Application of a New Dehydroascorbic Acid Reducing Agent in the Analysis of Vitamin C Content in Food
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reduction Properties
2.2. Method Validation
2.2.1. Precision
2.2.2. Accuracy
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Procedure of Testing the Reduction Properties
3.4. Sample Preparation for Analysis
3.5. HPLC Analysis
3.6. Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Collie, J.T.B.; Greaves, R.F.; Jones, O.A.H.; Eastwood, G.; Bellomo, R. Vitamin C Measurement in Critical Illness: Challenges, Methodologies and Quality Improvements. Clin. Chem. Lab. Med. 2020, 58, 460–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, S.; Mahajan, M.; Jain, P. Non-Spectrophotometric Methods for the Determination of Vitamin C. Anal. Chim. Acta 2000, 417, 1–14. [Google Scholar] [CrossRef]
- Novakova, L.; Solich, P.; Solichova, D. HPLC Methods for Simultaneous Determination of Ascorbic and Dehydroascorbic Acids. TrAC-Trends Anal. Chem. 2008, 27, 942–958. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cámara-Hurtado, M.; Díez-Marqués, C.; Torija-Isasa, M.E. Comparison of High-Performance Liquid Chromatography and Spectrofluorimetry for Vitamin C Analysis of Green Beans (Phaseolus Vulgaris L.). Eur. Food Res. Technol. 2000, 210, 220–225. [Google Scholar] [CrossRef]
- Dhariwal, K.R.; Washko, P.W.; Levine, M. Determination of Dehydroascorbic Acid Using High-Performance Liquid Chromatography with Coulometric Electrochemical Detection. Anal. Biochem. 1990, 189, 18–23. [Google Scholar] [CrossRef]
- Washko, P.; Rotrosen, D.; Levine, M. Ascorbic Acid Transport and Accumulation in Human Neutrophils. J. Biol. Chem. 1989, 264, 18996–19002. [Google Scholar] [CrossRef]
- Deutsch, J.C.; Santhosh-Kumar, C.R. Dehydroascorbic Acid Undergoes Hydrolysis on Solubilization Which Can Be Reversed with Mercaptoethanol. J. Chromatogr. A 1996, 724, 271–278. [Google Scholar] [CrossRef]
- Schell, D.A.; Bode, A.M. Measurement of Ascorbic Acid and Dehydroascorbic Acid in Mammalian Tissue Utilizing HPLC and Electrochemical Detection. Biomed. Chromatogr. 1993, 7, 267–272. [Google Scholar] [CrossRef]
- Iwase, H.; Ono, I. Determination of Ascorbic Acid and Dehydroascorbic Acid in Juices by High-Performance Liquid Chromatography with Electrochemical Detection Using l-Cysteine as Precolumn Reluctant. J. Chromatogr. A 1993, 654, 215–220. [Google Scholar] [CrossRef]
- Herrero-Martínez, J.M.; Simó-Alfonso, E.; Deltoro, V.I.; Calatayud, A.; Ramis-Ramos, G. Determination Ofl-Ascorbic Acid and Total Ascorbic Acid in Vascular and Nonvascular Plants by Capillary Zone Electrophoresis. Anal. Biochem. 1998, 265, 275–281. [Google Scholar] [CrossRef]
- Chiari, M.; Nesi, M.; Carrea, G.; Righetti, P.G. Determination of Total Vitamin C in Fruits by Capillary Zone Electrophoresis. J. Chromatogr. A 1993, 645, 197–200. [Google Scholar] [CrossRef]
- Gibbons, E.; Allwood, M.C.; Neal, T.; Hardy, G. Degradation of Dehydroascorbic Acid in Parenteral Nutrition Mixtures. J. Pharm. Biomed. Anal. 2001, 25, 605–611. [Google Scholar] [CrossRef]
- Gökmen, V.; Kahraman, N.; Demir, N.; Acar, J. Enzymatically Validated Liquid Chromatographic Method for the Determination of Ascorbic and Dehydroascorbic Acids in Fruit and Vegetables. J. Chromatogr. A 2000, 881, 309–316. [Google Scholar] [CrossRef]
- Hernández, Y.; Lobo, M.G.; González, M. Determination of Vitamin C in Tropical Fruits: A Comparative Evaluation of Methods. Food Chem. 2006, 96, 654–664. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Hernandez-Jover, T.; Martiin-Belloso, O. Comparative Evaluation of UV-HPLC Methods and Reducing Agents to Determine Vitamin C in Fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Castellote, A.I.; López-Sabater, M.C. Effect of Cold Storage on Vitamins C and E and Fatty Acids in Human Milk. Food Chem. 2008, 106, 65–70. [Google Scholar] [CrossRef]
- Sawamura, M.; Ooishi, S.; Li, Z.-F. Reduction of Dehydroascorbic Acid by Sodium Hydrosulphide and Liquid Chromatographic Determination of Vitamin C in Citrus Juices. J. Sci. Food Agric. 1990, 53, 279–281. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Loft, S.; Poulsen, H.E. Determination of Ascorbic Acid and Dehydroascorbic Acid in Plasma by High-Performance Liquid Chromatography with Coulometric Detection—Are They Reliable Biomarkers of Oxidative Stress? Anal. Biochem. 1995, 229, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Uchiki, T.; Iwama, M.; Kishimoto, Y.; Takahashi, R.; Ishigami, A. Determination of Dehydroascorbic Acid in Mouse Tissues and Plasma by Using Tris(2-Carboxyethyl)Phosphine Hydrochloride as Reductant in Metaphosphoric Acid/Ethylenediaminetetraacetic Acid Solution. Biol. Pharm. Bull. 2010, 33, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechtersbach, L.; Cigić, B. Reduction of Dehydroascorbic Acid at Low PH. J. Biochem. Biophys. Methods 2007, 70, 767–772. [Google Scholar] [CrossRef]
- Mazurek, A.; Jamroz, J. Precision of Dehydroascorbic Acid Quantitation with the Use of the Subtraction Method—Validation of HPLC–DAD Method for Determination of Total Vitamin C in Food. Food Chem. 2015, 173, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Tang, J.; Tu, X.; Chen, W. Determination of Ascorbic Acid, Total Ascorbic Acid, and Dehydroascorbic Acid in Bee Pollen Using Hydrophilic Interaction Liquid Chromatography-Ultraviolet Detection. Molecules 2020, 25, 5696. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.E.; Winther, J.R. An Introduction to Methods for Analyzing Thiols and Disulfides: Reactions, Reagents, and Practical Considerations. Anal. Biochem. 2009, 394, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K. Meyler’s Side Effects of Drugs the International Encyclopedia of Adverse Drug Reactions and Interactions, 6th ed.; Elsevier Science: Amsterdam, The Netherlands, 2016; ISBN 978-0-444-53716-4. [Google Scholar]
- Fedurov, V.V.; Epshteĭn, M.M. Modification of a Method of Determining Dehydroascorbic and Diketogulonic Acids. Ukr. Biokhim. Zhurnal 1974, 46, 403–406. [Google Scholar] [PubMed]
- Kozlov, E.I.; L’vova, M.S. Reaction of Dehydroascorbic Acid with Unithiol and Some of Its Kinetic Regularities. Khimiko-Farmatsevticheskii Zhurnal 1976, 10, 91–96. [Google Scholar] [CrossRef]
- AOAC Single Laboratory Validation Acceptance Criteria (Chemistry Methods). Available online: http://www.aoac.org/dietsupp6/Dietary-Supplement-web-site/SLV_criteria.pdf (accessed on 12 February 2011).
- Mazurek, A.; Włodarczyk-Stasiak, M.; Pankiewicz, U.; Kowalski, R.; Jamroz, J. Development and Validation of a Differential Pulse Polarography Method for Determination of Total Vitamin C and Dehydroascorbic Acid Contents in Foods. LWT 2020, 118, 108828. [Google Scholar] [CrossRef]
HPLC-TCEP | HPLC-THP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Analyte | Mean (mg/100 g) | s * (mg/100 g) | CV | H * | Mean (mg/100 g) | s * (mg/100 g) | CV | H * | F * | P * | U * | Accuracy |
Multivegetable juice | AA | 35.75 | 1.85 | 5.19 | 0.79 | 34.00 | 1.63 | 4.78 | 0.72 | 1.30 | 0.95 | 0.14 | yes |
TC | 38.07 | 1.59 | 4.18 | 0.64 | 36.64 | 0.78 | 2.13 | 0.32 | 4.14 | 0.96 | 0.09 | yes | |
DHAA | 2.31 | 0.87 | 37.78 | 3.79 | 2.64 | 1.42 | 53.70 | 5.49 | 2.62 | 1.14 | 1.34 | yes | |
Orange juice | AA | 17.80 | 0.56 | 3.12 | 0.43 | 19.48 | 0.73 | 3.77 | 0.52 | 1.75 | 1.09 | 0.10 | yes |
TC | 23.43 | 0.85 | 3.62 | 0.51 | 25.06 | 0.72 | 2.87 | 0.41 | 1.39 | 1.07 | 0.09 | yes | |
DHAA | 5.62 | 1.28 | 22.71 | 2.60 | 5.58 | 1.20 | 21.44 | 2.45 | 1.14 | 0.99 | 0.62 | yes | |
Grapefruit juice | AA | 28.08 | 0.92 | 3.28 | 0.48 | 28.48 | 0.63 | 2.20 | 0.32 | 2.16 | 1.01 | 0.08 | yes |
TC | 31.97 | 0.84 | 2.63 | 0.39 | 31.81 | 1.23 | 3.88 | 0.58 | 2.16 | 1.00 | 0.09 | yes | |
DHAA | 3.89 | 1.34 | 34.54 | 3.75 | 3.33 | 1.31 | 39.46 | 4.18 | 1.04 | 0.86 | 1.04 | yes | |
Parsley tops | AA | 209.54 | 9.14 | 4.36 | 0.86 | 214.91 | 10.00 | 4.65 | 0.92 | 1.20 | 1.03 | 0.13 | yes |
TC | 226.03 | 10.88 | 4.81 | 0.96 | 235.44 | 6.87 | 2.92 | 0.59 | 2.50 | 1.04 | 0.11 | yes | |
DHAA | 16.50 | 4.90 | 29.73 | 4.01 | 20.53 | 10.24 | 49.87 | 6.95 | 4.36 | 1.24 | 1.23 | yes | |
Tomato | AA | 13.73 | 0.99 | 7.18 | 0.94 | 14.24 | 0.51 | 3.61 | 0.48 | 3.67 | 1.04 | 0.16 | yes |
TC | 16.35 | 0.70 | 4.29 | 0.58 | 16.69 | 1.09 | 6.51 | 0.88 | 2.39 | 1.02 | 0.16 | yes | |
DHAA | 2.61 | 1.41 | 53.97 | 5.51 | 2.45 | 1.14 | 46.48 | 4.70 | 1.53 | 0.94 | 1.43 | yes | |
Broccoli | AA | 97.18 | 2.93 | 3.01 | 0.53 | 103.41 | 4.33 | 4.19 | 0.74 | 2.19 | 1.06 | 0.10 | yes |
TC | 115.36 | 2.44 | 2.12 | 0.38 | 115.02 | 3.73 | 3.24 | 0.58 | 2.33 | 1.00 | 0.08 | yes | |
DHAA | 18.18 | 4.20 | 23.08 | 3.16 | 11.61 | 5.42 | 46.73 | 5.97 | 1.67 | 0.64 | 0.92 | yes | |
Cauliflower | AA | 74.71 | 1.99 | 2.66 | 0.45 | 79.86 | 2.21 | 2.77 | 0.47 | 1.24 | 1.07 | 0.08 | yes |
TC | 98.30 | 2.52 | 2.56 | 0.45 | 103.71 | 4.10 | 3.95 | 0.70 | 2.65 | 1.06 | 0.10 | yes | |
DHAA | 23.58 | 2.38 | 10.08 | 1.43 | 23.85 | 6.04 | 25.33 | 3.61 | 6.45 | 1.01 | 0.55 | yes | |
Banana | AA | 12.93 | 0.77 | 5.97 | 0.78 | 14.10 | 0.54 | 3.83 | 0.50 | 2.04 | 1.09 | 0.14 | yes |
TC | 16.71 | 0.63 | 3.79 | 0.51 | 17.40 | 0.56 | 3.24 | 0.44 | 1.27 | 1.04 | 0.10 | yes | |
DHAA | 3.79 | 1.11 | 29.30 | 3.16 | 3.30 | 0.69 | 20.97 | 2.22 | 2.57 | 0.87 | 0.74 | yes | |
Lemon | AA | 86.87 | 2.96 | 3.41 | 0.59 | 88.00 | 2.91 | 3.31 | 0.57 | 1.03 | 1.01 | 0.10 | yes |
TC | 90.59 | 3.47 | 3.83 | 0.67 | 91.45 | 3.62 | 3.96 | 0.69 | 1.09 | 1.01 | 0.11 | yes | |
DHAA | 3.72 | 2.15 | 57.75 | 6.22 | 3.45 | 3.08 | 89.14 | 9.49 | 2.05 | 0.93 | 2.09 | yes | |
Cucumber | AA | 6.16 | 0.41 | 6.62 | 0.77 | 6.51 | 0.33 | 5.06 | 0.59 | 1.53 | 1.06 | 0.17 | yes |
TC | 7.13 | 0.44 | 6.13 | 0.73 | 7.35 | 0.22 | 2.93 | 0.35 | 4.11 | 1.03 | 0.13 | yes | |
DHAA | 0.98 | 0.33 | 33.90 | 2.99 | 0.84 | 0.33 | 39.05 | 3.36 | 1.01 | 0.86 | 1.03 | yes | |
Instant kissel | AA | 90.55 | 1.91 | 2.11 | 0.37 | 90.89 | 1.95 | 2.14 | 0.37 | 1.04 | 1.00 | 0.06 | yes |
TC | 92.92 | 2.51 | 2.70 | 0.47 | 93.78 | 2.41 | 2.57 | 0.45 | 1.09 | 1.01 | 0.07 | yes | |
DHAA | 2.36 | 1.44 | 60.86 | 6.12 | 2.89 | 0.63 | 21.77 | 2.26 | 5.22 | 1.22 | 1.19 | yes | |
Multivitamin syrup | AA | 974.10 | 20.99 | 2.15 | 0.54 | 975.20 | 24.82 | 2.55 | 0.63 | 1.40 | 1.00 | 0.07 | yes |
TC | 1023.39 | 18.21 | 1.78 | 0.45 | 1021.33 | 22.79 | 2.23 | 0.56 | 1.57 | 1.00 | 0.06 | yes | |
DHAA | 49.29 | 31.07 | 63.03 | 10.0 | 46.12 | 36.68 | 79.52 | 12.5 | 1.39 | 0.94 | 2.02 | yes | |
Infant milk powder | AA | 87.44 | 3.29 | 3.76 | 0.65 | 90.67 | 3.31 | 3.65 | 0.64 | 1.01 | 1.04 | 0.10 | yes |
TC | 95.91 | 3.72 | 3.88 | 0.68 | 97.75 | 2.98 | 3.05 | 0.54 | 1.56 | 1.02 | 0.10 | yes | |
DHAA | 8.48 | 1.28 | 15.14 | 1.85 | 7.08 | 3.71 | 52.35 | 6.21 | 8.35 | 0.84 | 1.01 | yes | |
BCR431 | AA | 398.60 | 12.02 | 3.02 | 0.66 | 390.14 | 6.14 | 1.57 | 0.34 | 3.83 | 0.98 | 0.07 | yes |
TC | 478.48 | 14.88 | 3.11 | 0.70 | 490.52 | 10.45 | 2.13 | 0.48 | 2.03 | 1.03 | 0.08 | yes | |
DHAA | 79.87 | 16.96 | 21.23 | 3.63 | 100.38 | 11.62 | 11.58 | 2.05 | 2.13 | 1.26 | 0.46 | yes |
BCR 431 | |||||||
---|---|---|---|---|---|---|---|
XCRM * | uCRM * | Xm * | um * | Δm * | UΔ * | Accuracy | |
(mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | ||
483 | 9.8 | HPLC-TCEP | 478 | 6.1 | 4.5 | 23.1 | yes |
HPLC-THP | 491 | 4.3 | 7.5 | 21.4 | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, A.; Włodarczyk-Stasiak, M. Application of a New Dehydroascorbic Acid Reducing Agent in the Analysis of Vitamin C Content in Food. Molecules 2021, 26, 6263. https://doi.org/10.3390/molecules26206263
Mazurek A, Włodarczyk-Stasiak M. Application of a New Dehydroascorbic Acid Reducing Agent in the Analysis of Vitamin C Content in Food. Molecules. 2021; 26(20):6263. https://doi.org/10.3390/molecules26206263
Chicago/Turabian StyleMazurek, Artur, and Marzena Włodarczyk-Stasiak. 2021. "Application of a New Dehydroascorbic Acid Reducing Agent in the Analysis of Vitamin C Content in Food" Molecules 26, no. 20: 6263. https://doi.org/10.3390/molecules26206263
APA StyleMazurek, A., & Włodarczyk-Stasiak, M. (2021). Application of a New Dehydroascorbic Acid Reducing Agent in the Analysis of Vitamin C Content in Food. Molecules, 26(20), 6263. https://doi.org/10.3390/molecules26206263