Geographical Discrimination of Bell Pepper (Capsicum annuum) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimisation of the HS-SPME/GC-MS Analysis
2.2. Volatile Profile by of Bell Pepper Spices by HS-SPME/GC-MS
2.3. Classification
2.4. Discussion over the Comparison of the Outcome with the Literature
3. Materials and Methods
3.1. Materials and Samples
3.2. Headspace Solid-Phase Micro-Extraction (HS-SPME)
3.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
3.4. DoE-Based Optimization of the HS-SPME/GC-MS Conditions
3.5. Chemometric Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- de Sá Mendes, N.; de Andrade Gonçalves, É.C.B. The role of bioactive components found in peppers. Trends Food Sci. Technol. 2020, 99, 229–243. [Google Scholar] [CrossRef]
- Daood, H.G.; Palotás, G.; Palotás, G.; Somogyi, G.; Pék, Z.; Helyes, L. Carotenoid and antioxidant content of ground paprika from indoor-cultivated traditional varieties and new hybrids of spice red peppers. Food Res. Int. 2014, 65, 231–237. [Google Scholar] [CrossRef]
- Speranza, G.; Lo Scalzo, R.; Morelli, C.F.; Rabuffetti, M.; Bianchi, G. Influence of drying techniques and growing location on the chemical composition of sweet pepper (Capsicum annuum L., var. Senise). J. Food Biochem. 2019, 43, 1–12. [Google Scholar] [CrossRef]
- Martín, A.; Hernández, A.; Aranda, E.; Casquete, R.; Velázquez, R.; Bartolomé, T.; Córdoba, M.G. Impact of volatile composition on the sensorial attributes of dried paprikas. Food Res. Int. 2017, 100, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Herb and spice fraud; the drivers, challenges and detection. Food Control 2018, 88, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Ballin, N.Z.; Laursen, K.H. To target or not to target? Definitions and nomenclature for targeted versus non-targeted analytical food authentication. Trends Food Sci. Technol. 2019, 86, 537–543. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Eskildsen, C.E.; Galeano-Díaz, T.; de la Peña, A.M.; Wold, J.P. Untargeted classification for paprika powder authentication using visible—Near infrared spectroscopy (VIS-NIRS). Food Control 2021, 121, 107564. [Google Scholar] [CrossRef]
- Biancolillo, A.; Di Donato, F.; Merola, F.; Marini, F.; D’Archivio, A.A. Sequential data fusion techniques for the authentication of the P.G.I. senise (“crusco”) bell pepper. Appl. Sci. 2021, 11, 1709. [Google Scholar] [CrossRef]
- Campmajó, G.; Rodríguez-Javier, L.R.; Saurina, J.; Núñez, O. Assessment of paprika geographical origin fraud by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) fingerprinting. Food Chem. 2021, 352, 129397. [Google Scholar] [CrossRef]
- Barbosa, S.; Saurina, J.; Puignou, L.; Núñez, O. Classification and authentication of paprika by UHPLC-HRMS fingerprinting and multivariate calibration methods (PCA and PLS-DA). Foods 2020, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- Arrizabalaga-Larrañaga, A.; Campmajó, G.; Saurina, J.; Núñez, O.; Santos, F.J.; Moyano, E. Determination of capsaicinoids and carotenoids for the characterization and geographical origin authentication of paprika by UHPLC–APCI–HRMS. LWT 2021, 139, 110533. [Google Scholar] [CrossRef]
- Mudrić, S.; Gašić, U.M.; Dramićanin, A.M.; Ćirić, I.; Milojković-Opsenica, D.M.; Popović-Đorđević, J.B.; Momirović, N.M.; Tešić, Ž.L. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef]
- Fiamegos, Y.; Dumitrascu, C.; Papoci, S.; de la Calle, M.B. Authentication of PDO paprika powder (Pimentón de la Vera) by multivariate analysis of the elemental fingerprint determined by ED-XRF. A feasibility study. Food Control 2021, 120, 107496. [Google Scholar] [CrossRef]
- Portis, E.; Nervo, G.; Cavallanti, F.; Barchi, L.; Lanteri, S. Multivariate analysis of genetic relationships between Italian pepper landraces. Crop Sci. 2006, 46, 2517–2525. [Google Scholar] [CrossRef]
- Manzi, A. Origine e Storia Delle Piante Coltivate in Abruzzo; Carabba Editore: Lanciano, Italy, 2006. [Google Scholar]
- D’Archivio, A.A.; Di Pietro, L.; Maggi, M.A.; Rossi, L. Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. Eur. Food Res. Technol. 2018, 244, 1605–1613. [Google Scholar] [CrossRef]
- Xu, C.H.; Chen, G.S.; Xiong, Z.H.; Fan, Y.X.; Wang, X.C.; Liu, Y. Applications of solid-phase microextraction in food analysis. TrAC Trends Anal. Chem. 2016, 80, 12–29. [Google Scholar] [CrossRef]
- Souza-Silva, É.A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends Anal. Chem. 2015, 71, 236–248. [Google Scholar] [CrossRef]
- Cremer, D.R.; Eichner, K. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder. J. Agric. Food Chem. 2000, 48, 2454–2460. [Google Scholar] [CrossRef]
- Rodríguez-Burruezo, A.; Kollmannsberger, H.; González-Mas, M.C.; Nitz, S.; Fernando, N. HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of capsicum fruits from the annuum? chinense? Frutescens complex. J. Agric. Food Chem. 2010, 58, 4388–4400. [Google Scholar] [CrossRef]
- Rios, J.J.; Fernández-García, E.; Mínguez-Mosquera, M.I.; Pérez-Gálvez, A. Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chem. 2008, 106, 1145–1153. [Google Scholar] [CrossRef]
- Cirlini, M.; Luzzini, G.; Morini, E.; Folloni, S.; Ranieri, R.; Dall’Asta, C.; Galaverna, G. Evaluation of the volatile fraction, pungency and extractable color of different Italian Capsicum annuum cultivars designed for food industry. Eur. Food Res. Technol. 2019, 245, 2669–2678. [Google Scholar] [CrossRef]
- Sjöström, M.; Wold, S.; Söderström, B. PLS discriminant plots. In Pattern Recognition in Practice; Elsevier: Amsterdam, The Netherlands, 1986; pp. 461–470. [Google Scholar]
- Di Donato, F.; Biancolillo, A.; Mazzulli, D.; Rossi, L.; D’Archivio, A.A. HS-SPME/GC–MS volatile fraction determination and chemometrics for the discrimination of typical Italian Pecorino cheeses. Microchem. J. 2021, 165, 106133. [Google Scholar] [CrossRef]
- De Luca, S.; Ciotoli, E.; Biancolillo, A.; Bucci, R.; Magrì, A.D.; Marini, F. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics. Environ. Sci. Pollut. Res. 2018, 25, 28748–28759. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Marini, F.; Biancolillo, A. Effects of thermal treatments on durum wheat pasta flavour during production process: A modelling approach to provide added-value to pasta dried at low temperatures. Talanta 2021, 225, 121955. [Google Scholar] [CrossRef]
- Liang, J.; Sun, J.; Chen, P.; Frazier, J.; Benefield, V.; Zhang, M. Chemical analysis and classification of black pepper (Piper nigrum L.) based on their country of origin using mass spectrometric methods and chemometrics. Food Res. Int. 2021, 140, 109877. [Google Scholar] [CrossRef]
- Torres-Cobos, B.; Quintanilla-Casas, B.; Romero, A.; Ninot, A.; Alonso-Salces, R.M.; Toschi, T.G.; Bendini, A.; Guardiola, F.; Tres, A.; Vichi, S. Varietal authentication of virgin olive oil: Proving the efficiency of sesquiterpene fingerprinting for Mediterranean Arbequina oils. Food Control 2021, 128, 108200. [Google Scholar] [CrossRef]
- Teribia, N.; Buvé, C.; Bonerz, D.; Aschoff, J.; Hendrickx, M.; Loey, A.V. Effect of cultivar, pasteurization and storage on the volatile and taste compounds of strawberry puree. LWT 2021, 150, 112007. [Google Scholar] [CrossRef]
- Di Donato, F.; D’Archivio, A.A.; Maggi, M.A.; Rossi, L. Detection of Plant-Derived Adulterants in Saffron (Crocus sativus L.) by HS-SPME/GC-MS Profiling of Volatiles and Chemometrics. Food Anal. Methods 2021, 14, 784–796. [Google Scholar] [CrossRef]
- Winterhalter, P.; Rouseff, R. Carotenoid-Derived Aroma Compounds: An Introduction; ACS Symposium Series: Washington, DC, USA, 2001; Volume 802, pp. 1–17. [Google Scholar]
- Krammer, G.E.; Werkhoff, P.; Sommer, H.; Schmidt, C.O.; Gatfield, I.; Bertram, H.J. Carotenoid Degradation Products in Paprika Powder; ACS Symposium Series: Washington, DC, USA, 2001; Volume 802, pp. 206–219. [Google Scholar]
- Mlotkiewicz, J.A. The role of the Maillard reaction in the food industry. In The Maillard Reaction in Foods and Medicine; O’Brien, J., Nursten, H.E., Crabbe, M.J.C., Ames, J.M., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1988; pp. 19–27. [Google Scholar]
- Nagodawithana, T.W. Maillard and other flavor producing reactions. In Savory Flavors; Nagodawithana, T.W., Ed.; Esteekay Associates, Inc.: Milwaukee, WI, USA, 1995; pp. 103–163. [Google Scholar]
- Buttery, R.G.; Ling, L.C. Volatile Components of Tomato Fruit and Plant Parts, Relationship and Biogenesis. In Bioactive Volatile Compounds from Plants; ACS Symposium Series: Washington, DC, USA, 1993; Volume 525, pp. 23–34. [Google Scholar]
- Cho, I.H.; Lee, S.; Jun, H.R.; Roh, H.J.; Kim, Y.S. Comparison of volatile Maillard reaction products from tagatose and other reducing sugars with amino acids. Food Sci. Biotechnol. 2010, 19, 431–438. [Google Scholar] [CrossRef]
- Yaylayan, V.A.; Keyhani, A.; Huygues-Despointes, A. Generation and the fate of C2, C3 and C4 reactive fragments formed in Maillard model systems of [13C] glucose and [13C]glycine or proline. In Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology; Shahidi, F., Ho, C.T., van Chuyen, N., Eds.; Springer: Boston, MA, USA, 1998; pp. 237–244. [Google Scholar]
- Preininger, M.; Gimelfarb, L.; Li, H.C.; Dias, B.E.; Fahmy, F.; White, J. Identification of dihydromaltol (2,3-dihydro-5-hydroxy6-methyl-4h-pyran-4- one) in ryazhenka kefir and comparative sensory impact assessment of related cycloenolones. J. Agric. Food Chem. 2009, 57, 9902–9908. [Google Scholar] [CrossRef] [PubMed]
- Chuyen, N.V. Maillard Reaction and Food Processing. In Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology; Shahidi, F., Ho, C.T., van Chuyen, N., Eds.; Springer: Boston, MA, USA, 1998; Volume 434, pp. 213–235. [Google Scholar]
- Jennings, W.G.; Shibamoto, T. Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatographye; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Zhao, Y.; Schenk, D.J.; Takahashi, S.; Chappell, J.; Coates, R.M. Eremophilane sesquiterpenes from capsidiol. J. Org. Chem. 2004, 69, 7428–7435. [Google Scholar] [CrossRef] [PubMed]
- Wrolstad, R.E.; Jennings, W.G. Chromatostripisomerization of terpenes. J. Chromatogr. A 1965, 18, 318–319. [Google Scholar] [CrossRef]
- Silvis, I.C.J.; Luning, P.A.; Klose, N.; Jansen, M.; van Ruth, S.M. Similarities and differences of the volatile profiles of six spices explored by Proton Transfer Reaction Mass Spectrometry. Food Chem. 2019, 271, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Wold, S.; Johansson, E.; Cocchi, M. PLS—Partial least-squares projections to latent structures. In 3D QSAR Drug Design; Wiley: Hoboken, NJ, USA, 1993; pp. 523–550. [Google Scholar]
- NIST14: Mass Spectral Database; NIST: Gaithersburg, MD, USA, 2014.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://www.gruppochemiometria.it (accessed on 13 June 2021).
- Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric strategies for spectroscopy-based food authentication. Appl. Sci. 2020, 10, 6544. [Google Scholar] [CrossRef]
- Fischer, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Indahl, U.G.; Martens, H.; Næs, T. From dummy regression to prior probabilities in PLS-DA. J. Chemom. 2007, 21, 529–536. [Google Scholar] [CrossRef]
- Nocairi, H.; Qannari, E.M.; Vigneau, E.; Bertrand, D. Discrimination on latent components with respect to patterns. Application to multicollinear data. Comput. Stat. Data Anal. 2005, 48, 139–147. [Google Scholar] [CrossRef]
- Pérez, N.F.; Ferré, J.; Boqué, R. Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chemom. Intell. Lab. Syst. 2009, 95, 122–128. [Google Scholar] [CrossRef]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 265–299. [Google Scholar]
T (°C)-t (min) | T Level | t Level | logA |
---|---|---|---|
90-10 | +1 | −1 | 5.669 |
70-10 | −1 | −1 | 5.564 |
90-30 | +1 | +1 | 5.733 |
70-30 | −1 | +1 | 6.029 |
80-20 | 0 | 0 | 5.732 ± 0.035 a |
Peak n° | RT (min) | Compound | Bell Pepper Spices | ||||
---|---|---|---|---|---|---|---|
Altino 1 (n = 30) | Altino 2 (n = 3) | Altino 3 (n = 3) | Senise (n = 30) | Paprika (n = 30) | |||
1 | 3.41 | hexanal | 0.20 ± 0.05 | 0.35 ± 0.33 | 0.84 ± 0.85 | 0.23 ± 0.13 | 0.07 ± 0.10 |
2 | 4.11 | fatty acid | 0.14 ± 0.03 | n.d. | 0.31 ± 0.03 | 0.12 ± 0.03 | n.d. |
3 | 4.60 | 2-acetylfuran | 1.04 ± 0.24 | 0.26 ± 0.08 | 0.85 ± 0.09 | 1.65 ± 0.34 | 0.47 ± 0.07 |
4 | 5.54 | 6-methyl-5-hepten-2-one a | 0.58 ± 0.20 | 0.43 ± 0.28 | 0.38 ± 0.07 | 0.57 ± 0.12 | 0.58 ± 0.11 |
5 | 5.63 | 2-pentyl-furan | 0.91 ± 0.25 | 1.12 ± 0.85 | 0.70 ± 0.14 | 1.01 ± 0.24 | 0.64 ± 0.09 |
6 | 5.97 | 3-carene b | n.d. | n.d. | n.d. | n.d. | 2.79 ± 0.52 |
7 | 6.20 | p-cymene b | 0.01 ± 0.01 | n.d. | n.d. | 0.04 ± 0.03 | 1.42 ± 0.26 |
8 | 6.26 | 5-ethylfurfural | 0.35 ± 0.10 | 0.62 ± 0.18 | 0.15 ± 0.03 | 0.69 ± 0.15 | 0.65 ± 0.13 |
9 | 6.27 | (−)-limonene b | n.d. | n.d. | n.d. | n.d. | 2.26 ± 0.81 |
10 | 6.54 | phenylacetaldehyde | 1.57 ± 0.35 | 5.46 ± 1.44 | 10.12 ± 0.48 | 4.63 ± 0.54 | 3.86 ± 0.45 |
11 | 6.77 | 2-acetylpyrrole | 0.51 ± 0.09 | 0.27 ± 0.10 | 0.08 ± 0.14 | 0.22 ± 0.05 | 0.45 ± 0.08 |
12 | 6.87 | (E.E)-3.5-octadien-2-one | 2.40 ± 0.63 | 0.32 ± 0.24 | 0.53 ± 0.10 | 0.92 ± 0.17 | 0.55 ± 0.10 |
13 | 6.96 | 4-methyl-benzaldehyde | 0.77 ± 0.18 | 1.60 ± 0.51 | 0.54 ± 0.05 | 1.68 ± 0.24 | 0.97 ± 0.10 |
14 | 7.28 | (E.E)-3.5-nonadien-2-one | 1.35 ± 0.34 | 0.11 ± 0.04 | 0.36 ± 0.18 | 0.35 ± 0.08 | 0.11 ± 0.02 |
15 | 7.45 | 6-methyl-3.5-heptadien-2-one a | 6.13 ± 1.47 | 7.52 ± 1.60 | 5.33 ± 0.67 | 11.54 ± 1.82 | 8.21 ± 0.76 |
16 | 7.66 | 2.6-dimethyl-cyclohexanol | 2.64 ± 0.64 | 2.95 ± 1.03 | 3.10 ± 0.32 | 2.50 ± 0.50 | 2.89 ± 0.37 |
17 | 8.20 | 3-hydroxy-2.3-dihydromaltol | 2.41 ± 0.52 | 10.51 ± 4.08 | 8.33 ± 0.63 | 4.72 ± 1.33 | 6.39 ± 1.09 |
18 | 8.59 | 1-acetyl-pyrrolidine | 2.53 ± 0.24 | 0.30 ± 0.18 | 0.19 ± 0.02 | 0.59 ± 0.09 | 0.29 ± 0.14 |
19 | 8.88 | 2.4-dimethyl-benzaldehyde | 2.30 ± 0.37 | 4.29 ± 0.59 | 1.65 ± 0.18 | 4.93 ± 0.39 | 2.52 ± 0.12 |
20 | 9.35 | safranal a | 1.26 ± 0.31 | 5.32 ± 1.21 | 2.54 ± 0.24 | 3.11 ± 0.45 | 4.51 ± 0.48 |
21 | 9.63 | m-cumenol | 0.17 ± 0.11 | 0.27 ± 0.04 | 0.18 ± 0.13 | 0.47 ± 0.05 | 0.19 ± 0.04 |
22 | 9.74 | β-cyclocitral a | 1.38 ± 0.31 | 1.23 ± 0.26 | 0.88 ± 0.07 | 2.25 ± 0.32 | 1.15 ± 0.10 |
23 | 10.21 | (+)-carvone b | n.d. | n.d. | n.d. | n.d. | 1.00 ± 0.05 |
24 | 10.54 | trans-9-decalol | 0.20 ± 0.05 | 0.05 ± 0.01 | 0.14 ± 0.00 | 0.03 ± 0.02 | n.d. |
25 | 10.63 | branched alkane | 0.08 ± 0.11 | 0.02 ± 0.02 | 0.13 ± 0.03 | 0.08 ± 0.03 | 0.13 ± 0.02 |
26 | 11.09 | estragole | n.d. | n.d. | n.d. | n.d. | 1.37 ± 0.06 |
27 | 11.56 | 2-(2-methylpropylidene)-cycloheptanone | 0.14 ± 0.01 | 0.15 ± 0.02 | 0.30 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 |
28 | 11.67 | branched alkane | 0.36 ± 0.10 | 0.03 ± 0.01 | 0.17 ± 0.03 | 0.06 ± 0.01 | 0.16 ± 0.02 |
29 | 11.94 | fumaric acid. di ester | 2.75 ± 0.48 | 0.19 ± 0.07 | 2.94 ± 0.45 | 0.38 ± 0.10 | n.d. |
30 | 12.66 | branched alkane | 2.28 ± 0.29 | 3.38 ± 0.54 | 0.94 ± 0.07 | 1.15 ± 0.10 | n.d. |
31 | 13.15 | α-copaene b | 0.41 ± 0.06 | 0.27 ± 0.06 | 0.33 ± 0.09 | 2.01 ± 0.17 | 0.59 ± 0.04 |
32 | 13.43 | β-elemene | 1.11 ± 0.08 | 1.87 ± 0.32 | 0.21 ± 0.04 | 3.44 ± 0.22 | 1.19 ± 0.06 |
33 | 13.54 | tetradecane | 0.34 ± 0.03 | 0.98 ± 0.23 | 1.14 ± 0.11 | 1.19 ± 0.11 | 23.92 ± 0.90 |
34 | 14.19 | α-ionone a | 1.11 ± 0.04 | 0.58 ± 0.08 | 1.55 ± 0.04 | 0.87 ± 0.06 | n.d. |
35 | 14.23 | β-copaene b | 0.66 ± 0.04 | 0.39 ± 0.03 | 0.89 ± 0.03 | 0.58 ± 0.11 | 1.14 ± 0.06 |
36 | 14.48 | dihydro-β-ionone a | 0.36 ± 0.02 | 0.50 ± 0.07 | 0.57 ± 0.06 | 0.39 ± 0.05 | 0.36 ± 0.05 |
37 | 14.63 | alkene/alcohol | 0.79 ± 0.04 | 1.42 ± 0.24 | 3.29 ± 0.14 | 0.43 ± 0.07 | n.d. |
38 | 14.76 | dihydropseudoionone a | 11.68 ± 0.68 | 3.61 ± 0.49 | 7.23 ± 0.18 | 7.11 ± 0.72 | 6.42 ± 0.54 |
39 | 14.90 | aristolene b | 0.22 ± 0.22 | 0.45 ± 0.06 | 0.67 ± 0.02 | 0.81 ± 0.17 | 0.56 ± 0.06 |
40 | 15.10 | branched alkane | 2.90 ± 0.13 | 5.65 ± 0.96 | 1.43 ± 0.04 | 1.44 ± 0.06 | 0.14 ± 0.03 |
41 | 15.26 | dehydro-isolongifolene b | 0.64 ± 0.03 | 0.83 ± 0.15 | n.d. | 1.99 ± 0.09 | n.d. |
42 | 15.53 | γ-selinene b | 0.49 ± 0.02 | 0.81 ± 0.12 | n.d. | 1.56 ± 0.07 | 1.00 ± 0.06 |
43 | 15.62 | β-ionone a | 19.12 ± 1.31 | 7.39 ± 1.06 | 11.86 ± 0.59 | 10.69 ± 1.20 | 5.88 ± 0.65 |
44 | 15.72 | β-ionone epoxide a | 7.77 ± 0.88 | 2.41 ± 0.30 | 13.54 ± 0.51 | 4.01 ± 0.49 | 2.03 ± 0.24 |
45 | 15.81 | eremophila-9(10).11(12)-diene b | 1.80 ± 0.07 | 2.58 ± 0.47 | 0.35 ± 0.03 | 5.16 ± 0.20 | 2.08 ± 0.10 |
46 | 15.99 | eremophilene b | 0.49 ± 0.05 | 1.06 ± 0.18 | 0.10 ± 0.01 | 1.74 ± 0.11 | 1.47 ± 0.10 |
47 | 16.14 | α-selinene b | 0.41 ± 0.02 | 1.00 ± 0.12 | 0.10 ± 0.00 | 1.58 ± 0.07 | 1.66 ± 0.10 |
48 | 16.32 | β-bisabolene b | n.d. | n.d. | n.d. | n.d. | 0.38 ± 0.05 |
49 | 16.43 | guaia-1(10).11-diene b | 0.42 ± 0.06 | 0.52 ± 0.11 | 0.05 ± 0.02 | 1.46 ± 0.10 | 0.10 ± 0.02 |
50 | 16.66 | methyl dodecanoate | 0.38 ± 0.04 | 0.48 ± 0.08 | 0.59 ± 0.06 | 0.73 ± 0.09 | 0.51 ± 0.05 |
51 | 16.75 | β-sesquiphellandrene b | n.d. | n.d. | n.d. | n.d. | 0.34 ± 0.06 |
52 | 16.84 | linear alkane | 0.21 ± 0.06 | 0.08 ± 0.03 | 0.22 ± 0.02 | 0.08 ± 0.02 | n.d. |
53 | 17.02 | dihydroactinidiolide a | 9.37 ± 1.64 | 5.40 ± 1.56 | 8.83 ± 0.80 | 6.10 ± 1.17 | 4.39 ± 0.60 |
54 | 17.66 | branched alkane | 0.82 ± 0.07 | 1.75 ± 0.29 | 0.59 ± 0.04 | 0.40 ± 0.04 | 0.11 ± 0.03 |
55 | 18.62 | branched alkane | 0.97 ± 0.12 | 3.05 ± 0.71 | 1.79 ± 0.09 | 0.57 ± 0.08 | 0.45 ± 0.08 |
56 | 19.39 | occidentalol ester | 0.64 ± 0.13 | n.d. | 0.04 ± 0.01 | 0.21 ± 0.08 | n.d. |
57 | 20.24 | branched alkane | 0.97 ± 0.14 | 3.48 ± 0.85 | 0.86 ± 0.06 | 0.36 ± 0.08 | 0.10 ± 0.04 |
58 | 20.84 | heptadecane | 1.14 ± 0.20 | 6.08 ± 0.78 | 1.39 ± 0.09 | 0.42 ± 0.07 | 0.36 ± 0.10 |
59 | 21.09 | methyl tetradecanoate | 0.33 ± 0.06 | 0.61 ± 0.17 | 0.68 ± 0.09 | 0.65 ± 0.14 | 0.81 ± 0.13 |
Pre-Processing | LVs | % CRcv |
---|---|---|
Mean-centering | 1 | 91.1 |
Auto-scaling | 2 | 100.0 |
Compound |
---|
3-carene |
p-cymene |
(−)-limonene |
(+)-carvone |
estragole |
α-copaene |
β-elemene |
tetradecane |
β-copaene |
dehydro isolongifolene |
γ-selinene |
eremophila-9(10),11(12)-diene |
eremophilene |
β-bisabolene |
guaia-1(10),11-diene |
β-sesquiphellandrene |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reale, S.; Biancolillo, A.; Gasparrini, C.; Di Martino, L.; Di Cecco, V.; Manzi, A.; Di Santo, M.; D’Archivio, A.A. Geographical Discrimination of Bell Pepper (Capsicum annuum) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics. Molecules 2021, 26, 6177. https://doi.org/10.3390/molecules26206177
Reale S, Biancolillo A, Gasparrini C, Di Martino L, Di Cecco V, Manzi A, Di Santo M, D’Archivio AA. Geographical Discrimination of Bell Pepper (Capsicum annuum) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics. Molecules. 2021; 26(20):6177. https://doi.org/10.3390/molecules26206177
Chicago/Turabian StyleReale, Samantha, Alessandra Biancolillo, Chiara Gasparrini, Luciano Di Martino, Valter Di Cecco, Aurelio Manzi, Marco Di Santo, and Angelo Antonio D’Archivio. 2021. "Geographical Discrimination of Bell Pepper (Capsicum annuum) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics" Molecules 26, no. 20: 6177. https://doi.org/10.3390/molecules26206177
APA StyleReale, S., Biancolillo, A., Gasparrini, C., Di Martino, L., Di Cecco, V., Manzi, A., Di Santo, M., & D’Archivio, A. A. (2021). Geographical Discrimination of Bell Pepper (Capsicum annuum) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics. Molecules, 26(20), 6177. https://doi.org/10.3390/molecules26206177