Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties
Abstract
:1. Introduction
2. Results
2.1. Percentage Yield of Essential Oil and Chemical Composition
2.2. Anti-Microbial Screening of the Leaf and Flower Essential Oils of C. verum
2.3. Efficacy of C. verum Essential Oils as Possible Larvicidal Agent
2.4. Insecticide Properties of the Leaf and Flower Essential Oils of C. verum
2.5. Phytotoxicity of Essential Oil on Germinating Seeds
3. Discussion
4. Materials and Methods
4.1. Plant Materials Collection, Essential Oil Extraction, and Phytochemical Analysis by GC-MS
4.2. Antibacterial Activity of the C. verum Leaf and Flower Essential Oil
4.3. Larvicidal Potential of Essential Oils from the Leaves and Flowers of C. verum
4.4. Insecticidal Potential of the Leaf and Flower Essential Oil of C. verum
4.5. Phytotoxic Potential of the Leaf and Flower Essential Oil of C. verum
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- dos Santos, E.; Leitão, M.M.; Ito, C.N.A.; Silva-Filho, S.E.; Arena, A.C.; Silva-Comar, F.M.D.S.; Cuman, R.K.N.; Oliveira, R.J.; Formagio, A.S.N.; Kassuya, C.A.L. Analgesic and anti-inflammatory articular effects of essential oil and camphor isolated from Ocimum kilimandscharicum Gürke leaves. J. Ethnopharmacol. 2021, 269, 113697. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Sasidharan, A.; Job, J.T.; Rajagopal, R.; Alfarhan, A.; Kim, Y.O.; Kim, H.-J. Mango ginger (Curcuma amada Roxb.) rhizome essential oils as source of environmental friendly biocides: Comparison of the chemical composition, antibacterial, insecticidal and larvicidal properties of essential oils extracted by different methods. Environ. Res. 2021, 202, 111718. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, K.; Zhang, K.; Zhang, J.; Fu, J.; Li, J.; Wang, G.; Qiu, Z.; Wang, X.; Li, J. Antibacterial Activity of Cinnamomum camphora Essential Oil on Escherichia coli During Planktonic Growth and Biofilm Formation. Front. Microbiol. 2020, 11, 561002. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.G.; Silva, K.E.; Croda, J.; Simionatto, S. Antibacterial activity of Cinnamomum cassia L. essential oil in a carbapenem- and polymyxin-resistant Klebsiella aerogenes strain. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200032. [Google Scholar] [CrossRef] [PubMed]
- Netopilova, M.; Houdkova, M.; Urbanova, K.; Rondevaldova, J.; van Damme, P.; Kokoska, L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020, 129, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Akrami, S.; Amin, M.; Saki, M. In vitro evaluation of the antibacterial effects of Cinnamomum zeylanicum essential oil against clinical multidrug-resistant Shigella isolates. Mol. Biol. Rep. 2021, 48, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.G.; Queiroz, J.; Silva, K.E.D.; Vasconcelos, P.C.P.; Croda, J.; Simionatto, S. Synergistic effects of Cinnamomum cassia L. essential oil in combination with polymyxin B against carbapenemase-producing Klebsiella pneumoniae and Serratia marcescens. PLoS ONE 2020, 15, e0236505. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Krishnan, T.; Chan, K.-G.; Lim, S.H.E. Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain. J. Microbiol. Biotechnol. 2015, 25, 1299–1306. [Google Scholar] [CrossRef]
- Hurtado, R.; Peltroche, N.; Mauricio, F.; Gallo, W.; Alvítez-Temoche, D.; Vilchez, L.; Mayta-Tovalino, F. Antifungal Efficacy of Four Different Concentrations of the Essential Oil of Cinnamomum zeylanicum (Canela) against Candida albicans: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2020, 10, 724–730. [Google Scholar] [PubMed]
- Giordani, R.; Regli, P.; Kaloustian, J.; Portugal, H. Potentiation of antifungal activity of amphotericin B by essential oil fromCinnamomum cassia. Phytother. Res. 2006, 20, 58–61. [Google Scholar] [CrossRef]
- Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. Investigation of the antifungal activity and mode of action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus essential oils. Molecules 2018, 23, 1116. [Google Scholar] [CrossRef] [Green Version]
- Dang, K.; Doggett, S.L.; Singham, G.V.; Lee, C.-Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites Vectors 2017, 10, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Farnsworth, D.; A Hamby, K.; Bolda, M.; E Goodhue, R.; Williams, J.C.; Zalom, F.G. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest Manag. Sci. 2017, 73, 1083–1090. [Google Scholar] [CrossRef] [Green Version]
- Nopsa, J.F.H.; Daglish, G.J.; Hagstrum, D.W.; Leslie, J.F.; Phillips, T.W.; Scoglio, C.; Thomas-Sharma, S.; Walter, G.H.; Garrett, K.A. Ecological Networks in Stored Grain: Key Postharvest Nodes for Emerging Pests, Pathogens, and Mycotoxins. Bioscience 2015, 65, 985–1002. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Yaseen, M.; Kausar, T.; Praween, B.; Shah, S.J.; Jan, Y.; Shekhawat, S.S.; Malik, M.; Azad, Z.R.A.A. Insect Pest Infestation During Storage of Cereal Grains, Pulses and Oilseeds. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 209–234. [Google Scholar]
- Jagadeesan, R.; Singarayan, V.T.; Chandra, K.; Ebert, P.R.; Nayak, M.K. Potential of Co-Fumigation with Phosphine (PH3) and Sulfuryl Fluoride (SO2F2) for the Management of Strongly Phosphine-Resistant Insect Pests of Stored Grain. J. Econ. Èntomol. 2018, 111, 2956–2965. [Google Scholar] [CrossRef]
- Huang, F.; Subramanyam, B. Management of five stored-product insects in wheat with pirimiphos-methyl and pirimiphos-methyl plus synergized pyrethrins. Pest Manag. Sci. 2005, 61, 356–362. [Google Scholar] [CrossRef]
- Alavanja, M.C.R.; Hofmann, J.; Lynch, C.F.; Hines, C.J.; Barry, K.H.; Barker, J.; Buckman, D.W.; Thomas, K.; Sandler, D.P.; Hoppin, J.; et al. Non-Hodgkin Lymphoma Risk and Insecticide, Fungicide and Fumigant Use in the Agricultural Health Study. PLoS ONE 2014, 9, e109332. [Google Scholar] [CrossRef]
- van de Sijpe, P.; Lucas, D.; Canals, M.L.; Jensen, O. Acute occupational phosphine intoxications in the maritime shipping sector: Belgian and French reported cases. Int. Marit. Health 2020, 71, 151–159. [Google Scholar] [CrossRef]
- Park, M.-G.; Choi, J.; Hong, Y.-S.; Park, C.G.; Kim, B.-G.; Lee, S.-Y.; Lim, H.-J.; Mo, H.-H.; Lim, E.; Cha, W. Negative effect of methyl bromide fumigation work on the central nervous system. PLoS ONE 2020, 15, e0236694. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.J.; Leong, Y.Q.; Barhanuddin, M.F.H.B.; Wong, S.T.; Wong, S.F.; Mak, J.W.; Ahmad, R.B. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasit Vectors 2021, 14, 315. [Google Scholar] [CrossRef]
- Elmassry, M.M.; Piechulla, B. Volatilomes of Bacterial Infections in Humans. Front. Neurosci. 2020, 14, 257. [Google Scholar] [CrossRef]
- Culyba, M.J.; Van Tyne, D. Bacterial evolution during human infection: Adapt and live or adapt and die. PLoS Pathog. 2021, 17, e1009872. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Gorbach, S.L. Bacterial Infections: Overview. Int. Encycl. Public Health 2008, 273–282. [Google Scholar] [CrossRef]
- Narladkar, B.W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Veter-World 2018, 11, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Fatma, F.; Verma, S.; Kamal, A.; Srivastava, A. Phytotoxicity of pesticides mancozeb and chlorpyrifos: Correlation with the antioxidative defence system in Allium cepa. Physiol. Mol. Biol. Plants 2017, 24, 115–123. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Unnikrishnan, K.; Jose, B.; Ramesh, V.; Rajagopal, R.; Alfarhan, A.; Al-Ansari, A. Analysis of the chemical composition of root essential oil from Indian Sarsaparilla (Hemidesmus indicus) and its application as an ecofriendly insecticide and pharmacological agent. Saudi J. Bio. Sci. 2021. [Google Scholar] [CrossRef]
- Lobo, A.P.; da Camara, C.A.G.; de Melo, J.P.R.; de Moraes, M.M. Chemical composition and repellent activity of essential oils from the leaves of Cinnamomum zeylanicum and Eugenia uniflora against Diaphania hyalinata L. (Lepidoptera: Crambidae). J. Plant Dis. Prot. 2019, 126, 79–87. [Google Scholar] [CrossRef]
- Liu, C.H.; Mishra, A.K.; Tan, R.X.; Tang, C.; Yang, H.; Shen, Y.F. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresour. Technol. 2006, 97, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-J.; Lee, S.-G.; Lee, H.-S. Acaricidal and insecticidal activities of essential oils of Cinnamomum zeylanicum barks cultivated from France and India against Dermatophagoides spp., Tyrophagus putrescentiae and Ricania sp. Appl. Biol. Chem. 2017, 60, 259–264. [Google Scholar] [CrossRef]
- Chang, K.-S.; Tak, J.-H.; Kim, S.-I.; Lee, W.-J.; Ahn, Y.-J. Repellency of Cinnamomum cassia bark compounds and cream containing cassia oil to Aedes aegypti (Diptera: Culicidae) under laboratory and indoor conditions. Pest Manag. Sci. 2006, 62, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Aungtikun, J.; Soonwera, M. Improved adulticidal activity against Aedes aegypti (L.) and Aedes albopictus (Skuse) from synergy between Cinnamomum spp. essential oils. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mdoe, F.P.; Cheng, S.-S.; Msangi, S.; Nkwengulila, G.; Chang, S.-T.; Kweka, E.J. Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s. Parasites Vectors 2014, 7, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.-S.; Liu, J.-Y.; Tsai, K.-H.; Chen, W.-J.; Chang, S.-T. Chemical Composition and Mosquito Larvicidal Activity of Essential Oils from Leaves of Different Cinnamomum osmophloeum Provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
- Kaskatepe, B.; Kiymaci, M.E.; Simsek, D.; Erol, H.B.; Erdem, S.A. Comparison of the Contents and Antimicrobial Activities of Commercial and Natural Cinnamon Oils. Indian J. Pharm. Sci. 2016, 78, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Y.; Shi, Y.-Q.; Pan, X.-H.; Lu, Y.-H.; Cao, P. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microb. Pathog. 2018, 116, 26–32. [Google Scholar] [CrossRef]
- Yang, S.-K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Akseer, R.; Lim, E.; Lai, K.-S. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS ONE 2019, 14, e0214326. [Google Scholar] [CrossRef] [Green Version]
- Behbahani, B.A.; Falah, F.; Arab, F.L.; Vasiee, M.; Yazdi, F.T. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid.-Based Complement. Altern. Med. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Nagarajan, S.; Rao, L.J.M.; Gurudutt, K.N. Chemical composition of the volatiles of Hemidesmus indicus R. Br. Flavour Fragr. J. 2001, 16, 212–214. [Google Scholar] [CrossRef]
- Walia, S.; Mukhia, S.; Bhatt, V.; Kumar, R.; Kumar, R. Variability in chemical composition and antimicrobial activity of Tagetes minuta L. essential oil collected from different locations of Himalaya. Ind. Crop. Prod. 2020, 150, 112449. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.K.; Asari, A.; Salleh, S.A.; Azmi, W.A. Eugenol and Thymol Derivatives as Antifeedant Agents against Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) Larvae. Insects 2021, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Bhavya, M.L.; Obulaxmi, S.; Devi, S.S. Efficacy of Ocimum tenuiflorum essential oil as grain protectant against coleopteran beetle, infesting stored pulses. J. Food Sci. Technol. 2021, 58, 1611–1616. [Google Scholar] [CrossRef] [PubMed]
- Kłyś, M.; Izdebska, A.; Malejky-Kłusek, N. Repellent Effect of the Caraway Carum carvi L. on the Rice Weevil Sitophilus oryzae L. (Coleoptera, Dryophthoridae). Insects 2020, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Bayona, W.; Galeano, L.N.; Cortes, J.B.; Ávila, W.D.; Daza, E.H.; Suárez, L.; Prieto-Rodríguez, J.; Patiño-Ladino, O. Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, 12, 532. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | Kovats Index (KI) | % a | |
---|---|---|---|---|
LEO b | FEO c | |||
1 | Camphene | 945 | 0.24 | 0.41 |
2 | β-pinene | 967 | 0.33 | 0.14 |
3 | Sabinene | 972 | 0.85 | 0.22 |
4 | Myrcene | 988 | 1.54 | 1.99 |
5 | 1,4-Cineole | 1010 | 0.52 | 0.13 |
6 | Limonene | 1020 | 0.38 | 0.64 |
7 | Cis-β-Ocimene | 1024 | 0.08 | 0.11 |
8 | trans-β-Ocimene | 1028 | 0.07 | 0.15 |
9 | p-Cymene | 1018 | 1.88 | 2.68 |
10 | Linalool | 1095 | 18.92 | 15.62 |
11 | γ-Terpinene | 1054 | 0.19 | 0.55 |
12 | α-Terpineol | 1296 | 0.84 | 1.33 |
13 | Piperitone | 1247 | 0.22 | 0.41 |
14 | Geraniol | 1254 | 0.62 | 0.18 |
15 | (E)-Cinnamaldehyde | 1262 | 35.6 | 42.88 |
16 | (Z)-Cinnamaldehyde | 1271 | 0.65 | 0.88 |
17 | Eugenol | 1358 | 18.69 | 21.33 |
18 | (E)-Cinnamyl acetate | 1443 | 12.5 | 8.26 |
19 | Eugenyl acetate | 1496 | 1.38 | 0.74 |
20 | Benzyl benzoate | 1754 | 0.25 | 0.22 |
Bacteria | Zone of Inhibition (mm) | MIC (μg/mL) | ||
---|---|---|---|---|
LEO | FEO | LEO | FEO | |
Escherichia coli | 14.9 ± 0.1 * | 11.2 ± 0.3 | 2.7 ± 0.1 * | 3.2 ± 0.2 |
Staphylococcus aureus | 17.2 ± 0.3 * | 15.2 ± 0.5 | 2.8 ± 0.4 * | 2.9 ± 0.2 |
Pseudomonas aeruginosa | 17.6 ± 0.4 * | 16.4 ± 0.2 | 3.3 ± 0.2 * | 4.1 ± 0.3 |
Salmonella enteritidis | 19.2 ± 0.3 | 18.9 ± 0.1 | 3.7 ± 0.2 * | 4.0 ± 0.2 |
Mosquito | LC50 (μg/mL) | |
---|---|---|
LEO | FEO | |
Armigeres subalbatus | 88.34 ± 2.9 ** | 97.71 ± 3.6 |
Aedes aegypti | 41.56 ± 4.1 ** | 58.04 ± 2.8 |
Culex tritaeniorhynchus | 64.88 ± 1.9 *** | 80.66 ± 3.6 |
Duration of Exposure in Hours | Negative Control | Cinnamomum verum Essential Oil (µg/mL) | |||
---|---|---|---|---|---|
LEO | FEO | ||||
250 | 500 | 250 | 500 | ||
48 | 11.4 ± 1.2 | 10.9 ± 1.1ns | 10.0 ± 1.5 ns | 12.2 ± 2.1 ns | 14.3 ± 2.2 ns |
72 | 27.7 ± 2.3 | 27.8 ± 2.4 ns | 25.3 ± 2.0 ns | 26.8 ± 2.0 ns | 30.4 ± 2.0 ns |
96 | 59.4 ± 1.4 | 59.3 ± 1.8 ns | 57.3 ± 0.8 ns | 55.4 ± 0.8 ns | 62.1 ± 3.4 ns |
120 | 78.8 ± 2.1 | 79.2 ± 1.5 ns | 78.8 ± 0.9 ns | 74.3 ± 2.4 ns | 72.4 ± 3.1 ns |
144 | 88.9 ± 2.3 | 86.9 ± 1.3 ns | 85.9 ± 2.1 ns | 84.3 ± 3.2 ns | 86.2 ± 2.7 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayanankutty, A.; Kunnath, K.; Alfarhan, A.; Rajagopal, R.; Ramesh, V. Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties. Molecules 2021, 26, 6303. https://doi.org/10.3390/molecules26206303
Narayanankutty A, Kunnath K, Alfarhan A, Rajagopal R, Ramesh V. Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties. Molecules. 2021; 26(20):6303. https://doi.org/10.3390/molecules26206303
Chicago/Turabian StyleNarayanankutty, Arunaksharan, Krishnaprasad Kunnath, Ahmed Alfarhan, Rajakrishnan Rajagopal, and Varsha Ramesh. 2021. "Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties" Molecules 26, no. 20: 6303. https://doi.org/10.3390/molecules26206303
APA StyleNarayanankutty, A., Kunnath, K., Alfarhan, A., Rajagopal, R., & Ramesh, V. (2021). Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties. Molecules, 26(20), 6303. https://doi.org/10.3390/molecules26206303