang MDNair, L.S.; Laurencin, C.T.; Allcock, H.R. Synthesis and Characterization of Polyphosphazene-block-polyester and Polyphosphazene block-polycarbonate Macromolecules. Macromolecules 2008, 41, 1126–1130. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Z.; Chen, C.; Allcock, H.R. Synthesis and Characterization of Brush-Shaped Hybrid Inorganic/Organic Polymers Based on Polyphosphazenes. Macromolecules 2012, 45, 1417–1426. [Google Scholar] [CrossRef]
- Suarez, S.S.; Soto, D.P.; Carriedo, G.A.; Soto, A.P.; Staubitz, A. Experimental and Theoretical Study of the Living Polymerization of N-Silylphosphoranimines. Synthesis of New Block Copolyphosphazenes. Organometallics 2012, 31, 2571–2581. [Google Scholar] [CrossRef]
- Montague, R.A.; Matyjaszewski, K. Synthesis of Poly[bis(trifluoroethoxy)phosphazene] Under Mild Conditions Using a Fluoride Initiator. J. Am. Chem. Soc. 1990, 112, 6721–6723. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Green, J.B.; Montague, R.A. Fluoride-Initiated Polymerization of Fluoroethoxy Phosphoranimine. ACS Polym. Prepr. 1992, 33, 174–175. [Google Scholar]
- Matyjaszewski, K.; Cypryk, M.; Dauth, J.; Montague, R.; White, M. New Synthetic Routes towards Polyphosphazenes. Makromol. Chem. Macromol. Symp. 1992, 54, 13–30. [Google Scholar] [CrossRef]
- White, M.L.; Montague, R.A.; Matyjaszewski, K.; Pakula, T. The Thermal Properties of Polyphosphazenes Synthesized by the Anionically-Initiated Polymerization of Phosphoranimines. Polymer 1995, 36, 3493–3502. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Moore, M.K.; White, M.L. Synthesis of Polyphosphazene Block Copolymers Bearing Alkoxyethoxy and Trifluoroethoxy Groups. Macromolecules 1993, 26, 6741–6748. [Google Scholar] [CrossRef]
- Wood, C.E.; Samuel, R.; Kucera, W.R.; Angelov, C.M.; Neilson, R.H. New Synthetic, Catalytic, and Structural Studies Related to Poly(Alkyl/Aryl Phosphazenes). ACS Polym. Prepr. 1993, 34, 263. [Google Scholar]
- Chapman, R.D.; Welker, M.F.; Kreutzberger, C.B. Polyalkoxyphosphazenes by Room-Temperature Polymerization of an Electronegative Phosphoranimine Monomer. J. Inorg. Organomet. Polym. 1996, 96, 267–275. [Google Scholar] [CrossRef]
- Gallazi, C.M.; Freddi, G.; Sanvito, G.; Viscardi, G. Polydialkylphosphazenes: New Synthetic Efforts and Protonation Reactions. J. Inorg. Organomet. Polym. 1996, 6, 277–300. [Google Scholar] [CrossRef]
- Steinke, J.H.G.; Greenland, B.W.; Johns, S.; Parker, M.P.; Atkinson RC, J.; Cade, I.A.; Golding, P.; Trussell, S.J. Robust and Operationally Simple Synthesis of Poly(bis(2,2,2-trifluoroethoxy)phosphazene) with Controlled Molecular Weight, Low PDI, and High Conversion. ACS Macro Lett. 2014, 3, 548–551. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Franz, U.; Montague, R.A.; White, M.L. Synthesis of Polyphosphazenes from Phosphoranimines and Phosphine Azides. Polymer 1994, 35, 5005–5011. [Google Scholar] [CrossRef]
- Staudinger, H.; Meyer, J. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta 1919, 2, 635. [Google Scholar] [CrossRef] [Green Version]
- Matyjaszewski, K.; Montague, R.; Dauth, J.; Nuyken, O. Synthesis of Poly(phenyltrifluoroethoxyphosphazene) by Direct Reaction of Trimethylsilyl Azide with Bis(2,2,2-Trifluoroethyl)Phenylphosphonite. J. Polym. Sci. 1992, 30, 813–818. [Google Scholar] [CrossRef]
- Tebby, J.C. Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data; Tebby, J.C., Ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1991. [Google Scholar]
- Denney, D.B.; Denney, D.Z.; Hammond, P.J.; Wang, Y.-P. Preparation and Chemistry of Penta- and Hexacoordinated Phosphorus Compounds Containing Trifluoroethoxy Groups. J. Am. Chem. Soc. 1981, 103, 1785–1789. [Google Scholar] [CrossRef]
- Muetterties, E.L.; Mahler, W. Donor-Acceptor Function in Organofluorophosphoranes. Inorg. Chem. 1965, 4, 119–121. [Google Scholar] [CrossRef]
- Kirby, A.J.; Warren, S.G. The Organic Chemistry of Phosphorus; Elsevier Pub. Co.: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Matyjaszewski, K.; Dauth, J.; Montague, R.; Reddick, C.; White, M. Polyphosphazenes by Anionic Polymerization. ACS Polym. Prepr. 1991, 32, 305–306. [Google Scholar]
- Montague, R.A. Synthesis of Polyphosphazenes via the Catalyzed Polymerization of Phosphoranimines. In Chemistry; Carnegie Mellon University: Pittsburgh, PA, USA, 1993; p. 357. [Google Scholar]
- Flindt, E.-P.; Rose, H.; Marsmann, H.C. Synthese N-Silylierter Phosphinimine. Z. Anorg. Allg. Chem. 1977, 430, 155–160. [Google Scholar] [CrossRef]
- Koziara, A.; Zwierzak, A. Iminophosphorane-Mediated Transformation of Tertiary Alcohols into Tert-Alkylamines and Their N-Phosphorylated Derivatives. Tetrahedron Lett. 1987, 28, 6513–6516. [Google Scholar] [CrossRef]
- Curtius, T.; Ehrhart, G. Decomposition of benzyl azide in indifferent media and in malonic ester. Ber. Dtsch. Chem. Ges. 1922, 55, 1559. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, E.; Breit, B.; Bergstrasser, U.; Hoffman, J.; Heydt, H.; Regitz, M. Organophosphorus Compounds. Phosphatriafulvenes and Their Reactions with Electrophiles. Synthesis 1991, 12, 1099–1107. [Google Scholar] [CrossRef]
- Neilson, R.H.; Wisian-Neilson, P. Poly(Alkyl/arylphosphazenes) and Their Precursors. Chem. Rev. 1988, 88, 541–562. [Google Scholar] [CrossRef]
- Montague, R.A.; Burkus, F., II; Matyjaszewski, K. Chain Terminators for Polyphosphazenes. ACS Polym. Prepr. 1993, 34, 316–317. [Google Scholar]
Compound | % Yield | B.P.(M.P.) | Density | Refractive Index, nD20 |
---|---|---|---|---|
1 (Adamantyl) | 46.3 | 93 °C/2.5 torr, (0–2 °C) | 1.606 g/mL | 1.4076 |
2 (Benzyl) | 98.9 | 95 °C/2.5 torr | 1.664 g/mL | 1.4022 |
3 (t-Butyl) | 34.4 | 93 °C/52 torr | 1.568 g/mL | 1.3445 |
4 (Trityl) | 56.5 | (80–85 °C) |
Compound. | 31P-NMR, ppm | 1H-NMR ppm | Mass Spectrometry | Theor. MW |
---|---|---|---|---|
1 (Adamantyl) | −27.3 (m) | 4.28 (p): 6H 3J(POCH) = 7.6 Hz 1.73(d): 6H 1.65(br. S.):6H 2.05(br. s.):3H | 477 ** | 477 |
2 (Benzyl) | −13.19 (m) | 4.20 (p): 6H 3J(POCH) = 7.2 Hz 4.32 (d): 2H3J (PNCH) = 22 Hz 7.30 (m): 5H | 433 ^ | 433 |
3 (t-Butyl) | −28.95 (m) | 4.28 (p): 6H3J (POCH) = 8.2 Hz 1.23 (s): 9H | 399 * | 399 |
4 (Trityl) | −29.01 (p) | 4.05 (p): 6H3J (POCH) = 7.8 Hz 7.31(m): 15H | 585 ** | 585 |
Compound | % C | % F | % H | % N | %O | %P | Theory/Found |
---|---|---|---|---|---|---|---|
1 (Adamantyl) | 40.28 | 35.83 | 4.45 | 2.94 | 10.06 | 6.47 | Theory |
40.58 | 35.49 | 4.54 | 3.22 | - | 6.33 | Found | |
2 (Benzyl) | 36.06 | 39.47 | 3.03 | 3.24 | 11.8 | 7.15 | Theory |
35.73 | 38.12 | 2.98 | 3.16 | - | 6.77 | Found | |
3 (t-Butyl) | 30.10 | 42.83 | 3.80 | 3.51 | 12.03 | 7.76 | Theory |
29.36 | 41.88 | 3.65 | 3.27 | - | 7.75 | Found | |
4 (Trityl) | 51.32 | 29.22 | 3.63 | 2.39 | 8.21 | 5.29 | Theory |
48.14 | 23.89 | 3.60 | 2.25 | - | * | Found |
Compound | Absorbance Wavenumbers cm−1 | Functional Group Assignment |
---|---|---|
1 (Adamantyl) | 2870–2950 | CH aliph. |
1435 | P-O-C | |
1270 | P=N | |
1180, 960 | P-O | |
1090 | C-O | |
660 | CF3 | |
2 (Benzyl) | 3020–3120 | CH arom. |
1305 | P=N | |
1150, 970 | P-O | |
1090 | C-O | |
700–750 | CH arom. | |
670 | CF3 | |
3 (t-Butyl) | 2970 | CH aliph. |
1420 | P-O-C | |
1310 | P=N | |
1170, 970 | P-O | |
1085 | C-O | |
675 | CF3 | |
4 (Trityl) | 3000–3110 | CH arom. |
1420–1440 | P-O-C | |
1300 | P=N | |
1180 | P-O | |
1090 | C-O | |
720–750 | CH arom. | |
660–670 | CF3 |
Polymer End Group | Mn | Mw/Mn | % Grav. Yield |
---|---|---|---|
Adamantyl | 21,960 | 1.40 | 22 |
Benzyl | 19,867 | 1.34 | 25 |
t-Butyl | 21,297 | 1.49 | 34 |
Trityl | 17,362 | 1.51 | 33 |
Control (no N-alkyl) | 29,012 | 1.70 | 71 |
NBP Sample | Minutes before Add. | Time, Min. | Mn | Mw/Mn | % Conversion |
---|---|---|---|---|---|
1 | 2 | 20 | 7123 | 1.08 | 9 |
2 * | -- | 2 | 9757 | 1.29 | 35 |
3 | 5 | 20 | 11,472 | 1.45 | 29 |
4 * | -- | 5 | 15,646 | 1.40 | 54 |
5 * | -- | 20 | 18,188 | 1.72 | 81 |
Monomer: N-Benzyl mol. Ratio | Mn | Mw/Mn | % Conversion |
---|---|---|---|
5:1 | Polymer not detected | -- | -- |
20:1 | 4849 | 1.02 | 7 |
50:1 | 10,183 | 1.50 | 52 |
100:1 | 14,952 | 1.73 | 86 |
Control | 15,195 | 1.84 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montague, R.A.; Matyjaszewski, K. Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents. Molecules 2021, 26, 322. https://doi.org/10.3390/molecules26020322
Montague RA, Matyjaszewski K. Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents. Molecules. 2021; 26(2):322. https://doi.org/10.3390/molecules26020322
Chicago/Turabian StyleMontague, Robert A., and Krzysztof Matyjaszewski. 2021. "Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents" Molecules 26, no. 2: 322. https://doi.org/10.3390/molecules26020322
APA StyleMontague, R. A., & Matyjaszewski, K. (2021). Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents. Molecules, 26(2), 322. https://doi.org/10.3390/molecules26020322