Fabrication of Phosphorus-Doped Cobalt Silicate with Improved Electrochemical Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Fabrication of Materials
4.2. Characterizations
4.3. Electrochemical Characterizations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, X.; Cheng, Y.; Hu, T.; Meng, C. Controlled synthesis of 3D porous VO2(B) hierarchical spheres with different interiors for energy storage. Inorg. Chem. Front. 2018, 5, 2798–2810. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Hu, T.; Meng, C. 3D Interlaced Networks of VO(OH)2 Nanoflakes Wrapped with Graphene Oxide Nanosheets as Electrodes for Energy Storage Devices. ACS Appl. Nano Mater. 2019, 2, 2934–2945. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, Q.; Meng, C. In-situ hydrothermal growth of Zn4Si2O7(OH)2·H2O anchored on 3D N, S-enriched carbon derived from plant biomass for flexible solid-state asymmetrical supercapacitors. Chem. Eng. J. 2018, 352, 519–529. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Xiao, J.; Jiang, H.; Li, X.; Meng, C. A novel ordered hollow spherical nickel silicate–nickel hydroxide composite with two types of morphologies for enhanced electrochemical storage performance. Mater. Chem. Front. 2019, 3, 2090–2101. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.; Chen, Q.; Jiang, H.; Wang, Q.; Meng, C.; Kou, Z. Ammonia-etching-assisted nanotailoring of manganese silicate boosts faradaic capacity for high-performance hybrid supercapacitors. Sustain. Energy Fuels 2020, 4, 2220–2228. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.-Z.; Zhang, F.; Li, Q.; Anjum, D.H.; Liang, H.; Liu, Y.; Liu, C.-s.; Alshareef, H.N.; Pang, H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 2019, 7, 15969–15974. [Google Scholar] [CrossRef]
- Yuan, M.; Guo, X.; Liu, Y.; Pang, H. Si-based materials derived from biomass: Synthesis and applications in electrochemical energy storage. J. Mater. Chem. A 2019, 7, 22123–22147. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Dong, X.; Jiang, H.; Hu, T.; Meng, C.; Huang, C. Alkali Etching Metal Silicates Derived from Bamboo Leaves with Enhanced Electrochemical Properties for Solid-state Hybrid Supercapacitors. Chem. Eng. J. 2021, 417, 127964. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, M.; Run, Z.; Xia, J.; Sun, M.; Pang, H. 1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors. J. Power Sources 2015, 285, 385–392. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Hu, C.; Dou, J.; Xia, G.; Zhang, P.; Zheng, Z.; Pan, Y.; Yu, H.; Chen, C. Mixed-valent MnSiO3/C nanocomposite for high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 2019, 556, 239–248. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Jiang, H.; Hu, T.; Meng, C. In Situ Generated Ni3Si2O5(OH)4 on Mesoporous Heteroatom-Enriched Carbon Derived from Natural Bamboo Leaves for High-Performance Supercapacitors. ACS Appl. Energy Mater. 2018, 1, 3396–3409. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Yu, H.; Feng, T.; Pu, Y.; Liu, H.; Xiao, W.; Tian, L. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material. Nanoscale Res. Lett. 2017, 12, 325. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Jiang, H.; Meng, C. In-situ grown manganese silicate from biomass-derived heteroatom-doped porous carbon for supercapacitors with high performance. J. Colloid Interface Sci. 2019, 534, 142–155. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Wang, C.; Wang, Q.; Meng, C.; Wang, J. Rice husk-derived Mn3O4/manganese silicate/C nanostructured composites for high-performance hybrid supercapacitors. Inorg. Chem. Front. 2019, 6, 2788–2800. [Google Scholar] [CrossRef]
- Dong, F.; Liu, X.; Sun, X. Bimetallic Ni-Co Silicate Hollow Spheres with Controllable Morphology for the Application on Supercapacitor. ChemistrySelect 2019, 4, 5258–5263. [Google Scholar] [CrossRef]
- Tian, C.; Lu, Q.; Zhao, S. Monodispersed and hierarchical silica@manganese silicate core–shell spheres as potential electrodes for supercapacitor. J. Solid State Chem. 2019, 277, 475–483. [Google Scholar] [CrossRef]
- Yang, T.; Lu, Q.; Zhao, S. Monodispersed Silica@Nickel Silicate Hydroxide Core–Shell Spheres for Supercapacitor Electrodes. Phys. Status Solidi A 2019, 216, 1900395. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, Y.; Dong, X.; Mu, Y.; Meng, C. Manganese Silicate Nanosheets for Quasi-Solid-State Hybrid Supercapacitors. ACS Appl. Nano Mater. 2021, 4, 8173–8183. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, Y.; Dong, X.; Mu, Y.; Liu, X.; Meng, C. Layered silicate magadiite–derived three-dimensional honeycomb-like cobalt–nickel silicates as excellent cathode for hybrid supercapacitors. Mater. Today Chem. 2021, 22, 100550. [Google Scholar] [CrossRef]
- Cheng, W.; Rechberger, F.; Ilari, G.; Ma, H.; Lin, W.-I.; Niederberger, M. Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries. Chem. Sci. 2015, 6, 6908–6915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Jiang, J.; Ai, L. When Layered Nickel–Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces 2016, 8, 945–951. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Jiang, H.; Wang, Q.; Zheng, J.; Meng, C. Cobalt-Nickel Silicate Hydroxide on Amorphous Carbon Derived from Bamboo Leaves for Hybrid Supercapacitors. Chem. Eng. J. 2019, 375, 121938. [Google Scholar] [CrossRef]
- Qiu, C.; Ai, L.; Jiang, J. Layered Phosphate-Incorporated Nickel–Cobalt Hydrosilicates for Highly Efficient Oxygen Evolution Electrocatalysis. ACS Sustain. Chem. Eng. 2018, 6, 4492–4498. [Google Scholar] [CrossRef]
- Mueller, F.; Bresser, D.; Minderjahn, N.; Kalhoff, J.; Menne, S.; Krueger, S.; Winter, M.; Passerini, S. Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries. Dalton Trans. 2014, 43, 15013–15021. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Agyeman, D.A.; Park, M.; Tamakloe, W.; Yamauchi, Y.; Kang, Y.-M. CNT@Ni@Ni–Co silicate core–shell nanocomposite: A synergistic triple-coaxial catalyst for enhancing catalytic activity and controlling side products for Li–O2 batteries. J. Mater. Chem. A 2018, 6, 10447–10455. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Jiang, H.; Dong, X.; Meng, C.; Kou, Z. Coupled cobalt silicate nanobelt-on-nanobelt hierarchy structure with reduced graphene oxide for enhanced supercapacitive performance. J. Power Sources 2020, 448, 227407. [Google Scholar] [CrossRef]
- Rong, Q.; Long, L.-L.; Zhang, X.; Huang, Y.-X.; Yu, H.-Q. Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Appl. Energy 2015, 153, 63–69. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wang, T.; Li, P.; Wei, C.; Pang, H. Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for High-Performance Supercapacitors. Adv. Mater. Interfaces 2015, 2, 1400377. [Google Scholar] [CrossRef]
- Li, X.; Ding, S.; Xiao, X.; Shao, J.; Wei, J.; Pang, H.; Yu, Y. N,S co-doped 3D mesoporous carbon-Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 12774–12781. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Jiang, H.; Dong, X.; Zheng, J.; Meng, C. Synthesis of amorphous cobalt silicate nanobelts@manganese silicate core–shell structures as enhanced electrode for high-performance hybrid supercapacitors. J. Colloid Interface Sci. 2020, 561, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, Y.; Meng, C. Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 3830–3839. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Y.; Jing, X.; Jiang, H.; Hu, T.; Meng, C.; Huang, C.; Zhang, Y. Sandwich-like honeycomb Co2SiO4/rGO/honeycomb Co2SiO4 structures with enhanced electrochemical properties for high-performance hybrid supercapacitor. J. Power Sources 2021, 492, 229643. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Cheng, Y.; Tian, F.; Jiang, H.; Dong, X.; Meng, C. Fabrication and electrochemical properties of manganese dioxide coated on cobalt silicate nanobelts core-shell composites for hybrid supercapacitors. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 600, 124951. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Cheng, Y.; Zhao, W.; Chen, W.; Meng, C.; Huang, C. Synthesis of Co2SiO4/Ni(OH)2 core–shell structure as the supercapacitor electrode material with enhanced electrochemical properties. Mater. Lett. 2021, 282, 128774. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Y.; Zhang, Y.; Xu, Z.; Jiang, H.; Meng, C.; Huang, C. Synthesis of cobalt silicate nanosheets with mesoporous structure and high surface area as the promising electrode for high-performing hybrid supercapacitor. Electrochim. Acta 2021, 380, 138225. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Jiang, H.; Li, X.; Cheng, Y.; Meng, C. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: A potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem. Eng. J. 2019, 362, 818–829. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, C.; Zhuang, Z.; Shi, C.; Li, N.; Zhou, L.; Mai, L. Porous and Low-Crystalline Manganese Silicate Hollow Spheres Wired by Graphene Oxide for High-Performance Lithium and Sodium Storage. ACS Appl. Mater. Interfaces 2017, 9, 24584–24590. [Google Scholar] [CrossRef] [PubMed]
- Brousse, T.; Bélanger, D.; Long, J.W. To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhang, Y.; Wang, Q.; Jiang, H.; Liu, Y.; Lv, T.; Meng, C. Hydrothermal encapsulation of VO2(A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices. Dalton Trans. 2018, 47, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Y.; Xu, L.; Gao, Z.; Zheng, J.; Wang, Q.; Meng, C.; Wang, J. Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 2020, 382, 122844. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Zhao, Y.-Q.; Tao, F.; Li, H.-L. Electrochemical characteristics and impedance spectroscopy studies of nano-cobalt silicate hydroxide for supercapacitor. J. Power Sources 2006, 161, 723–729. [Google Scholar] [CrossRef]
Co-Based Silicates | Electrolyte | Potential | Capacitance | Cycle | Reference |
---|---|---|---|---|---|
CoSi/GO | 3 M KOH | −0.1–0.55 | 511 F g−1, 0.5 A g−1 | 84%, 10,000 cycles | [35] |
CoSi@MnSiO3 | 3 M KOH | −0.1–0.55 | 309 F·g−1, 0.5 A·g−1 | 64%, 10,000 cycles | [34] |
CoSi NN/RGO | 3 M KOH | −0.1–0.55 | 483 F·g−1, 0.5 A·g−1 | 58%, 10,000 cycles | [30] |
CoSi@MnO2 | 3 M KOH | −0.5–0.6 | 490.4 F·g−1, 1.0 A·g−1 | 45%, 5000 cycles | [37] |
Co3(Si2O5)2(OH)2 | 6 M KOH | 0.1–0.55 V | 237 F g−1, 5.7 mA cm−2 | 95%, 150 cycles | [45] |
Co3Si2O5(OH)4 | 6 M KOH | 0–0.5 V | 570 F g−1, 0.7 A g−1 | — | [32] |
CoSi | 3 M KOH | 0–0.5 | 453 F·g−1, 0.5A·g−1 | 89%, 10,000 cycles | [40] |
(Ni, Co)3Si2O5(OH)4/C | 3 M KOH | −0.8–0.6 | 226 F·g−1, 0.5 A·g−1 | 99%, 10,000 cycles | [26] |
CoSi@Ni(OH)2 | 3 M KOH | −0.1–0.55 V | 1101 F·g−1, 1.0 A·g−1 | 46%, 4000 cycles | [38] |
C/Co3Si2O5(OH)4 | 3 M KOH | −0.05–0.4 | 1600 F g−1, 1 A g−1 | 91%, 6000 cycles | [33] |
Co2.18Ni0.82Si2O5(OH)4 | 3 M KOH | 0–0.5 | 981 F g−1, 0.7 A g−1 | 99%, 6000 cycles | [13] |
(Ni, Co)3Si2O5(OH)4 | 1 M KOH | 0–0.5 V | 144 F g−1, 1 A g−1 | 99.3%, 10,000 cycles | [31] |
CoSi | 6 M KOH | 0–0.5 | 214 F·g−1,1 A·g−1 | 83%, 10,000 cycles | [12] |
e-CoSi | 6 M KOH | 0–0.5 | 267 F·g−1,1 A·g−1 | 90%, 10,000 cycles | [12] |
PCoSi | 3 M KOH | −0.1–0.55 | 437 F·g−1, 0.5 A·g−1 | 84%, 10,000 cycles | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Zhao, Y.; Zhang, Y.; Dong, X.; Meng, C.; Liu, X. Fabrication of Phosphorus-Doped Cobalt Silicate with Improved Electrochemical Properties. Molecules 2021, 26, 6240. https://doi.org/10.3390/molecules26206240
Ji J, Zhao Y, Zhang Y, Dong X, Meng C, Liu X. Fabrication of Phosphorus-Doped Cobalt Silicate with Improved Electrochemical Properties. Molecules. 2021; 26(20):6240. https://doi.org/10.3390/molecules26206240
Chicago/Turabian StyleJi, Jie, Yunfeng Zhao, Yifu Zhang, Xueying Dong, Changgong Meng, and Xiaoyang Liu. 2021. "Fabrication of Phosphorus-Doped Cobalt Silicate with Improved Electrochemical Properties" Molecules 26, no. 20: 6240. https://doi.org/10.3390/molecules26206240
APA StyleJi, J., Zhao, Y., Zhang, Y., Dong, X., Meng, C., & Liu, X. (2021). Fabrication of Phosphorus-Doped Cobalt Silicate with Improved Electrochemical Properties. Molecules, 26(20), 6240. https://doi.org/10.3390/molecules26206240