Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum
Abstract
:1. Introduction
2. Results
2.1. TTO Composition
2.2. Susceptibility Testing Results
2.3. Checkerboard Assays and Assessment of FIC (fractional inhibitory concentration) Index
3. Discussion
4. Materials and Methods
4.1. Essential Oil and Major Components
4.2. Reference as Antifungal Agents
4.3. Fungal Strains
4.4. Antifungal Susceptibility Testing
4.5. Checkerboard Assays and Assessment of FIC Index
4.6. Isobolograms
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dogra, S.; Shaw, D.; Rudramurthy, S.M. Antifungal drug susceptibility testing of dermatophytes: Laboratory findings to clinical implications. Indian Dermatol. Online J. 2019, 10, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Hayette, M.P.; Sachelil, R. Dermatophytosis, trends in epidemiology and diagnostic approach. Curr. Fungal Infect. Rep. 2015, 9, 164–179. [Google Scholar] [CrossRef]
- Nigam, P.K. Antifungal drugs and resistance:current concepts. Our Dermatol. Online 2015, 6, 212–221. [Google Scholar] [CrossRef]
- Tullio, V.; Cervetti, O.; Roana, J.; Panzone, M.; Scalas, D.; Merlino, C.; Allizond, V.; Banche, G.; Mandras, N.; Cuffini, A.M. Advances in microbiology, infectious diseases and public health: Refractory Trichophyton rubrum infections in Turin, Italy: A problem still present. Adv. Exp. Med. Biol. 2016, 901, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Varadraj, P.; Ganavalli, A.; Kikkeri, N.N. Antifungal resistance in dermatology. Indian J. Dermatol. 2018, 63, 361–368. [Google Scholar] [CrossRef]
- Hadrich, I.; Ayadi, A. Epidemiology of antifungal susceptibility: Review of literature. J. Mycol. Med. 2018, 28, 574–584. [Google Scholar] [CrossRef]
- Monod, M.; Feuermann, M.; Salamin, K.; Fratti, M.; Makino, M.; Alshahni, M.M.; Makimura, K.; Yamadae, T. Trichophyton rubrum azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob. Agents Chemother. 2019, 63, e00863-19. [Google Scholar] [CrossRef] [Green Version]
- Scalas, D.; Mandras, N.; Roana, J.; Tardugno, R.; Cuffini, A.M.; Ghisetti, V.; Benvenuti, S.; Tullio, V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC Complement. Altern. Med. 2018, 18, 143. [Google Scholar] [CrossRef] [Green Version]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the antifungal activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) essential oil and its synergistic interaction with azoles. Molecules 2019, 24, 3148. [Google Scholar] [CrossRef] [Green Version]
- Tullio, V.; Nostro, A.; Mandras, N.; Dugo, P.; Banche, G.; Cannatelli, M.A.; Cuffini, A.M.; Alonzo, V.; Carlone, N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdiluition and vapour contact methods. J. Appl. Microbiol. 2007, 102, 1544–1550. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Enhanced killing of Candida krusei by polymorphonuclear leucocytes in the presence of subinhibitory concentrations of Melaleuca alternifolia and “Mentha of Pancalieri” essential oils. Molecules 2019, 24, 3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielli, L.J.; Pippi, B.; Duarte, J.A.; Maciel, A.J.; Lopes, W.; Machado, M.M.; Oliveira, L.F.S.; Vainstein, M.H.; Teixeira, M.L.; Bordignon, S.A.L.; et al. Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. J. Pharm. Pharmacol. 2018, 70, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl. Microbiol. Biotechnol. 2011, 90, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.A.; de Cássia Orlandi Sardi, J.; Gullo, F.P.; de Souza Pitangui, N.; Scorzoni, L.; Leite, F.S.; Giannini, M.J.S.M.; Almeida, A.M.F. Anti dermatophytic therapy: Prospects for the discovery of new drugs from natural products. Braz. J. Microbiol. 2013, 44, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- Campagna, P. Gli Oli Essenziali Oggi. Manuale di Aromaterapia Scientifica, 1st ed.; Flora Edizioni: Lorenzana (Pisa), Italy, 2017; pp. 1–247. ISBN 8894176703. [Google Scholar]
- Santana-Gálveza, J.; Cisneros-Zevallosb, L.; Jacobo-Velázqueza, D.A. A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends Food Sci. Tech. 2019, 88, 179–193. [Google Scholar] [CrossRef]
- Halteh, P.; Scher, R.K.; Lipner, S.R. Over-the-counter and natural remedies for onychomycosis: Do they really work? Cutis 2016, 98, E16–E25. [Google Scholar]
- Pisseri, F.; Bertoli, A.; Nardoni, S.; Pinto, L.; Pistelli, L.; Guidi, G.; Mancianti, F. Antifungal activity of tea tree oil from Melaleuca alternifolia against Trichophyton equinum: An in vivo assay. Phytomedicine 2009, 16, 1056–1058. [Google Scholar] [CrossRef]
- Gamage, H.; Sivanesan, P.; Hipler, U.C.; Elsner, P.; Wiegand, C. Superficial fungal infections in the department of dermatology, University Hospital Jena: A 7-year retrospective study on 4556 samples from 2007 to 2013. Mycoses 2020, 63, 558–565. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 4730:2017 Essential Oil of Melaleuca, Terpinen-4-ol Type (Tea Tree Oil). 2017. Available online: https://www.iso.org/standard/69082.html (accessed on 2 February 2017).
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In vitro antimicrobial activities of commercially available Tea Tree (Melaleuca alternifolia) essential oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Caetano Érica, P.; De Lima, R.A.C.; Marques, F.J.D.F.; Castelo-Branco, D.D.S.C.M.; De Melo, C.V.S.; Guedes, G.M.D.M.; De Oliveira, J.S.; De Camargo, Z.P.; Moreira, J.L.B.; et al. Terpinen-4-ol, tyrosol, and -lapachone as potential antifungals against dimorphic fungi. Br. J. Microbiol. 2016, 47, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.A.; Ahmad, I.; Cameotra, S.S. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz. J. Microbiol. 2014, 45, 523–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyun, M.S.; Shin, S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine 2006, 13, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Kohli, Y. In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity. Br. J. Dermatol. 2003, 149, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Asahara, M.; Yamamoto, M.; Yamaura, M.; Matsumura, M.; Goto, K.; Rezaei-Matehkolaei, A.; Mirhendi, H.; Makimura, M.; Makimura, K. In vitro susceptibility of dermatomycoses agents to six antifungal drugs and evaluation by fractional inhibitory concentration index of combined effects of amorolfine and itraconazole in dermatophytes. Microbiol. Immunol. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Mondello, F.; De Bernardis, F.; Girolamo, A.; Salvatore, G.; Cassone, A.J. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. Antimicrob. Chemother. 2003, 51, 1223–1229. [Google Scholar] [CrossRef]
- Granade, T.C.; Artis, W.M. Antimycotic susceptibility testing of dermatophytes in microcultures with a standardized fragmented mycelial inoculum. Antimicrob. Agents Chemother. 1980, 17, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi-Approved Standard, CLSI Document M38-A2, 2nd ed.; CLSI: Wayne, PA, USA, 2008; pp. 3–30. [Google Scholar]
- Mulyaningsih, S.; Spore, F.; Zimmermann, S.; Reichling, J.; Win, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
- Vermout, S.; Tabart, J.; Baldo, A.; Mathy, A.; Losson, B.; Nignon, B. Pathogenesis of dermatophytosis. Mycopathologia 2008, 166, 267–275. [Google Scholar] [CrossRef]
- Laothaweerungsawat, N.; Sirithunyalug, J.; Chaiyana, W. Chemical compositions and anti-skin-ageing activities of Origanum vulgare L. essential oil from tropical and mediterranean region. Molecules 2020, 25, 1101. [Google Scholar] [CrossRef] [Green Version]
Main Components | Melaleuca alternifolia EO (%) |
---|---|
Terpinen-4-ol | 35.88 |
1,8-cineol | 4.07 |
γ-terpinene | 19.65 |
α-terpinene | 8.64 |
p-cymene | 4.61 |
T. rubrum Isolates | TTO (% v/v) | ITZ (µg/mL) | KTZ (µg/mL) | |
---|---|---|---|---|
SL 171/13 | MIC | 0.12 | 0.5 | 0.25 |
MFC | 0.12 | 0.5 | 0.25–0.5 | |
SL 164/13 | MIC | 0.06/0.12 | 0.5 | 0.25 |
MFC | 0.06/0.12 | 0.5 | 0.25–0.5 | |
SL 160/13 | MIC | 0.06 | 0.25–0.5 | 0.25 |
MFC | 0.06/0.12 | 0.25–0.5 | 0.25 | |
SL 136/13 | MIC | 0.12 | 0.5 | 0.25 |
MFC | 0.12 | 0.5 | 0.5 | |
terpinen-4-ol 3 (% v/v) | γ terpinene 3 (% v/v) | |||
SL 171/13 | MIC | 0.06 | 0.5 | |
MFC | 0.12 | 0.5 |
MICa | MICc | FIC 3 | FICI 4 | Interpretation | |
---|---|---|---|---|---|
TTO-ITZ | |||||
TTO (mg/mL) (% v/v) | 1.08 5 (0.12%) | 0.135 (0.015%) | 0.125 | 0.245 | SYNERGY |
ITZ (µg/mL) | 0.5 | 0.06 | 0.12 | ||
TTO-KTZ | |||||
TTO (mg/mL) (% v/v) | 1.08 5 (0.12%) | 0.27 (0.03%) | 0.25 | 0.37 | SYNERGY |
KTZ (µg/mL) | 0.25 | 0.03 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roana, J.; Mandras, N.; Scalas, D.; Campagna, P.; Tullio, V. Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules 2021, 26, 461. https://doi.org/10.3390/molecules26020461
Roana J, Mandras N, Scalas D, Campagna P, Tullio V. Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules. 2021; 26(2):461. https://doi.org/10.3390/molecules26020461
Chicago/Turabian StyleRoana, Janira, Narcisa Mandras, Daniela Scalas, Paolo Campagna, and Vivian Tullio. 2021. "Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum" Molecules 26, no. 2: 461. https://doi.org/10.3390/molecules26020461
APA StyleRoana, J., Mandras, N., Scalas, D., Campagna, P., & Tullio, V. (2021). Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules, 26(2), 461. https://doi.org/10.3390/molecules26020461