Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach
Abstract
:1. Introduction
2. Results
2.1. Statistical Analysis Approach
2.2. Volatile Compounds
2.3. Visual and Gustatory Descriptors
2.4. Overall Quality Judgment
3. Discussion
4. Materials and Methods
4.1. Sampling and Winemaking
4.2. Volatile Profile by HS-SPME-GC/MS
4.3. HPLC-DAD and HPLC-MS Analysis of Non-Volatile Compounds
4.4. Descriptive Sensory Analysis
4.5. Data Analysis
4.5.1. Principal Component Analysis and ANOVA
4.5.2. Partial Least Square Regression (PLS)
4.5.3. Principal Component Regression (PCR)
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Registro Nazionale delle Varietà di Vite; on-line database published by the public institution “Ministero delle Politiche Agricole, Alimentari e Forestali”—CREA SNCV. 2021. Available online: http://catalogoviti.politicheagricole.it/catalogo.php (accessed on 14 July 2021).
- Vini Alto Adige, Pinot Bianco-Vini Alto Adige Südtirol. Available online: https://www.wein-online.it/Suedtiroler-Sauvignon-Vigna-Oberkerschbaum-DOC (accessed on 9 August 2021).
- Rapp, A. Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Nahr. Food 1998, 42, 351–363. [Google Scholar] [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Riberéau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of enology. In The Microbiology of Wine and Vinifications; John Wiley & Sons: Chichester, UK, 2000; Volume 1. [Google Scholar]
- Aleixandre-Tudo, J.L.; Weightman, C.; Panzeri, V.; Nieuwoudt, H.H.; du Toit, W.J. Effect of skin contact before and during alcoholic fermentation on the chemical and sensory profile of South African Chenin blanc white wines. S. Afr. J. Enol. Vitic. 2015, 36, 366–377. [Google Scholar] [CrossRef]
- Aznar, M.; López, R.; Cacho, J.; Ferreira, V. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models. J. Agric. Food Chem. 2003, 51, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Cabaroglu, T.; Canbas, A.; Baumes, R.; Bayonove, C.; Lepoutre, J.P.; Günata, Z. Aroma composition of a white wine of Vitis vinifera L. cv. Emir as affected by skin contact. J. Food Sci. 1997, 62, 680–683. [Google Scholar] [CrossRef]
- García-Romero, E.; Pérez-Coello, M.; Cabezudo, M.D.; Sánchez-Muñoz, G.; Martín-Alvarez, P.J. Fruity flavor increase of Spanish Airén white wines made by brief fermentation skin contact. Food Sci. Technol. Int. 1999, 5, 149–157. [Google Scholar] [CrossRef]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Lepoutre, J.P.; Gunata, Z. Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince. Food Control. 2004, 17, 75–82. [Google Scholar] [CrossRef]
- Philipp, C.; Sari, S.; Eder, P.; Patzl-Fischerleitner, E.; Eder, R. Austrian Pinot Blanc wines: Typicity, wine styles and the influence of different oenological decisions on the volatile profile of wines. BIO Web Conf. 2019, 15, 02005. [Google Scholar] [CrossRef]
- Philipp Christian Eder, P.; Brandes, W.; Patzl-Fischerleitner, E.; Eder, R. The Pear Aroma in the Austrian Pinot Blanc Wine Variety: Evaluation by Means of Sensorial-Analytical-Typograms with regard to Vintage, Wine Styles, and Origin of Wines. J. Food Qual. 2018, 2018, 5123280. [Google Scholar] [CrossRef]
- Dupas de Matos, A.; Longo, E.; Chiotti, D.; Pedri, U.; Eisenstecken, D.; Sanoll, C.; Robatscher, P.; Boselli, E. Pinot Blanc: Impact of the winemaking variables on the evolution of the phenolic, volatile and sensory profiles. Foods 2020, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Tournier, C.; Sulmont-Rossé, C.; Guichard, E. Flavour perception: Aroma, taste and texture interactions. Food 2007, 1, 246–257. [Google Scholar]
- Poinot, P.; Arvisenet, G.; Ledauphin, J.; Gaillard, J.L.; Prost, C. How can aroma-related cross-modal interactions be analysed? A review of current methodologies. Food Qual. Prefer. 2013, 28, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares; Multivariate Analysis; Academic Press: Cambridge, MA, USA, 1966; pp. 391–420. [Google Scholar]
- Lawless, H. Dimensions of sensory quality: A critique. Food Qual. Prefer. 1995, 6, 191–199. [Google Scholar] [CrossRef]
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual. Prefer. 2007, 18, 997–1007. [Google Scholar] [CrossRef]
- Moskowitz, H.R. Food quality: Conceptual and sensory aspects. Food Qual. Prefer. 1995, 6, 157–162. [Google Scholar] [CrossRef]
- Kraggerud, H.; Solem, S.; Abrahamsen, R.K. Quality scoring—A tool for sensory evaluation of cheese? Food Qual. Prefer. 2012, 26, 221–230. [Google Scholar] [CrossRef]
- Maynard, A.A.; Pangborn, R.M.; Roessler, E.B. Principles of Sensory Evaluation of Food, 1st ed.; Academic Press: Cambridge, MA, USA, 1965. [Google Scholar] [CrossRef]
- Bodyfelt, F.W.; Drake, M.A.; Rankin, S.A. Developments in dairy foods sensory science and education: From student contests to impact on product quality. Int. Dairy J. 2008, 18, 729–734. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.C.; de Revel, G. Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction-gas chromatography–mass spectrometry. Food Chem. 2010, 121, 1236–1245. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021; p. 20899. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- XLSTAT Help. 2020. Available online: https://www.xlstat.com (accessed on 23 April 2021).
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Bastien, P.; Esposito Vinzi, V.; Tenenhaus, M. PLS Generalised Regression. Comput. Stat. Data Anal. 2005, 48, 17–46. [Google Scholar] [CrossRef]
Floral | Apple | Pear | Tropical Fruit | Dried Fruit | Fresh Vegetative | Spicy | Cleanness | Off-Odours | |
---|---|---|---|---|---|---|---|---|---|
Adj.-R2 | 0.552 | 0.725 | 0.550 | 0.455 | 0.779 | 0.647 | 0.681 | 0.696 | 0.687 |
RMSE | 0.339 | 0.312 | 0.509 | 0.523 | 0.260 | 0.403 | 0.214 | 0.134 | 0.171 |
Statistic | Comp.1 | Comp.2 | Comp.3 | Comp.4 | Comp.5 | Comp.6 |
---|---|---|---|---|---|---|
Q2 (cum) | 0.241 | 0.239 | 0.252 | 0.332 | 0.347 | 0.347 |
R2Y (cum) | 0.352 | 0.480 | 0.553 | 0.681 | 0.728 | 0.761 |
R2X (cum) | 0.180 | 0.378 | 0.634 | 0.703 | 0.786 | 0.862 |
Yellow Colour | Sweetness | Sourness | Saltiness | Bitterness | Astringency | Warmness | |
---|---|---|---|---|---|---|---|
R2 | 0.778 | 0.679 | 0.876 | 0.869 | 0.745 | 0.532 | 0.846 |
Std. deviation | 0.395 | 0.267 | 0.215 | 0.263 | 0.339 | 0.269 | 0.399 |
RMSE | 0.329 | 0.222 | 0.179 | 0.220 | 0.283 | 0.225 | 0.333 |
Descriptors | Definition |
---|---|
Visual evaluation | |
Clarity | Absence of veiling and suspension in the wine |
Colour tonality | Intensity of yellow colour |
Olfactory evaluation | |
Overall intensity | Total smell intensity perceived through the nose |
Floral | Rose, elder aromas |
Apple | Apple aroma |
Pear | Pear aroma |
Tropical fruit | Banana, pineapple, mango aromas |
Dried fruit | Raisin, dried apricot, plum aromas |
Fresh vegetative | Mint, sage aromas |
Spicy | Liquorice, black pepper aromas |
Cleanness | Absence of faults/taints odours |
Off-odours | Presence of faults/taints odours |
Gustatory evaluation | |
Sweetness | Taste of sucrose |
Sourness | Taste of tartaric acid solution |
Saltiness | Taste of sodium chloride solution |
Bitterness | Taste of caffeine solution |
Astringency | Sensation related to drying in-mouth |
Warmness | Sensation of alcohol (hot) in-mouth |
Overall quality judgment | Objective assessment for the wine quality considering the sensory descriptors themselves |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poggesi, S.; Dupas de Matos, A.; Longo, E.; Chiotti, D.; Pedri, U.; Eisenstecken, D.; Robatscher, P.; Boselli, E. Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach. Molecules 2021, 26, 6245. https://doi.org/10.3390/molecules26206245
Poggesi S, Dupas de Matos A, Longo E, Chiotti D, Pedri U, Eisenstecken D, Robatscher P, Boselli E. Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach. Molecules. 2021; 26(20):6245. https://doi.org/10.3390/molecules26206245
Chicago/Turabian StylePoggesi, Simone, Amanda Dupas de Matos, Edoardo Longo, Danila Chiotti, Ulrich Pedri, Daniela Eisenstecken, Peter Robatscher, and Emanuele Boselli. 2021. "Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach" Molecules 26, no. 20: 6245. https://doi.org/10.3390/molecules26206245
APA StylePoggesi, S., Dupas de Matos, A., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., Robatscher, P., & Boselli, E. (2021). Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach. Molecules, 26(20), 6245. https://doi.org/10.3390/molecules26206245