CO2 Valorization and Its Subsequent Valorization
Funding
Acknowledgments
Conflicts of Interest
References
- Masson Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Pean, C.; Pidcock, R.; et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Pean, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Li, Y.; Song, Y.; Li, H. Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renew. Sustain. Energy Rev. 2018, 82, 215–231. [Google Scholar] [CrossRef]
- Rafiee, A.; Khalilpour, K.R.; Milani, D.; Panahi, M. Trends in CO2 conversion and utilization: A review from process systems perspective. J. Environ. Chem. Eng. 2018, 6, 5771–5794. [Google Scholar] [CrossRef]
- Ravanchi, M.T.; Sahebdelfar, S. Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Process. Saf. Environ. 2010, 145, 172–194. [Google Scholar] [CrossRef]
- Pera-Titus, M. Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chem. Rev. 2013, 114, 1413–1492. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Drese, J.D.; Jones, C.W. An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing 2018, 174, 49–61. [Google Scholar]
- Darde, V.; Thomsen, K.; Van Well, W.J.M.; Stenby, E.H. Chilled ammonia process for CO2 capture. Energy Procedia 2009, 1, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yan, S.; Ma, X.; Gong, J. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ. Sci. 2011, 4, 3805–3819. [Google Scholar] [CrossRef]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef]
- Haque, E.; Islam, M.; Pourazadi, E.; Sarkar, S.; Harris, A.T.; Minett, A.I.; Yanmaz, E.; AlShehri, S.M.; Ide, Y.; Wu, K.C.-W.; et al. Boron-Functionalized Graphene Oxide-Organic Frameworks for Highly Efficient CO2 Capture. Chem. Asian J. 2017, 12, 283–288. [Google Scholar] [CrossRef]
- Merel, J.; Clausse, M.; Meurier, F. Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 2008, 47, 209–215. [Google Scholar] [CrossRef]
- Pevida, C.; Plaza, M.G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J.J. Surface modification of activated carbons for CO2 capture. Appl. Surf. Sci. 2008, 254, 7165–7172. [Google Scholar] [CrossRef] [Green Version]
- Vilarrasa-García, E.; Cecilia, J.A.; Moura, P.A.S.; Azevedo, D.C.S.; Rodríguez-Castellón, E. Assessing CO2 Adsorption on Amino-Functionalized Mesocellular Foams Synthesized at Different Aging Temperatures. Front. Chem. 2020, 8, 591766. [Google Scholar] [CrossRef] [PubMed]
- Cecilia, J.A.; Vilarrasa-García, E.; Morales-Ospino, R.; Bastos-Neto, M.; Azevedo, D.C.S.; Rodríguez-Castellón, E. Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature. Adsorption 2020, 26, 225–240. [Google Scholar] [CrossRef]
- Chouikhi, N.; Cecilia, J.A.; Vilarrasa-García, E.; Besghaier, S.; Chlendi, M.; Franco-Duro, F.I.; Rodríguez-Castellon, E.; Bagane, M. CO2 adsorption of materials synthesized from clay minerals: A review. Minerals 2019, 5, 514. [Google Scholar] [CrossRef] [Green Version]
- Hiyoshi, N.; Yogo, Y.; Yashima, T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 2005, 84, 357–365. [Google Scholar] [CrossRef]
- Desideri, U.; Paolucci, A. Performance modelling of a carbon dioxide removal system for power plants. Energy Convers. Manag. 1999, 40, 1899–1915. [Google Scholar] [CrossRef]
- Rao, A.B.; Rubin, E.S. A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.; Tan, C.S. A Review: CO2 Utilization. Aerosol Air Qual. Res. 2014, 14, 480–499. [Google Scholar] [CrossRef] [Green Version]
- Safi, R.; Agarwal, R.K.; Banerjee, S. Numerical simulation and optimization of CO2 utilization for enhanced oil recovery from depleted reservoirs. Chem. Eng. Sci. 2016, 144, 30–38. [Google Scholar] [CrossRef]
- Luu, M.T.; Milani, D.; Abbas, A. Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. J. Clean. Prod. 2016, 112, 3540–3554. [Google Scholar] [CrossRef]
- Nakaten, N.; Islam, R.; Kempka, T. 12th international conference on greenhouse gas control technologies, GHGT-12Underground coal gasification with extended CO2 utilization—An economic and carbon neutral approach to tackle energy and fertilizer supply shortages in Bangladesh. Energy Procedia 2014, 63, 8036–8043. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.Z.; Xu, R.N.; Jiang, P.X. Thermodynamic analysis of enhanced geothermal systems using impure CO2 as the geofluid. Appl. Therm. Eng. 2016, 99, 1277–1285. [Google Scholar] [CrossRef]
- Antonijević, D.L. Carbon dioxide as the replacement for synthetic refrigerants in mobile air conditioning. Therm. Sci. 2008, 12, 55–64. [Google Scholar] [CrossRef]
- Rafiee, A.; Panahi, M.; Khalilpour, K.R. CO2 utilization through integration of post-combustion carbon capture process with Fischer-Tropsch gas-to-liquid (GTL) processes. J. CO2 Util. 2017, 18, 98–106. [Google Scholar] [CrossRef]
- Lim, Y.; Lee, C.J.; Jeong, Y.S.; Song, I.H.; Lee, C.J.; Han, C. Optimal Design and Decision for Combined Steam Reforming Process with Dry Methane Reforming to Reuse CO2 as a Raw Material. Ind. Eng. Chem. Res. 2012, 51, 4982–4989. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, S.C. Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery. Appl. Energy 2016, 162, 1141–1152. [Google Scholar] [CrossRef]
- Sun, Q.; Ye, J.; Liu, C.J.; Ge, Q. In2O3 as a promising catalyst for CO2 utilization: A case study with reverse water gas shift over In2O3. Greenh. Gases Sci. Technol. 2014, 4, 140–144. [Google Scholar] [CrossRef]
- Kim, W.S.; Yang, D.R.; Moon, D.R.; Ahn, B.S. The process design and simulation for the methanol production on the FPSO (floating production, storage and off-loading) system. Chem. Eng. Res. Des. 2018, 92, 931–940. [Google Scholar] [CrossRef]
- Catizzone, E.; Bonura, E.; Migliori, M.; Frusteri, F.; Giordano, G. CO2 recycling to dimethyl ether: State-of-the-art and perspectives. Molecules 2018, 23, 31. [Google Scholar] [CrossRef] [Green Version]
- Nazimek, D.; Czech, B. Artificial photosynthesis—CO2 towards methanol. IOP Conf. Ser. Mater. Sci. Eng. 2011, 19, 012010. [Google Scholar] [CrossRef] [Green Version]
- Kempka, T.; Plötz, M.L.; Schlüter, R.; Hamann, J.; Deowan, S.A.; Azzam, R. Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 2011, 4, 2200–2205. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Yan, B.; Wang, S.; Ma, X. Recent Advances in Dialkyl Carbonates Synthesis and Applications. Chem. Soc. Rev. 2015, 44, 3079–3116. [Google Scholar] [CrossRef] [PubMed]
- Laurenczy, G.; Picquet, M.; Plasseraud, L. Di-n-butyltin(IV)-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol: An in situ high pressure 119Sn{1H} NMR spectroscopic study. J. Organomet. Chem. 2011, 696, 1904–1909. [Google Scholar] [CrossRef]
- Langanke, J.; Wolf, A.; Hofmann, J.; Böhm, K.; Subhani, M.A.; Müller, T.E.; Leitner, W.; Gurtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870. [Google Scholar] [CrossRef]
- Assen, N.V.D.; Sternberg, A.; Käthelhön, A.; Bardow, A. Environmental potential of carbon dioxide utilization in the polyurethane supply chain. Faraday Discuss. 2015, 183, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Van Der Giesen, C.; Kleijn, R.; Kramer, G.J. Energy and Climate Impacts of Producing Synthetic Hydrocarbon Fuels from CO2. Environ. Sci. Technol. 2014, 48, 7111–7121. [Google Scholar] [CrossRef]
- Sahebdelfar, S.; Takht Ravanchi, M. Carbon dioxide utilization for methane production: A thermodynamic analysis. J. Pet. Sci. Eng. 2015, 134, 14–22. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, H.; He, F.; Chen, D.; Wei, G.; Zhao, K.; Zheng, A.; Feng, Y.; Zhao, Z.; Li, H. Evaluation of multi-cycle performance of chemical looping dry reforming using CO2 as an oxidant with Fe–Ni bimetallic oxides. J. Energy Chem. 2016, 25, 62–70. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Saffari, M.; Milani, D.; Montoya, A.; Valix, M.; Abbas, A. Sustainable transformation of fly ash industrial waste into a construction cement blend via CO2 carbonation. J. Clean. Prod. 2017, 156, 660–669. [Google Scholar] [CrossRef]
- Michorczyk, P.; Ogonowski, J. Dehydrogenation of propane in the presence of carbon dioxide over oxide-based catalysts. React. Kinet. Catal. Lett. 2003, 78, 41–47. [Google Scholar] [CrossRef]
- Noh, J.; Chang, J.S.; Park, J.N.; Lee, K.Y.; Park, S.E. CO2 utilization for the formation of styrene from ethylbenzene over zirconia-supported iron oxide catalysts. Appl. Organomet. Chem. 2000, 14, 815–818. [Google Scholar] [CrossRef]
- Terzopoulos, Z.; Papadopoulos, L.; Zamboulis, A.; Papageorgiou, D.G.; Papageourgiou, G.Z.; Bikiaris, D.N. Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers 2020, 12, 1209. [Google Scholar] [CrossRef] [PubMed]
- Buckley, B.R.; Patel, A.P.; Wijayantha, K.G.U. Ring-expansion addition of epoxides using applied potential: An investigation of catalysts for atmospheric pressure carbon dioxide utilization. RSC Adv. 2014, 4, 58581–58590. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhu, Z.H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation. A review. Energy Fuels 2004, 18, 1126–1139. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecilia, J.A.; Ballesteros Plata, D.; Vilarrasa García, E. CO2 Valorization and Its Subsequent Valorization. Molecules 2021, 26, 500. https://doi.org/10.3390/molecules26020500
Cecilia JA, Ballesteros Plata D, Vilarrasa García E. CO2 Valorization and Its Subsequent Valorization. Molecules. 2021; 26(2):500. https://doi.org/10.3390/molecules26020500
Chicago/Turabian StyleCecilia, Juan Antonio, Daniel Ballesteros Plata, and Enrique Vilarrasa García. 2021. "CO2 Valorization and Its Subsequent Valorization" Molecules 26, no. 2: 500. https://doi.org/10.3390/molecules26020500
APA StyleCecilia, J. A., Ballesteros Plata, D., & Vilarrasa García, E. (2021). CO2 Valorization and Its Subsequent Valorization. Molecules, 26(2), 500. https://doi.org/10.3390/molecules26020500