Effects of Total Thermal Balance on the Thermal Energy Absorbed or Released by a High-Temperature Phase Change Material
Abstract
:1. Introduction
2. Model and Methods
2.1. Description of the Physical System
2.2. Adiabatic Systems
2.3. Absorbed/Released Thermal Energy
2.4. Finite Element Method
2.4.1. Space Discretization: Finite Element Method
2.4.2. Shape Functions
2.4.3. Time Discretization: Implicit Finite Difference Scheme
2.5. Refined Heat Balance Integral Method
3. Results and Discussion
3.1. Invariance of Solutions in Adiabatic Systems
3.2. Energy Absorbed/Released
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
PCM | Phase change material |
HTPCM | High temperature phase change material |
TES | Thermal energy storage |
CSP | Concentrating solar power plant |
HTF | Heat transfer fluid |
FEM | Finite element method |
RHBIM | Refined heat balance integral method |
ODE | Ordinary differential equation |
RPD | Relative percent difference |
AEE | Average energy error |
Thermal conductivity of the liquid | |
Thermal conductivity of the solid | |
Thermal diffusion constant of the liquid | |
Thermal diffusion constant of the solid | |
Specific heat capacity of the liquid | |
Specific heat capacity of the solid | |
Liquid density | |
Solid density | |
Position of the right boundary | |
Position of the left boundary | |
System size | |
Liquid-solid interface position | |
Mass of melted solid | |
Mass of solidified liquid | |
Mass fraction of melted solid | |
Mass fraction of solidified liquid | |
Absorbed/released enthalpy | |
Q | Absorbed/released thermal energy |
Bulk latent heat | |
Apparent latent heat | |
Melting temperature | |
Initial mass of the system | |
Temperature at the right boundary | |
Temperature at the left boundary | |
Volume change at thermodynamic equilibrium | |
Fraction of melted solid at thermodynamic equilibrium | |
Fraction of solidified liquid at thermodynamic equilibrium | |
Absorbed/released latent heat at thermodynamic equilibrium |
References
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energ. Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Mathur, A.; Kasetty, R.; Oxley, J.; Mendez, J.; Nithyanandam, K. Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia 2014, 49, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, G.; Fullenkamp, K.; Montané, M.; Krzysztof, N.; Dmitruk, A. Encapsulated nitrates phase change material selection for use as thermal storage and heat transfer materials at high temperature in concentrated solar power plants. Energies 2017, 10, 1318. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.; Caceres, G.; Palomo del Barrio, E.; Jomaa, W. Confined melting in deformable porous media: A first attempt to explain the graphite/salt composites behavior. Int. J. Heat Mass Transf. 2010, 53, 1195–1207. [Google Scholar] [CrossRef]
- Parrado, C.; Cáceres, G.; Bize, F.; Bubnovich, V.; Baeyens, J.; Degrève, J.; Zhang, H.L. Thermo-mechanical analysis of copper-encapsulated NaNO3–KNO3. Chem. Eng. Res. Des. 2015, 93, 224–231. [Google Scholar]
- Akguna, M.; Aydna, O.; Kaygusuzb, K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers. Manag. 2007, 48, 669–678. [Google Scholar]
- Lokesh, S.; Murugan, P.; Sathishkumar, A.; Kumaresan, V.; Velraj, R. Melting/Solidification characteristics of paraffin based nanocomposite for thermal energy storage applications. Therm. Sci. 2017, 21, 2517–2524. [Google Scholar]
- Karthik, M.; Faik, A.; Blanco-Rodríguez, P.; Rodríguez-Aseguinolaza, J.; D’Aguanno, B. Preparation of erythritol–graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications. Carbon 2015, 94, 266–276. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energ. Rev. 2012, 16, 2118–2132. [Google Scholar]
- D’Aguanno, B.; Karthik, M.; Grace, A.N.; Floris, A. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures. Sci. Rep. 2018, 21, 1–15. [Google Scholar]
- Dallaire, J.; Gosselin, L. Various ways to take into account density change in solid–liquid phase change models: Formulation and consequences. Int. J. Heat Mass Transf. 2016, 103, 672–683. [Google Scholar] [CrossRef]
- Dallaire, J.; Gosselin, L. Numerical modeling of solid-liquid phase change in a closed 2D cavity with density change, elastic wall and natural convection. Int. J. Heat Mass Transf. 2017, 114, 903–914. [Google Scholar] [CrossRef]
- Hernández, E.M.; Otero, J.A. Fundamental incorporation of the density change during melting of a confined phase change material. J. Appl. Phys. 2018, 123, 085105. [Google Scholar] [CrossRef]
- Hernández-Cooper, E.M.; Otero, J.A. Effects of pressure-induced density changes in the thermal energy absorbed by a micro-encapsulated phase-change material. Molecules 2019, 24, 1254. [Google Scholar] [CrossRef] [Green Version]
- Boucíguez, A.C.; Lozano, R.F.; Lara, M.A. About the exact solution in two phase-Stefan problem. Therm. Eng. 2007, 6, 70–75. [Google Scholar]
- Tarzia, D.A. Explicit and approximated solutions for heat and mass transfer problems with a moving interface. Adv. Top. Mass Transf. 2011, 20, 439–484. [Google Scholar]
- König-Haagen, A.; Franquet, E.; Pernot, E.; Brüggemann, D. A comprehensive benchmark of fixed-grid methods for the modeling of melting. Int. J. Therm. Sci. 2017, 118, 69–103. [Google Scholar] [CrossRef]
- Savovic, S.; Caldwell, J. Numerical solution of Stefan Problem with time-dependent boundary conditions by variable space grid method. Therm. Sci. 2009, 13, 165–174. [Google Scholar]
- Zhang, J.; Sunita, C. Fast explicit dynamics finite element algorithm for transient heat transfer. Int. J. Therm. Sci. 2019, 139, 160–175. [Google Scholar]
- Li, E.; Liu, G.R.; Tan, V.; He, Z.C. An efficient algorithm for phase change problem in tumor treatment using αFEM. Int. J. Therm. Sci. 2010, 49, 1954–1967. [Google Scholar] [CrossRef]
- Reséndiz-Flores, E.O.; Saucedo-Zendejo, F.R. Numerical simulation of coupled fluid flow and heat transfer with phase change using the Finite Pointset Method. Int. J. Therm. Sci. 2018, 133, 13–21. [Google Scholar] [CrossRef]
- Caldwell, J.; Savovic, S.; Kwan, Y.Y. Nodal integral and finite difference solution of one-dimensional Stefan problem. J. Heat Transf. 2003, 125, 523–527. [Google Scholar] [CrossRef]
- Santiago, R.D.; Hernández, E.M.; Otero, J.A. Constant mass model for the liquid-solid phase transition on a one-dimensional Stefan problem: Transient and steady state regimes. Int. J. Therm. Sci. 2017, 118, 40–52. [Google Scholar] [CrossRef]
- Mitchell, S.L.; Myers, T.G. Application of Heat Balance Integral Methods to One-Dimensional Phase Change Problems. Int. J. Differ. Eq. 2012, 2012, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Santiago Acosta, R.D.; Otero, J.A.; Hernández Cooper, E.M.; Pérez-Álvarez, R. Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials. AIP Adv. 2019, 9, 025125. [Google Scholar] [CrossRef] [Green Version]
- Li, E.; Zhang, Z.; He, Z.C.; Xu, X.; Liu, G.R.; Li, Q. Smoothed finite element method with exact solutions in heat transfer problems. Int. J. Heat Mass Tran. 2014, 78, 1219–1231. [Google Scholar] [CrossRef]
- Aksan, E.N.; Karabenli, H.; Esen, A. An Application of Finite Element Method for Moving Boundary Problem. Therm. Sci. 2018, 22, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Stetina, J.; Mauder, T.; Klimes, L.; Charvat, P. Melting front propagation in a paraffin-based phase change material Lab-Scale Experiment and Simulations. Therm. Sci. 2018, 22, 2723–2732. [Google Scholar] [CrossRef]
- Rodríguez-Alemán, S.; Hernández-Cooper, E.M.; Otero, J.A. Consequences of total thermal balance during melting and solidification of high temperature phase change materials. Therm. Sci. Eng. Prog. 2020, 20, 100750. [Google Scholar] [CrossRef]
- Chandrupatla, T.R.; Belegundu, A.D. Introduction to Finite Elements in Engineering, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 13–102. [Google Scholar]
- Kwon, Y.W.; Bang, H. The Finite Element Method Using Matlab, 2nd ed.; CRC Press: Washington, DC, USA, 2000; pp. 85–102. [Google Scholar]
Melting | Solidification | |||
---|---|---|---|---|
2.7754 × 10 | 4.0360 × 10 | 1.5241 × 10 | 1.1485 × 10 | |
3.5981 × 10 | 3.7630 × 10 | 1.3639 × 10 | 2.7861 × 10 | |
1.3529 × 10 | 4.7084 × 10 | 7.9583 × 10 | 6.2626 × 10 |
FEM | RHBIM | |||||
---|---|---|---|---|---|---|
Days | ||||||
15.42 | 0.3769 | 0.3763 | 0.1593 | 0.3794 | 0.3788 | 0.1582 |
30.84 | 0.5751 | 0.5836 | 1.4672 | 0.5777 | 0.5768 | 0.1560 |
46.26 | 0.6917 | 0.6906 | 0.1592 | 0.6938 | 0.6928 | 0.1442 |
61.68 | 0.7664 | 0.7656 | 0.1044 | 0.7684 | 0.7676 | 0.1042 |
77.10 | 0.8203 | 0.8197 | 0.0732 | 0.8221 | 0.8215 | 0.0730 |
FEM | RHBIM | |||||
Days | ||||||
15.28 | 0.3755 | 0.3757 | 0.0532 | 0.3780 | 0.3782 | 0.0529 |
30.56 | 0.5731 | 0.5736 | 0.0872 | 0.5758 | 0.5859 | 1.7388 |
45.84 | 0.6893 | 0.6907 | 0.2029 | 0.6915 | 0.6930 | 0.2166 |
61.12 | 0.7635 | 0.7663 | 0.3660 | 0.7655 | 0.7683 | 0.3651 |
76.40 | 0.8168 | 0.8208 | 0.4885 | 0.8187 | 0.8227 | 0.4873 |
FEM | RHBIM | |||||
---|---|---|---|---|---|---|
Days | ||||||
3.90 | 0.3675 | 0.3651 | 0.6552 | 0.3624 | 0.3601 | 0.6366 |
7.80 | 0.5893 | 0.5860 | 0.5615 | 0.5858 | 0.5826 | 0.5478 |
11.70 | 0.7628 | 0.7580 | 0.6312 | 0.7606 | 0.7559 | 0.6198 |
15.60 | 0.9021 | 0.8948 | 0.8125 | 0.9075 | 0.8938 | 1.5211 |
19.50 | 1.0154 | 1.0019 | 1.3384 | 1.0155 | 1.0020 | 1.3382 |
FEM | RHBIM | |||||
Days | ||||||
3.98 | 0.3750 | 0.3754 | 0.1066 | 0.3750 | 0.3746 | 0.1067 |
7.96 | 0.5993 | 0.6043 | 0.8308 | 0.5963 | 0.6011 | 0.8017 |
11.94 | 0.7734 | 0.7789 | 0.7086 | 0.7717 | 0.7771 | 0.6973 |
15.92 | 0.9119 | 0.9174 | 0.6013 | 0.9113 | 0.9168 | 0.6017 |
19.90 | 1.0221 | 1.0268 | 0.4587 | 1.0227 | 1.0275 | 0.4682 |
FEM | RHBIM | |||||
---|---|---|---|---|---|---|
Days | ||||||
2.6 | 0.3367 | 0.3325 | 1.2552 | 0.3328 | 0.3288 | 1.2092 |
5.2 | 0.5185 | 0.5137 | 0.9300 | 0.5157 | 0.5109 | 0.9351 |
7.8 | 0.6623 | 0.6572 | 0.7730 | 0.6607 | 0.6556 | 0.7749 |
10.4 | 0.7831 | 0.7780 | 0.6533 | 0.7828 | 0.7777 | 0.6536 |
13.0 | 0.8868 | 0.8823 | 0.5087 | 0.8882 | 0.8836 | 0.5192 |
FEM | RHBIM | |||||
Days | ||||||
2.54 | 0.3298 | 0.3383 | 2.5445 | 0.3267 | 0.3350 | 2.5087 |
5.08 | 0.5084 | 0.5197 | 2.1982 | 0.5062 | 0.5173 | 2.1690 |
7.62 | 0.6492 | 0.6640 | 2.2540 | 0.6481 | 0.6628 | 2.2427 |
10.16 | 0.7667 | 0.7874 | 2.6639 | 0.7668 | 0.7875 | 2.6636 |
12.70 | 0.8666 | 0.8970 | 3.4475 | 0.8682 | 0.8988 | 3.4635 |
FEM | RHBIM | |||||
---|---|---|---|---|---|---|
Days | ||||||
3.90 | 0.3675 | 0.3651 | 0.6552 | 0.3624 | 0.3601 | 0.6366 |
7.80 | 0.5893 | 0.5860 | 0.5615 | 0.5858 | 0.5826 | 0.5478 |
11.70 | 0.7628 | 0.7580 | 0.6312 | 0.7606 | 0.7559 | 0.6198 |
15.60 | 0.9021 | 0.8948 | 0.8125 | 0.9075 | 0.8938 | 1.5211 |
19.50 | 1.0154 | 1.0019 | 1.3384 | 1.0155 | 1.0020 | 1.3382 |
FEM | RHBIM | |||||
Days | ||||||
3.98 | 0.3750 | 0.3754 | 0.1066 | 0.3750 | 0.3746 | 0.1067 |
7.96 | 0.5993 | 0.6043 | 0.8308 | 0.5963 | 0.6011 | 0.8017 |
11.94 | 0.7734 | 0.7789 | 0.7086 | 0.7717 | 0.7771 | 0.6973 |
15.92 | 0.9119 | 0.9174 | 0.6013 | 0.9113 | 0.9168 | 0.6017 |
19.90 | 1.0221 | 1.0268 | 0.4587 | 1.0227 | 1.0275 | 0.4682 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Alemán, S.; Hernández-Cooper, E.M.; Pérez-Álvarez, R.; Otero, J.A. Effects of Total Thermal Balance on the Thermal Energy Absorbed or Released by a High-Temperature Phase Change Material. Molecules 2021, 26, 365. https://doi.org/10.3390/molecules26020365
Rodríguez-Alemán S, Hernández-Cooper EM, Pérez-Álvarez R, Otero JA. Effects of Total Thermal Balance on the Thermal Energy Absorbed or Released by a High-Temperature Phase Change Material. Molecules. 2021; 26(2):365. https://doi.org/10.3390/molecules26020365
Chicago/Turabian StyleRodríguez-Alemán, Suset, Ernesto M. Hernández-Cooper, Rolando Pérez-Álvarez, and José A. Otero. 2021. "Effects of Total Thermal Balance on the Thermal Energy Absorbed or Released by a High-Temperature Phase Change Material" Molecules 26, no. 2: 365. https://doi.org/10.3390/molecules26020365
APA StyleRodríguez-Alemán, S., Hernández-Cooper, E. M., Pérez-Álvarez, R., & Otero, J. A. (2021). Effects of Total Thermal Balance on the Thermal Energy Absorbed or Released by a High-Temperature Phase Change Material. Molecules, 26(2), 365. https://doi.org/10.3390/molecules26020365